提交 b7917aa4 编写于 作者: H Haojun Liao

[td-10564] Add codes for query parsing.

上级 132e3b45
...@@ -36,4 +36,32 @@ ...@@ -36,4 +36,32 @@
// int16_t bytes; // int16_t bytes;
//} SSchema; //} SSchema;
typedef struct SColumnDataAgg {
int16_t colId;
int64_t sum;
int64_t max;
int64_t min;
int16_t maxIndex;
int16_t minIndex;
int16_t numOfNull;
} SColumnDataAgg;
typedef struct SDataBlockInfo {
STimeWindow window;
int32_t rows;
int32_t numOfCols;
int64_t uid;
} SDataBlockInfo;
typedef struct SSDataBlock {
SColumnDataAgg *pBlockAgg;
SArray *pDataBlock; // SArray<SColumnInfoData>
SDataBlockInfo info;
} SSDataBlock;
typedef struct SColumnInfoData {
SColumnInfo info; // TODO filter info needs to be removed
char *pData; // the corresponding block data in memory
} SColumnInfoData;
#endif // TDENGINE_COMMON_H #endif // TDENGINE_COMMON_H
...@@ -184,16 +184,6 @@ void** qReleaseQInfo(void* pMgmt, void* pQInfo); ...@@ -184,16 +184,6 @@ void** qReleaseQInfo(void* pMgmt, void* pQInfo);
*/ */
void** qDeregisterQInfo(void* pMgmt, void* pQInfo); void** qDeregisterQInfo(void* pMgmt, void* pQInfo);
//======================================================================================================================
// built-in sql functions
/**
* If the given name is a valid built-in sql function, the value of true will be returned.
* @param name
* @param len
* @return
*/
bool isBuiltinFunction(const char* name, int32_t len);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif
......
/*
* Copyright (c) 2019 TAOS Data, Inc. <jhtao@taosdata.com>
*
* This program is free software: you can use, redistribute, and/or modify
* it under the terms of the GNU Affero General Public License, version 3
* or later ("AGPL"), as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TDENGINE_TFUNCTION_H
#define TDENGINE_TFUNCTION_H
#ifdef __cplusplus
extern "C" {
#endif
#include "common.h"
#define FUNCTION_SCALAR 1
#define FUNCTION_AGG 2
#define FUNCTIONS_NAME_MAX_LENGTH 16
#define FUNCTION_INVALID_ID -1
#define FUNCTION_COUNT 0
#define FUNCTION_SUM 1
#define FUNCTION_AVG 2
#define FUNCTION_MIN 3
#define FUNCTION_MAX 4
#define FUNCTION_STDDEV 5
#define FUNCTION_PERCT 6
#define FUNCTION_APERCT 7
#define FUNCTION_FIRST 8
#define FUNCTION_LAST 9
#define FUNCTION_LAST_ROW 10
#define FUNCTION_TOP 11
#define FUNCTION_BOTTOM 12
#define FUNCTION_SPREAD 13
#define FUNCTION_TWA 14
#define FUNCTION_LEASTSQR 15
#define FUNCTION_TS 16
#define FUNCTION_TS_DUMMY 17
#define FUNCTION_TAG_DUMMY 18
#define FUNCTION_TS_COMP 19
#define FUNCTION_TAG 20
#define FUNCTION_PRJ 21
#define FUNCTION_TAGPRJ 22
#define FUNCTION_ARITHM 23
#define FUNCTION_DIFF 24
#define FUNCTION_FIRST_DST 25
#define FUNCTION_LAST_DST 26
#define FUNCTION_STDDEV_DST 27
#define FUNCTION_INTERP 28
#define FUNCTION_RATE 29
#define FUNCTION_IRATE 30
#define FUNCTION_TID_TAG 31
#define FUNCTION_DERIVATIVE 32
#define FUNCTION_BLKINFO 33
#define FUNCTION_HISTOGRAM 34
#define FUNCTION_HLL 35
#define FUNCTION_MODE 36
#define FUNCTION_SAMPLE 37
typedef struct SPoint1 {
int64_t key;
union{double val; char* ptr;};
} SPoint1;
struct SQLFunctionCtx;
struct SResultRowCellInfo;
//for selectivity query, the corresponding tag value is assigned if the data is qualified
typedef struct SExtTagsInfo {
int16_t tagsLen; // keep the tags data for top/bottom query result
int16_t numOfTagCols;
struct SQLFunctionCtx **pTagCtxList;
} SExtTagsInfo;
// sql function runtime context
typedef struct SQLFunctionCtx {
int32_t size; // number of rows
void * pInput; // input data buffer
uint32_t order; // asc|desc
int16_t inputType;
int16_t inputBytes;
int16_t outputType;
int16_t outputBytes; // size of results, determined by function and input column data type
int32_t interBufBytes; // internal buffer size
bool hasNull; // null value exist in current block
bool requireNull; // require null in some function
bool stableQuery;
int16_t functionId; // function id
char * pOutput; // final result output buffer, point to sdata->data
uint8_t currentStage; // record current running step, default: 0
int64_t startTs; // timestamp range of current query when function is executed on a specific data block
int32_t numOfParams;
SVariant param[4]; // input parameter, e.g., top(k, 20), the number of results for top query is kept in param
int64_t *ptsList; // corresponding timestamp array list
void *ptsOutputBuf; // corresponding output buffer for timestamp of each result, e.g., top/bottom*/
SVariant tag;
bool isSmaSet;
SColumnDataAgg sma;
struct SResultRowCellInfo *resultInfo;
SExtTagsInfo tagInfo;
SPoint1 start;
SPoint1 end;
} SQLFunctionCtx;
typedef struct SAggFunctionInfo {
char name[FUNCTIONS_NAME_MAX_LENGTH];
int8_t type; // Scalar function or aggregation function
uint8_t functionId; // Function Id
int8_t sFunctionId; // Transfer function for super table query
uint16_t status;
bool (*init)(SQLFunctionCtx *pCtx, struct SResultRowCellInfo* pResultCellInfo); // setup the execute environment
void (*exec)(SQLFunctionCtx *pCtx);
// finalizer must be called after all exec has been executed to generated final result.
void (*xFinalize)(SQLFunctionCtx *pCtx);
void (*mergeFunc)(SQLFunctionCtx *pCtx);
int32_t (*dataReqFunc)(SQLFunctionCtx *pCtx, STimeWindow* w, int32_t colId);
} SAggFunctionInfo;
typedef struct SScalarFunctionInfo {
char name[FUNCTIONS_NAME_MAX_LENGTH];
int8_t type; // scalar function or aggregation function
uint8_t functionId; // index of scalar function
bool (*init)(SQLFunctionCtx *pCtx, struct SResultRowCellInfo* pResultCellInfo); // setup the execute environment
void (*exec)(SQLFunctionCtx *pCtx);
} SScalarFunctionInfo;
int32_t getResultDataInfo(int32_t dataType, int32_t dataBytes, int32_t functionId, int32_t param, int16_t *type,
int16_t *len, int32_t *interBytes, int16_t extLength, bool isSuperTable/*, SUdfInfo* pUdfInfo*/);
/**
* If the given name is a valid built-in sql function, the value of true will be returned.
