提交 f6710ee8 编写于 作者: E Elias Soong

[TD-4181] <docs>: update Advanced-features related doc.

上级 a68e247c
...@@ -138,7 +138,7 @@ select * from meters where ts > now - 1d and current > 10; ...@@ -138,7 +138,7 @@ select * from meters where ts > now - 1d and current > 10;
订阅的`topic`实际上是它的名字,因为订阅功能是在客户端API中实现的,所以没必要保证它全局唯一,但需要它在一台客户端机器上唯一。 订阅的`topic`实际上是它的名字,因为订阅功能是在客户端API中实现的,所以没必要保证它全局唯一,但需要它在一台客户端机器上唯一。
如果名`topic`的订阅不存在,参数`restart`没有意义;但如果用户程序创建这个订阅后退出,当它再次启动并重新使用这个`topic`时,`restart`就会被用于决定是从头开始读取数据,还是接续上次的位置进行读取。本例中,如果`restart`**true**(非零值),用户程序肯定会读到所有数据。但如果这个订阅之前就存在了,并且已经读取了一部分数据,且`restart`**false****0**),用户程序就不会读到之前已经读取的数据了。 如果名`topic`的订阅不存在,参数`restart`没有意义;但如果用户程序创建这个订阅后退出,当它再次启动并重新使用这个`topic`时,`restart`就会被用于决定是从头开始读取数据,还是接续上次的位置进行读取。本例中,如果`restart`**true**(非零值),用户程序肯定会读到所有数据。但如果这个订阅之前就存在了,并且已经读取了一部分数据,且`restart`**false****0**),用户程序就不会读到之前已经读取的数据了。
`taos_subscribe`的最后一个参数是以毫秒为单位的轮询周期。在同步模式下,如果前后两次调用`taos_consume`的时间间隔小于此时间,`taos_consume`会阻塞,直到间隔超过此时间。异步模式下,这个时间是两次调用回调函数的最小时间间隔。 `taos_subscribe`的最后一个参数是以毫秒为单位的轮询周期。在同步模式下,如果前后两次调用`taos_consume`的时间间隔小于此时间,`taos_consume`会阻塞,直到间隔超过此时间。异步模式下,这个时间是两次调用回调函数的最小时间间隔。
...@@ -179,7 +179,8 @@ void print_result(TAOS_RES* res, int blockFetch) { ...@@ -179,7 +179,8 @@ void print_result(TAOS_RES* res, int blockFetch) {
  } else {   } else {
    while ((row = taos_fetch_row(res))) {     while ((row = taos_fetch_row(res))) {
      char temp[256];       char temp[256];
      taos_print_row(temp, row, fields, num_fields);puts(temp);       taos_print_row(temp, row, fields, num_fields);
      puts(temp);
      nRows++;       nRows++;
    }     }
  }   }
...@@ -211,14 +212,14 @@ taos_unsubscribe(tsub, keep); ...@@ -211,14 +212,14 @@ taos_unsubscribe(tsub, keep);
则可以在示例代码所在目录执行以下命令来编译并启动示例程序: 则可以在示例代码所在目录执行以下命令来编译并启动示例程序:
```shell ```bash
$ make $ make
$ ./subscribe -sql='select * from meters where current > 10;' $ ./subscribe -sql='select * from meters where current > 10;'
``` ```
示例程序启动后,打开另一个终端窗口,启动 TDengine 的 shell 向 **D1001** 插入一条电流为 12A 的数据: 示例程序启动后,打开另一个终端窗口,启动 TDengine 的 shell 向 **D1001** 插入一条电流为 12A 的数据:
```shell ```sql
$ taos $ taos
> use test; > use test;
> insert into D1001 values(now, 12, 220, 1); > insert into D1001 values(now, 12, 220, 1);
...@@ -313,7 +314,7 @@ public class SubscribeDemo { ...@@ -313,7 +314,7 @@ public class SubscribeDemo {