* @param name
* @param len
* @return
*/
int32_t qIsBuiltinFunction(const char* name, int32_t len);
#ifdef __cplusplus
}
#endif
#endif // TDENGINE_TFUNCTION_H
...@@ -95,10 +95,7 @@ typedef struct STagCond { ...@@ -95,10 +95,7 @@ typedef struct STagCond {
typedef struct STableMetaInfo { typedef struct STableMetaInfo {
STableMeta *pTableMeta; // table meta, cached in client side and acquired by name STableMeta *pTableMeta; // table meta, cached in client side and acquired by name
uint32_t tableMetaSize;
// size_t tableMetaCapacity;
SVgroupsInfo *vgroupList; SVgroupsInfo *vgroupList;
SArray *pVgroupTables; // SArray<SVgroupTableInfo>
/* /*
* 1. keep the vgroup index during the multi-vnode super table projection query * 1. keep the vgroup index during the multi-vnode super table projection query
...@@ -110,6 +107,20 @@ typedef struct STableMetaInfo { ...@@ -110,6 +107,20 @@ typedef struct STableMetaInfo {
SArray *tagColList; // SArray<SColumn*>, involved tag columns SArray *tagColList; // SArray<SColumn*>, involved tag columns
} STableMetaInfo; } STableMetaInfo;
typedef struct SQueryType {
bool stableQuery;
bool groupbyColumn;
bool simpleAgg;
bool arithmeticOnAgg;
bool projectionQuery;
bool hasFilter;
bool onlyTagQuery;
bool orderProjectQuery;
bool stateWindow;
bool globalMerge;
bool multigroupResult;
} SQueryType;
typedef struct SQueryStmtInfo { typedef struct SQueryStmtInfo {
int16_t command; // the command may be different for each subclause, so keep it seperately. int16_t command; // the command may be different for each subclause, so keep it seperately.
uint32_t type; // query/insert type uint32_t type; // query/insert type
...@@ -152,17 +163,6 @@ typedef struct SQueryStmtInfo { ...@@ -152,17 +163,6 @@ typedef struct SQueryStmtInfo {
SArray *pUpstream; // SArray<struct SQueryStmtInfo> SArray *pUpstream; // SArray<struct SQueryStmtInfo>
struct SQueryStmtInfo *pDownstream; struct SQueryStmtInfo *pDownstream;
int32_t havingFieldNum; int32_t havingFieldNum;
bool stableQuery;
bool groupbyColumn;
bool simpleAgg;
bool arithmeticOnAgg;
bool projectionQuery;
bool hasFilter;
bool onlyTagQuery;
bool orderProjectQuery;
bool stateWindow;
bool globalMerge;
bool multigroupResult;
} SQueryStmtInfo; } SQueryStmtInfo;
struct SInsertStmtInfo; struct SInsertStmtInfo;
......
...@@ -44,6 +44,7 @@ extern "C" { ...@@ -44,6 +44,7 @@ extern "C" {
#include <errno.h> #include <errno.h>
#include <float.h> #include <float.h>
#include <math.h> #include <math.h>
#include <sys/stat.h>
#include "osAtomic.h" #include "osAtomic.h"
#include "osDef.h" #include "osDef.h"
......
/*
* Copyright (c) 2019 TAOS Data, Inc. <jhtao@taosdata.com>
*
* This program is free software: you can use, redistribute, and/or modify
* it under the terms of the GNU Affero General Public License, version 3
* or later ("AGPL"), as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TDENGINE_TPAGEDFILE_H
#define TDENGINE_TPAGEDFILE_H
#ifdef __cplusplus
extern "C" {
#endif
#include "tlist.h"
#include "thash.h"
#include "os.h"
#include "tlockfree.h"
typedef struct SArray* SIDList;
typedef struct SPageDiskInfo {
int32_t offset;
int32_t length;
} SPageDiskInfo;
typedef struct SPageInfo {
SListNode* pn; // point to list node
int32_t pageId;
SPageDiskInfo info;
void* pData;
bool used; // set current page is in used
} SPageInfo;
typedef struct SFreeListItem {
int32_t offset;
int32_t len;
} SFreeListItem;
typedef struct SResultBufStatis {
int32_t flushBytes;
int32_t loadBytes;
int32_t getPages;
int32_t releasePages;
int32_t flushPages;
} SResultBufStatis;
typedef struct SDiskbasedResultBuf {
int32_t numOfPages;
int64_t totalBufSize;
int64_t fileSize; // disk file size
FILE* file;
int32_t allocateId; // allocated page id
char* path; // file path
int32_t pageSize; // current used page size
int32_t inMemPages; // numOfPages that are allocated in memory
SHashObj* groupSet; // id hash table
SHashObj* all;
SList* lruList;
void* emptyDummyIdList; // dummy id list
void* assistBuf; // assistant buffer for compress/decompress data
SArray* pFree; // free area in file
bool comp; // compressed before flushed to disk
int32_t nextPos; // next page flush position
uint64_t qId; // for debug purpose
SResultBufStatis statis;
} SDiskbasedResultBuf;
#define DEFAULT_INTERN_BUF_PAGE_SIZE (1024L) // in bytes
#define PAGE_INFO_INITIALIZER (SPageDiskInfo){-1, -1}
#define DEFAULT_PAGE_SIZE (16384L)
typedef struct SFilePage {
int64_t num;
char data[];
} SFilePage;
/**
* create disk-based result buffer
* @param pResultBuf
* @param rowSize
* @param pagesize
* @param inMemPages
* @param handle
* @return
*/
int32_t createDiskbasedResultBuffer(SDiskbasedResultBuf** pResultBuf, int32_t pagesize, int32_t inMemBufSize, uint64_t qId);
/**
*
* @param pResultBuf
* @param groupId
* @param pageId
* @return
*/
SFilePage* getNewDataBuf(SDiskbasedResultBuf* pResultBuf, int32_t groupId, int32_t* pageId);
/**
*
* @param pResultBuf
* @param groupId
* @return
*/
SIDList getDataBufPagesIdList(SDiskbasedResultBuf* pResultBuf, int32_t groupId);
/**
* get the specified buffer page by id
* @param pResultBuf
* @param id
* @return
*/
tFilePage* getResBufPage(SDiskbasedResultBuf* pResultBuf, int32_t id);
/**
* release the referenced buf pages
* @param pResultBuf
* @param page
*/
void releaseResBufPage(SDiskbasedResultBuf* pResultBuf, void* page);
/**
*
* @param pResultBuf
* @param pi
*/
void releaseResBufPageInfo(SDiskbasedResultBuf* pResultBuf, SPageInfo* pi);
/**
* get the total buffer size in the format of disk file
* @param pResultBuf
* @return
*/
size_t getResBufSize(const SDiskbasedResultBuf* pResultBuf);
/**
* get the number of groups in the result buffer
* @param pResultBuf
* @return
*/
size_t getNumOfResultBufGroupId(const SDiskbasedResultBuf* pResultBuf);
/**
* destroy result buffer
* @param pResultBuf
*/
void destroyResultBuf(SDiskbasedResultBuf* pResultBuf);
/**
*
* @param pList
* @return
*/
SPageInfo* getLastPageInfo(SIDList pList);
#ifdef __cplusplus
}
#endif
#endif // TDENGINE_TPAGEDFILE_H
...@@ -9,3 +9,4 @@ add_subdirectory(lru) ...@@ -9,3 +9,4 @@ add_subdirectory(lru)
add_subdirectory(catalog) add_subdirectory(catalog)
add_subdirectory(executor) add_subdirectory(executor)
add_subdirectory(planner) add_subdirectory(planner)
add_subdirectory(function)
\ No newline at end of file
aux_source_directory(src FUNCTION_SRC)
add_library(function ${FUNCTION_SRC})
target_include_directories(
function
PUBLIC "${CMAKE_SOURCE_DIR}/include/libs/function"
PRIVATE "${CMAKE_CURRENT_SOURCE_DIR}/inc"
)
target_link_libraries(
function
PRIVATE os util common
)
\ No newline at end of file
/*
* Copyright (c) 2019 TAOS Data, Inc. <jhtao@taosdata.com>
*
* This program is free software: you can use, redistribute, and/or modify
* it under the terms of the GNU Affero General Public License, version 3
* or later ("AGPL"), as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TDENGINE_TAGGFUNCTION_H
#define TDENGINE_TAGGFUNCTION_H
#ifdef __cplusplus
extern "C" {
#endif
#include "os.h"
#include "tname.h"
#include "taosdef.h"
#include "tvariant.h"
#include "function.h"
#include "tudf.h"
extern SAggFunctionInfo aggFunc[34];
typedef struct SResultRowCellInfo {
int8_t hasResult; // result generated, not NULL value
bool initialized; // output buffer has been initialized
bool complete; // query has completed
uint32_t numOfRes; // num of output result in current buffer
} SResultRowCellInfo;
#define FUNCSTATE_SO 0x0u
#define FUNCSTATE_MO 0x1u // dynamic number of output, not multinumber of output e.g., TOP/BOTTOM
#define FUNCSTATE_STREAM 0x2u // function avail for stream
#define FUNCSTATE_STABLE 0x4u // function avail for super table
#define FUNCSTATE_NEED_TS 0x8u // timestamp is required during query processing
#define FUNCSTATE_SELECTIVITY 0x10u // selectivity functions, can exists along with tag columns
#define BASIC_FUNC_SO FUNCSTATE_SO | FUNCSTATE_STREAM | FUNCSTATE_STABLE
#define BASIC_FUNC_MO FUNCSTATE_MO | FUNCSTATE_STREAM | FUNCSTATE_STABLE
#define AVG_FUNCTION_INTER_BUFFER_SIZE 50
#define DATA_SET_FLAG ',' // to denote the output area has data, not null value
#define DATA_SET_FLAG_SIZE sizeof(DATA_SET_FLAG)
#define QUERY_ASC_FORWARD_STEP 1
#define QUERY_DESC_FORWARD_STEP -1
#define GET_FORWARD_DIRECTION_FACTOR(ord) (((ord) == TSDB_ORDER_ASC) ? QUERY_ASC_FORWARD_STEP : QUERY_DESC_FORWARD_STEP)
#define MAX_INTERVAL_TIME_WINDOW 1000000 // maximum allowed time windows in final results
#define TOP_BOTTOM_QUERY_LIMIT 100
enum {
MASTER_SCAN = 0x0u,
REVERSE_SCAN = 0x1u,
REPEAT_SCAN = 0x2u, //repeat scan belongs to the master scan
MERGE_STAGE = 0x20u,
};
#define QUERY_IS_STABLE_QUERY(type) (((type)&TSDB_QUERY_TYPE_STABLE_QUERY) != 0)
#define QUERY_IS_JOIN_QUERY(type) (TSDB_QUERY_HAS_TYPE(type, TSDB_QUERY_TYPE_JOIN_QUERY))
#define QUERY_IS_PROJECTION_QUERY(type) (((type)&TSDB_QUERY_TYPE_PROJECTION_QUERY) != 0)
#define QUERY_IS_FREE_RESOURCE(type) (((type)&TSDB_QUERY_TYPE_FREE_RESOURCE) != 0)
typedef struct SArithmeticSupport {
SExprInfo *pExprInfo;
int32_t numOfCols;
SColumnInfo *colList;
void *exprList; // client side used
int32_t offset;
char** data;
} SArithmeticSupport;
typedef struct SInterpInfoDetail {
TSKEY ts; // interp specified timestamp
int8_t type;
int8_t primaryCol;
} SInterpInfoDetail;
#define GET_ROWCELL_INTERBUF(_c) ((void*) ((char*)(_c) + sizeof(SResultRowCellInfo)))
#define GET_RES_INFO(ctx) ((ctx)->resultInfo)
#define IS_STREAM_QUERY_VALID(x) (((x)&TSDB_FUNCSTATE_STREAM) != 0)
#define IS_MULTIOUTPUT(x) (((x)&TSDB_FUNCSTATE_MO) != 0)
// determine the real data need to calculated the result
enum {
BLK_DATA_NO_NEEDED = 0x0,
BLK_DATA_STATIS_NEEDED = 0x1,
BLK_DATA_ALL_NEEDED = 0x3,
BLK_DATA_DISCARD = 0x4, // discard current data block since it is not qualified for filter
};
typedef struct STwaInfo {
int8_t hasResult; // flag to denote has value
double dOutput;
SPoint1 p;
STimeWindow win;
} STwaInfo;
extern int32_t functionCompatList[]; // compatible check array list
bool topbot_datablock_filter(SQLFunctionCtx *pCtx, const char *minval, const char *maxval);
/**
* the numOfRes should be kept, since it may be used later
* and allow the ResultInfo to be re initialized
*/
#define RESET_RESULT_INFO(_r) \
do { \
(_r)->initialized = false; \
} while (0)
static FORCE_INLINE void initResultInfo(SResultRowCellInfo *pResInfo, int32_t bufLen) {
pResInfo->initialized = true; // the this struct has been initialized flag
pResInfo->complete = false;
pResInfo->hasResult = false;
pResInfo->numOfRes = 0;
memset(GET_ROWCELL_INTERBUF(pResInfo), 0, bufLen);
}
#ifdef __cplusplus
}
#endif
#endif // TDENGINE_TAGGFUNCTION_H
/*
* Copyright (c) 2019 TAOS Data, Inc. <jhtao@taosdata.com>
*
* This program is free software: you can use, redistribute, and/or modify
* it under the terms of the GNU Affero General Public License, version 3
* or later ("AGPL"), as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TDENGINE_TFILL_H
#define TDENGINE_TFILL_H
#ifdef __cplusplus
extern "C" {
#endif
#include "os.h"
#include "taosdef.h"
struct SSDataBlock;
typedef struct {
STColumn col; // column info
int16_t functionId; // sql function id
int16_t flag; // column flag: TAG COLUMN|NORMAL COLUMN
int16_t tagIndex; // index of current tag in SFillTagColInfo array list
union {int64_t i; double d;} fillVal;
} SFillColInfo;
typedef struct {
SSchema col;
char* tagVal;
} SFillTagColInfo;
typedef struct SFillInfo {
TSKEY start; // start timestamp
TSKEY end; // endKey for fill
TSKEY currentKey; // current active timestamp, the value may be changed during the fill procedure.