运行示例程序,首先,它会消费符合查询条件的所有历史数据: 运行示例程序,首先,它会消费符合查询条件的所有历史数据:
```shell ```bash
# java -jar subscribe.jar # java -jar subscribe.jar
ts: 1597464000000 current: 12.0 voltage: 220 phase: 1 location: Beijing.Chaoyang groupid : 2 ts: 1597464000000 current: 12.0 voltage: 220 phase: 1 location: Beijing.Chaoyang groupid : 2
...@@ -333,16 +334,16 @@ taos> insert into d1001 values("2020-08-15 12:40:00.000", 12.4, 220, 1); ...@@ -333,16 +334,16 @@ taos> insert into d1001 values("2020-08-15 12:40:00.000", 12.4, 220, 1);
因为这条数据的电流大于10A,示例程序会将其消费: 因为这条数据的电流大于10A,示例程序会将其消费:
```shell ```
ts: 1597466400000 current: 12.4 voltage: 220 phase: 1 location: Beijing.Chaoyang groupid: 2 ts: 1597466400000 current: 12.4 voltage: 220 phase: 1 location: Beijing.Chaoyang groupid: 2
``` ```
## <a class="anchor" id="cache"></a>缓存(Cache) ## <a class="anchor" id="cache"></a>缓存(Cache)
TDengine采用时间驱动缓存管理策略(First-In-First-Out,FIFO),又称为写驱动的缓存管理机制。这种策略有别于读驱动的数据缓存模式(Least-Recent-Use,LRU),直接将最近写入的数据保存在系统的缓存中。当缓存达到临界值的时候,将最早的数据批量写入磁盘。一般意义上来说,对于物联网数据的使用,用户最为关心最近产生的数据,即当前状态。TDengine充分利用了这一特性,将最近到达的(当前状态)数据保存在缓存中。 TDengine采用时间驱动缓存管理策略(First-In-First-Out,FIFO),又称为写驱动的缓存管理机制。这种策略有别于读驱动的数据缓存模式(Least-Recent-Used,LRU),直接将最近写入的数据保存在系统的缓存中。当缓存达到临界值的时候,将最早的数据批量写入磁盘。一般意义上来说,对于物联网数据的使用,用户最为关心最近产生的数据,即当前状态。TDengine充分利用了这一特性,将最近到达的(当前状态)数据保存在缓存中。
TDengine通过查询函数向用户提供毫秒级的数据获取能力。直接将最近到达的数据保存在缓存中,可以更加快速地响应用户针对最近一条或一批数据的查询分析,整体上提供更快的数据库查询响应能力。从这个意义上来说,可通过设置合适的配置参数将TDengine作为数据缓存来使用,而不需要再部署额外的缓存系统,可有效地简化系统架构,降低运维的成本。需要注意的是,TDengine重启以后系统的缓存将被清空,之前缓存的数据均会被批量写入磁盘,缓存的数据将不会像专门的Key-value缓存系统再将之前缓存的数据重新加载到缓存中。 TDengine通过查询函数向用户提供毫秒级的数据获取能力。直接将最近到达的数据保存在缓存中,可以更加快速地响应用户针对最近一条或一批数据的查询分析,整体上提供更快的数据库查询响应能力。从这个意义上来说,可通过设置合适的配置参数将TDengine作为数据缓存来使用,而不需要再部署额外的缓存系统,可有效地简化系统架构,降低运维的成本。需要注意的是,TDengine重启以后系统的缓存将被清空,之前缓存的数据均会被批量写入磁盘,缓存的数据将不会像专门的key-value缓存系统再将之前缓存的数据重新加载到缓存中。
TDengine分配固定大小的内存空间作为缓存空间,缓存空间可根据应用的需求和硬件资源配置。通过适当的设置缓存空间,TDengine可以提供极高性能的写入和查询的支持。TDengine中每个虚拟节点(virtual node)创建时分配独立的缓存池。每个虚拟节点管理自己的缓存池,不同虚拟节点间不共享缓存池。每个虚拟节点内部所属的全部表共享该虚拟节点的缓存池。 TDengine分配固定大小的内存空间作为缓存空间,缓存空间可根据应用的需求和硬件资源配置。通过适当的设置缓存空间,TDengine可以提供极高性能的写入和查询的支持。TDengine中每个虚拟节点(virtual node)创建时分配独立的缓存池。每个虚拟节点管理自己的缓存池,不同虚拟节点间不共享缓存池。每个虚拟节点内部所属的全部表共享该虚拟节点的缓存池。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册