int32_t order; // order [TSDB_ORDER_ASC|TSDB_ORDER_DESC]
int32_t type; // fill type
int32_t numOfRows; // number of rows in the input data block
int32_t index; // active row index
int32_t numOfTotal; // number of filled rows in one round
int32_t numOfCurrent; // number of filled rows in current results
int32_t numOfTags; // number of tags
int32_t numOfCols; // number of columns, including the tags columns
int32_t rowSize; // size of each row
SInterval interval;
char * prevValues; // previous row of data, to generate the interpolation results
char * nextValues; // next row of data
char** pData; // original result data block involved in filling data
int32_t alloc; // data buffer size in rows
int8_t precision; // time resoluation
SFillColInfo* pFillCol; // column info for fill operations
SFillTagColInfo* pTags; // tags value for filling gap
void* handle; // for debug purpose
} SFillInfo;
typedef struct SPoint {
int64_t key;
void * val;
} SPoint;
SFillInfo* taosCreateFillInfo(int32_t order, TSKEY skey, int32_t numOfTags, int32_t capacity, int32_t numOfCols,
int64_t slidingTime, int8_t slidingUnit, int8_t precision, int32_t fillType,
SFillColInfo* pFillCol, void* handle);
void taosResetFillInfo(SFillInfo* pFillInfo, TSKEY startTimestamp);
void* taosDestroyFillInfo(SFillInfo *pFillInfo);
void taosFillSetStartInfo(SFillInfo* pFillInfo, int32_t numOfRows, TSKEY endKey);
void taosFillSetInputDataBlock(SFillInfo* pFillInfo, const struct SSDataBlock* pInput);
bool taosFillHasMoreResults(SFillInfo* pFillInfo);
int64_t getNumOfResultsAfterFillGap(SFillInfo* pFillInfo, int64_t ekey, int32_t maxNumOfRows);
int32_t taosGetLinearInterpolationVal(SPoint* point, int32_t outputType, SPoint* point1, SPoint* point2, int32_t inputType);
int64_t taosFillResultDataBlock(SFillInfo* pFillInfo, void** output, int32_t capacity);
#ifdef __cplusplus
}
#endif
#endif // TDENGINE_TFILL_H
/*
* Copyright (c) 2019 TAOS Data, Inc. <jhtao@taosdata.com>
*
* This program is free software: you can use, redistribute, and/or modify
* it under the terms of the GNU Affero General Public License, version 3
* or later ("AGPL"), as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TDENGINE_HISTOGRAM_H
#define TDENGINE_HISTOGRAM_H
#ifdef __cplusplus
extern "C" {
#endif
#define USE_ARRAYLIST
#define MAX_HISTOGRAM_BIN 500
typedef struct SHistBin {
double val;
int64_t num;
#if !defined(USE_ARRAYLIST)
double delta;
int32_t index; // index in min-heap list
#endif
} SHistBin;
typedef struct SHeapEntry {
void* pData;
double val;
} SHeapEntry;
typedef struct SHistogramInfo {
int64_t numOfElems;
int32_t numOfEntries;
int32_t maxEntries;
double min;
double max;
#if defined(USE_ARRAYLIST)
SHistBin* elems;
#else
tSkipList* pList;
SLoserTreeInfo* pLoserTree;
int32_t maxIndex;
bool ordered;
#endif
} SHistogramInfo;
SHistogramInfo* tHistogramCreate(int32_t numOfBins);
SHistogramInfo* tHistogramCreateFrom(void* pBuf, int32_t numOfBins);
int32_t tHistogramAdd(SHistogramInfo** pHisto, double val);
int64_t tHistogramSum(SHistogramInfo* pHisto, double v);
double* tHistogramUniform(SHistogramInfo* pHisto, double* ratio, int32_t num);
SHistogramInfo* tHistogramMerge(SHistogramInfo* pHisto1, SHistogramInfo* pHisto2, int32_t numOfEntries);
void tHistogramDestroy(SHistogramInfo** pHisto);
void tHistogramPrint(SHistogramInfo* pHisto);
int32_t histoBinarySearch(SHistBin* pEntry, int32_t len, double val);
SHeapEntry* tHeapCreate(int32_t numOfEntries);
void tHeapSort(SHeapEntry* pEntry, int32_t len);
#ifdef __cplusplus
}
#endif
#endif // TDENGINE_HISTOGRAM_H
/*
* Copyright (c) 2019 TAOS Data, Inc. <jhtao@taosdata.com>
*
* This program is free software: you can use, redistribute, and/or modify
* it under the terms of the GNU Affero General Public License, version 3
* or later ("AGPL"), as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TDENGINE_TPERCENTILE_H
#define TDENGINE_TPERCENTILE_H
#ifdef __cplusplus
extern "C" {
#endif
#include "qExtbuffer.h"
#include "qResultbuf.h"
#include "ttszip.h"
typedef struct MinMaxEntry {
union {
double dMinVal;
int64_t i64MinVal;
uint64_t u64MinVal;
};
union {
double dMaxVal;
int64_t i64MaxVal;
int64_t u64MaxVal;
};
} MinMaxEntry;
typedef struct {
int32_t size;
int32_t pageId;
tFilePage *data;
} SSlotInfo;
typedef struct tMemBucketSlot {
SSlotInfo info;
MinMaxEntry range;
} tMemBucketSlot;
struct tMemBucket;
typedef int32_t (*__perc_hash_func_t)(struct tMemBucket *pBucket, const void *value);
typedef struct tMemBucket {
int16_t numOfSlots;
int16_t type;
int16_t bytes;
int32_t total;
int32_t elemPerPage; // number of elements for each object
int32_t maxCapacity; // maximum allowed number of elements that can be sort directly to get the result
int32_t bufPageSize; // disk page size
MinMaxEntry range; // value range
int32_t times; // count that has been checked for deciding the correct data value buckets.
__compar_fn_t comparFn;
tMemBucketSlot * pSlots;
SDiskbasedResultBuf *pBuffer;
__perc_hash_func_t hashFunc;
} tMemBucket;
tMemBucket *tMemBucketCreate(int16_t nElemSize, int16_t dataType, double minval, double maxval);
void tMemBucketDestroy(tMemBucket *pBucket);
int32_t tMemBucketPut(tMemBucket *pBucket, const void *data, size_t size);
double getPercentile(tMemBucket *pMemBucket, double percent);
#endif // TDENGINE_TPERCENTILE_H
#ifdef __cplusplus
}
#endif
\ No newline at end of file
/*
* Copyright (c) 2019 TAOS Data, Inc. <jhtao@taosdata.com>
*
* This program is free software: you can use, redistribute, and/or modify
* it under the terms of the GNU Affero General Public License, version 3
* or later ("AGPL"), as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TDENGINE_TSCALARFUNCTION_H
#define TDENGINE_TSCALARFUNCTION_H
#ifdef __cplusplus
extern "C" {
#endif
#include "function.h"
extern struct SScalarFunctionInfo scalarFunc[1];
#define FUNCTION_CEIL 38
#define FUNCTION_FLOOR 39
#define FUNCTION_ROUND 40
#define FUNCTION_MAVG 41
#define FUNCTION_CSUM 42
#ifdef __cplusplus
}
#endif
#endif // TDENGINE_TSCALARFUNCTION_H
/*
* Copyright (c) 2019 TAOS Data, Inc. <jhtao@taosdata.com>
*
* This program is free software: you can use, redistribute, and/or modify
* it under the terms of the GNU Affero General Public License, version 3
* or later ("AGPL"), as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TDENGINE_TTSZIP_H
#define TDENGINE_TTSZIP_H
#ifdef __cplusplus
extern "C" {
#endif
#include "os.h"
#include "taosdef.h"
#include "tvariant.h"
#define MEM_BUF_SIZE (1 << 20)
#define TS_COMP_FILE_MAGIC 0x87F5EC4C
#define TS_COMP_FILE_GROUP_MAX 512
typedef struct STSList {
char* rawBuf;
int32_t allocSize;
int32_t threshold;
int32_t len;
} STSList;
typedef struct STSElem {
TSKEY ts;
tVariant* tag;
int32_t id;
} STSElem;
typedef struct STSCursor {
int32_t vgroupIndex;
int32_t blockIndex;
int32_t tsIndex;
uint32_t order;
} STSCursor;
typedef struct STSBlock {
tVariant tag; // tag value
int32_t numOfElem; // number of elements
int32_t compLen; // size after compressed
int32_t padding; // 0xFFFFFFFF by default, after the payload
char* payload; // actual data that is compressed
} STSBlock;
/*
* The size of buffer file should not be greater than 2G,
* and the offset of int32_t type is enough
*/
typedef struct STSGroupBlockInfo {
int32_t id; // group id
int32_t offset; // offset set value in file
int32_t numOfBlocks; // number of total blocks
int32_t compLen; // compressed size
} STSGroupBlockInfo;
typedef struct STSGroupBlockInfoEx {
STSGroupBlockInfo info;
int32_t len; // length before compress
} STSGroupBlockInfoEx;
typedef struct STSBuf {
FILE* f;
char path[PATH_MAX];
uint32_t fileSize;
// todo use array
STSGroupBlockInfoEx* pData;
uint32_t numOfAlloc;
uint32_t numOfGroups;
char* assistBuf;
int32_t bufSize;
STSBlock block;
STSList tsData; // uncompressed raw ts data
uint64_t numOfTotal;
bool autoDelete;
bool remainOpen;
int32_t tsOrder; // order of timestamp in ts comp buffer
STSCursor cur;
} STSBuf;
typedef struct STSBufFileHeader {
uint32_t magic; // file magic number
uint32_t numOfGroup; // number of group stored in current file
int32_t tsOrder; // timestamp order in current file
} STSBufFileHeader;
STSBuf* tsBufCreate(bool autoDelete, int32_t order);
STSBuf* tsBufCreateFromFile(const char* path, bool autoDelete);
STSBuf* tsBufCreateFromCompBlocks(const char* pData, int32_t numOfBlocks, int32_t len, int32_t tsOrder, int32_t id);
void* tsBufDestroy(STSBuf* pTSBuf);
void tsBufAppend(STSBuf* pTSBuf, int32_t id, tVariant* tag, const char* pData, int32_t len);
int32_t tsBufMerge(STSBuf* pDestBuf, const STSBuf* pSrcBuf);
STSBuf* tsBufClone(STSBuf* pTSBuf);
STSGroupBlockInfo* tsBufGetGroupBlockInfo(STSBuf* pTSBuf, int32_t id);
void tsBufFlush(STSBuf* pTSBuf);
void tsBufResetPos(STSBuf* pTSBuf);
bool tsBufNextPos(STSBuf* pTSBuf);
STSElem tsBufGetElem(STSBuf* pTSBuf);
STSElem tsBufGetElemStartPos(STSBuf* pTSBuf, int32_t id, tVariant* tag);
STSCursor tsBufGetCursor(STSBuf* pTSBuf);
void tsBufSetTraverseOrder(STSBuf* pTSBuf, int32_t order);
void tsBufSetCursor(STSBuf* pTSBuf, STSCursor* pCur);
/**
* display all data in comp block file, for debug purpose only
* @param pTSBuf
*/
void tsBufDisplay(STSBuf* pTSBuf);
int32_t tsBufGetNumOfGroup(STSBuf* pTSBuf);
void tsBufGetGroupIdList(STSBuf* pTSBuf, int32_t* num, int32_t** id);
int32_t dumpFileBlockByGroupId(STSBuf* pTSBuf, int32_t id, void* buf, int32_t* len, int32_t* numOfBlocks);
STSElem tsBufFindElemStartPosByTag(STSBuf* pTSBuf, tVariant* pTag);
bool tsBufIsValidElem(STSElem* pElem);
#ifdef __cplusplus
}
#endif
#endif // TDENGINE_TTSZIP_H
/*
* Copyright (c) 2019 TAOS Data, Inc. <jhtao@taosdata.com>
*
* This program is free software: you can use, redistribute, and/or modify
* it under the terms of the GNU Affero General Public License, version 3
* or later ("AGPL"), as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TDENGINE_TUDF_H
#define TDENGINE_TUDF_H
enum {
TSDB_UDF_FUNC_NORMAL = 0,
TSDB_UDF_FUNC_INIT,
TSDB_UDF_FUNC_FINALIZE,
TSDB_UDF_FUNC_MERGE,
TSDB_UDF_FUNC_DESTROY,
TSDB_UDF_FUNC_MAX_NUM
};
typedef struct SUdfInit {
int32_t maybe_null; /* 1 if function can return NULL */
uint32_t decimals; /* for real functions */
uint64_t length; /* For string functions */
char* ptr; /* free pointer for function data */
int32_t const_item; /* 0 if result is independent of arguments */
// script like lua/javascript
void* script_ctx;
void (*destroyCtxFunc)(void* script_ctx);
} SUdfInit;
typedef struct SUdfInfo {
int32_t functionId; // system assigned function id
int32_t funcType; // scalar function or aggregate function
int8_t resType; // result type
int16_t resBytes; // result byte
int32_t contLen; // content length
int32_t bufSize; // interbuf size
char* name; // function name
void* handle; // handle loaded in mem
void* funcs[TSDB_UDF_FUNC_MAX_NUM]; // function ptr
// for script like lua/javascript only
int isScript;
void* pScriptCtx;
SUdfInit init;
char* content;
char* path;
} SUdfInfo;
// script
typedef int32_t (*scriptInitFunc)(void* pCtx);
typedef void (*scriptNormalFunc)(void* pCtx, char* data, int16_t iType, int16_t iBytes, int32_t numOfRows,
int64_t* ptList, int64_t key, char* dataOutput, char* tsOutput, int32_t* numOfOutput,
int16_t oType, int16_t oBytes);
typedef void (*scriptFinalizeFunc)(void* pCtx, int64_t key, char* dataOutput, int32_t* numOfOutput);
typedef void (*scriptMergeFunc)(void* pCtx, char* data, int32_t numOfRows, char* dataOutput, int32_t* numOfOutput);
typedef void (*scriptDestroyFunc)(void* pCtx);
// dynamic lib
typedef void (*udfNormalFunc)(char* data, int16_t itype, int16_t iBytes, int32_t numOfRows, int64_t* ts,
char* dataOutput, char* interBuf, char* tsOutput, int32_t* numOfOutput, int16_t oType,
int16_t oBytes, SUdfInit* buf);
typedef int32_t (*udfInitFunc)(SUdfInit* data);
typedef void (*udfFinalizeFunc)(char* dataOutput, char* interBuf, int32_t* numOfOutput, SUdfInit* buf);
typedef void (*udfMergeFunc)(char* data, int32_t numOfRows, char* dataOutput, int32_t* numOfOutput, SUdfInit* buf);
typedef void (*udfDestroyFunc)(SUdfInit* buf);
#endif // TDENGINE_TUDF_H
/*
* Copyright (c) 2019 TAOS Data, Inc. <jhtao@taosdata.com>
*
* This program is free software: you can use, redistribute, and/or modify
* it under the terms of the GNU Affero General Public License, version 3
* or later ("AGPL"), as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "os.h"
#include "taosdef.h"
#include "taosmsg.h"
//#include "texpr.h"
#include "ttypes.h"
#include "tglobal.h"
#include "thash.h"
#include "taggfunction.h"
#include "tfill.h"
#include "thistogram.h"
#include "ttszip.h"
#include "tpercentile.h"
#include "tbuffer.h"
#include "tcompression.h"
//#include "queryLog.h"
#include "tudf.h"
#define GET_INPUT_DATA_LIST(x) ((char *)((x)->pInput))
#define GET_INPUT_DATA(x, y) (GET_INPUT_DATA_LIST(x) + (y) * (x)->inputBytes)
#define GET_TS_LIST(x) ((TSKEY*)((x)->ptsList))
#define GET_TS_DATA(x, y) (GET_TS_LIST(x)[(y)])
#define GET_TRUE_DATA_TYPE() \
int32_t type = 0; \
if (pCtx->currentStage == MERGE_STAGE) { \
type = pCtx->outputType; \
assert(pCtx->inputType == TSDB_DATA_TYPE_BINARY); \
} else { \
type = pCtx->inputType; \
}
#define SET_VAL(ctx, numOfElem, res) \
do { \
if ((numOfElem) <= 0) { \
break; \
} \
GET_RES_INFO(ctx)->numOfRes = (res); \
} while (0)
#define INC_INIT_VAL(ctx, res) (GET_RES_INFO(ctx)->numOfRes += (res));
#define DO_UPDATE_TAG_COLUMNS(ctx, ts) \
do { \
for (int32_t _i = 0; _i < (ctx)->tagInfo.numOfTagCols; ++_i) { \
SQLFunctionCtx *__ctx = (ctx)->tagInfo.pTagCtxList[_i]; \
if (__ctx->functionId == FUNCTION_TS_DUMMY) { \
__ctx->tag.i64 = (ts); \
__ctx->tag.nType = TSDB_DATA_TYPE_BIGINT; \
} \
aggFunc[FUNCTION_TAG].exec(__ctx); \
} \
} while (0)
#define DO_UPDATE_TAG_COLUMNS_WITHOUT_TS(ctx) \
do { \
for (int32_t _i = 0; _i < (ctx)->tagInfo.numOfTagCols; ++_i) { \
SQLFunctionCtx *__ctx = (ctx)->tagInfo.pTagCtxList[_i]; \
aggFunc[FUNCTION_TAG].exec(__ctx); \
} \
} while (0);
void noop1(SQLFunctionCtx *UNUSED_PARAM(pCtx)) {}
void doFinalizer(SQLFunctionCtx *pCtx) { RESET_RESULT_INFO(GET_RES_INFO(pCtx)); }
typedef struct tValuePair {
SVariant v;
int64_t timestamp;
char * pTags; // the corresponding tags of each record in the final result
} tValuePair;
typedef struct SSpreadInfo {
double min;
double max;
int8_t hasResult;
} SSpreadInfo;
typedef struct SSumInfo {
union {
int64_t isum;
uint64_t usum;
double dsum;
};
int8_t hasResult;
} SSumInfo;
// the attribute of hasResult is not needed since the num attribute would server as this purpose
typedef struct SAvgInfo {
double sum;
int64_t num;
} SAvgInfo;
typedef struct SStddevInfo {
double avg;
int64_t num;
double res;
int8_t stage;
} SStddevInfo;
typedef struct SStddevdstInfo {
int64_t num;
double res;
} SStddevdstInfo;
typedef struct SFirstLastInfo {
int8_t hasResult;
TSKEY ts;
} SFirstLastInfo;
typedef struct SFirstLastInfo SLastrowInfo;
typedef struct SPercentileInfo {
tMemBucket *pMemBucket;
int32_t stage;
double minval;
double maxval;
int64_t numOfElems;
} SPercentileInfo;
typedef struct STopBotInfo {
int32_t num;
tValuePair **res;
} STopBotInfo;
// leastsquares do not apply to super table
typedef struct SLeastsquaresInfo {
double mat[2][3];
double startVal;
int64_t num;
} SLeastsquaresInfo;
typedef struct SAPercentileInfo {
SHistogramInfo *pHisto;
} SAPercentileInfo;
typedef struct STSCompInfo {
STSBuf *pTSBuf;
} STSCompInfo;
typedef struct SRateInfo {
double correctionValue;
double firstValue;
TSKEY firstKey;
double lastValue;
TSKEY lastKey;
int8_t hasResult; // flag to denote has value
bool isIRate; // true for IRate functions, false for Rate functions
} SRateInfo;
typedef struct SDerivInfo {
double prevValue; // previous value
TSKEY prevTs; // previous timestamp
bool ignoreNegative;// ignore the negative value
int64_t tsWindow; // time window for derivative
bool valueSet; // the value has been set already
} SDerivInfo;
typedef struct SResPair {
TSKEY key;
double avg;
} SResPair;
#define TSDB_BLOCK_DIST_STEP_ROWS 16
typedef struct STableBlockDist {
uint16_t rowSize;
uint16_t numOfFiles;
uint32_t numOfTables;
uint64_t totalSize;
uint64_t totalRows;
int32_t maxRows;
int32_t minRows;
int32_t firstSeekTimeUs;
uint32_t numOfRowsInMemTable;
uint32_t numOfSmallBlocks;
SArray *dataBlockInfos;
} STableBlockDist;
typedef struct SFileBlockInfo {
int32_t numBlocksOfStep;
} SFileBlockInfo;
int32_t getResultDataInfo(int32_t dataType, int32_t dataBytes, int32_t functionId, int32_t param, int16_t *type,
int16_t *bytes, int32_t *interBytes, int16_t extLength, bool isSuperTable/*, SUdfInfo* pUdfInfo*/) {
if (!isValidDataType(dataType)) {
// qError("Illegal data type %d or data type length %d", dataType, dataBytes);
return TSDB_CODE_TSC_INVALID_OPERATION;
}
if (functionId == FUNCTION_TS || functionId == FUNCTION_TS_DUMMY || functionId == FUNCTION_TAG_DUMMY ||
functionId == FUNCTION_DIFF || functionId == FUNCTION_PRJ || functionId == FUNCTION_TAGPRJ ||
functionId == FUNCTION_TAG || functionId == FUNCTION_INTERP) {
*type = (int16_t)dataType;
*bytes = (int16_t)dataBytes;
if (functionId == FUNCTION_INTERP) {
*interBytes = sizeof(SInterpInfoDetail);
} else {
*interBytes = 0;
}
return TSDB_CODE_SUCCESS;
}
// (uid, tid) + VGID + TAGSIZE + VARSTR_HEADER_SIZE
if (functionId == FUNCTION_TID_TAG) { // todo use struct
*type = TSDB_DATA_TYPE_BINARY;
*bytes = (int16_t)(dataBytes + sizeof(int16_t) + sizeof(int64_t) + sizeof(int32_t) + sizeof(int32_t) + VARSTR_HEADER_SIZE);
*interBytes = 0;
return TSDB_CODE_SUCCESS;
}
if (functionId == FUNCTION_BLKINFO) {
*type = TSDB_DATA_TYPE_BINARY;
*bytes = 16384;
*interBytes = 0;
return TSDB_CODE_SUCCESS;
}
if (functionId == FUNCTION_COUNT) {
*type = TSDB_DATA_TYPE_BIGINT;
*bytes = sizeof(int64_t);
*interBytes = 0;
return TSDB_CODE_SUCCESS;
}
if (functionId == FUNCTION_ARITHM) {
*type = TSDB_DATA_TYPE_DOUBLE;
*bytes = sizeof(double);
*interBytes = 0;
return TSDB_CODE_SUCCESS;
}
if (functionId == FUNCTION_TS_COMP) {
*type = TSDB_DATA_TYPE_BINARY;
*bytes = 1; // this results is compressed ts data, only one byte
*interBytes = POINTER_BYTES;
return TSDB_CODE_SUCCESS;
}
if (functionId == FUNCTION_DERIVATIVE) {
*type = TSDB_DATA_TYPE_DOUBLE;
*bytes = sizeof(double); // this results is compressed ts data, only one byte
*interBytes = sizeof(SDerivInfo);
return TSDB_CODE_SUCCESS;
}
if (isSuperTable) {
// if (functionId < 0) {
// if (pUdfInfo->bufSize > 0) {
// *type = TSDB_DATA_TYPE_BINARY;
// *bytes = pUdfInfo->bufSize;
// *interBytes = *bytes;
// } else {
// *type = pUdfInfo->resType;
// *bytes = pUdfInfo->resBytes;
// *interBytes = *bytes;
// }
//
// return TSDB_CODE_SUCCESS;
// }
if (functionId == FUNCTION_MIN || functionId == FUNCTION_MAX) {
*type = TSDB_DATA_TYPE_BINARY;
*bytes = (int16_t)(dataBytes + DATA_SET_FLAG_SIZE);
*interBytes = *bytes;
return TSDB_CODE_SUCCESS;
} else if (functionId == FUNCTION_SUM) {
*type = TSDB_DATA_TYPE_BINARY;
*bytes = sizeof(SSumInfo);
*interBytes = *bytes;
return TSDB_CODE_SUCCESS;
} else if (functionId == FUNCTION_AVG) {
*type = TSDB_DATA_TYPE_BINARY;
*bytes = sizeof(SAvgInfo);
*interBytes = *bytes;
return TSDB_CODE_SUCCESS;
} else if (functionId >= FUNCTION_RATE && functionId <= FUNCTION_IRATE) {
*type = TSDB_DATA_TYPE_DOUBLE;
*bytes = sizeof(SRateInfo);
*interBytes = sizeof(SRateInfo);
return TSDB_CODE_SUCCESS;
} else if (functionId == FUNCTION_TOP || functionId == FUNCTION_BOTTOM) {
*type = TSDB_DATA_TYPE_BINARY;
*bytes = (int16_t)(sizeof(STopBotInfo) + (sizeof(tValuePair) + POINTER_BYTES + extLength) * param);
*interBytes = *bytes;
return TSDB_CODE_SUCCESS;
} else if (functionId == FUNCTION_SPREAD) {
*type = TSDB_DATA_TYPE_BINARY;
*bytes = sizeof(SSpreadInfo);
*interBytes = *bytes;
return TSDB_CODE_SUCCESS;
} else if (functionId == FUNCTION_APERCT) {
*type = TSDB_DATA_TYPE_BINARY;
*bytes = sizeof(SHistBin) * (MAX_HISTOGRAM_BIN + 1) + sizeof(SHistogramInfo) + sizeof(SAPercentileInfo);
*interBytes = *bytes;
return TSDB_CODE_SUCCESS;
} else if (functionId == FUNCTION_LAST_ROW) {
*type = TSDB_DATA_TYPE_BINARY;
*bytes = (int16_t)(sizeof(SLastrowInfo) + dataBytes);
*interBytes = *bytes;
return TSDB_CODE_SUCCESS;
} else if (functionId == FUNCTION_TWA) {
*type = TSDB_DATA_TYPE_DOUBLE;
*bytes = sizeof(STwaInfo);
*interBytes = *bytes;
return TSDB_CODE_SUCCESS;
}
}
if (functionId == FUNCTION_SUM) {
if (IS_SIGNED_NUMERIC_TYPE(dataType)) {
*type = TSDB_DATA_TYPE_BIGINT;
} else if (IS_UNSIGNED_NUMERIC_TYPE(dataType)) {
*type = TSDB_DATA_TYPE_UBIGINT;
} else {
*type = TSDB_DATA_TYPE_DOUBLE;
}
*bytes = sizeof(int64_t);
*interBytes = sizeof(SSumInfo);
return TSDB_CODE_SUCCESS;
} else if (functionId == FUNCTION_APERCT) {
*type = TSDB_DATA_TYPE_DOUBLE;
*bytes = sizeof(double);
*interBytes =
sizeof(SAPercentileInfo) + sizeof(SHistogramInfo) + sizeof(SHistBin) * (MAX_HISTOGRAM_BIN + 1);
return TSDB_CODE_SUCCESS;
} else if (functionId == FUNCTION_TWA) {
*type = TSDB_DATA_TYPE_DOUBLE;
*bytes = sizeof(double);
*interBytes = sizeof(STwaInfo);
return TSDB_CODE_SUCCESS;
}
// if (functionId < 0) {
// *type = pUdfInfo->resType;
// *bytes = pUdfInfo->resBytes;
//
// if (pUdfInfo->bufSize > 0) {
// *interBytes = pUdfInfo->bufSize;
// } else {
// *interBytes = *bytes;
// }
//
// return TSDB_CODE_SUCCESS;
// }
if (functionId == FUNCTION_AVG) {
*type = TSDB_DATA_TYPE_DOUBLE;
*bytes = sizeof(double);
*interBytes = sizeof(SAvgInfo);
} else if (functionId >= FUNCTION_RATE && functionId <= FUNCTION_IRATE) {
*type = TSDB_DATA_TYPE_DOUBLE;
*bytes = sizeof(double);
*interBytes = sizeof(SRateInfo);
} else if (functionId == FUNCTION_STDDEV) {
*type = TSDB_DATA_TYPE_DOUBLE;
*bytes = sizeof(double);
*interBytes = sizeof(SStddevInfo);
} else if (functionId == FUNCTION_MIN || functionId == FUNCTION_MAX) {
*type = (int16_t)dataType;
*bytes = (int16_t)dataBytes;
*interBytes = dataBytes + DATA_SET_FLAG_SIZE;
} else if (functionId == FUNCTION_FIRST || functionId == FUNCTION_LAST) {
*type = (int16_t)dataType;
*bytes = (int16_t)dataBytes;
*interBytes = (int16_t)(dataBytes + sizeof(SFirstLastInfo));
} else if (functionId == FUNCTION_SPREAD) {
*type = (int16_t)TSDB_DATA_TYPE_DOUBLE;
*bytes = sizeof(double);
*interBytes = sizeof(SSpreadInfo);
} else if (functionId == FUNCTION_PERCT) {
*type = (int16_t)TSDB_DATA_TYPE_DOUBLE;
*bytes = (int16_t)sizeof(double);
*interBytes = (int16_t)sizeof(SPercentileInfo);
} else if (functionId == FUNCTION_LEASTSQR) {
*type = TSDB_DATA_TYPE_BINARY;
*bytes = MAX(AVG_FUNCTION_INTER_BUFFER_SIZE, sizeof(SLeastsquaresInfo)); // string
*interBytes = *bytes;
} else if (functionId == FUNCTION_FIRST_DST || functionId == FUNCTION_LAST_DST) {
*type = TSDB_DATA_TYPE_BINARY;
*bytes = (int16_t)(dataBytes + sizeof(SFirstLastInfo));
*interBytes = *bytes;
} else if (functionId == FUNCTION_TOP || functionId == FUNCTION_BOTTOM) {
*type = (int16_t)dataType;
*bytes = (int16_t)dataBytes;
size_t size = sizeof(STopBotInfo) + (sizeof(tValuePair) + POINTER_BYTES + extLength) * param;
// the output column may be larger than sizeof(STopBotInfo)
*interBytes = (int32_t)size;
} else if (functionId == FUNCTION_LAST_ROW) {
*type = (int16_t)dataType;
*bytes = (int16_t)dataBytes;
*interBytes = dataBytes;
} else if (functionId == FUNCTION_STDDEV_DST) {
*type = TSDB_DATA_TYPE_BINARY;
*bytes = sizeof(SStddevdstInfo);
*interBytes = (*bytes);
} else {
return TSDB_CODE_TSC_INVALID_OPERATION;
}
return TSDB_CODE_SUCCESS;
}
static bool function_setup(SQLFunctionCtx *pCtx, SResultRowCellInfo* pResultInfo) {
if (pResultInfo->initialized) {
return false;
}
memset(pCtx->pOutput, 0, (size_t)pCtx->outputBytes);
initResultInfo(pResultInfo, pCtx->interBufBytes);
return true;
}
/**
* in handling the stable query, function_finalizer is called after the secondary
* merge being completed, during the first merge procedure, which is executed at the
* vnode side, the finalize will never be called.
*
* @param pCtx
*/
static void function_finalizer(SQLFunctionCtx *pCtx) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
if (pResInfo->hasResult != DATA_SET_FLAG) {
setNull(pCtx->pOutput, pCtx->outputType, pCtx->outputBytes);
}
doFinalizer(pCtx);
}
/*
* count function does need the finalize, if data is missing, the default value, which is 0, is used
* count function does not use the pCtx->interResBuf to keep the intermediate buffer
*/
static void count_function(SQLFunctionCtx *pCtx) {
int32_t numOfElem = 0;
/*
* 1. column data missing (schema modified) causes pCtx->hasNull == true. pCtx->isSmaSet == true;
* 2. for general non-primary key columns, pCtx->hasNull may be true or false, pCtx->isSmaSet == true;
* 3. for primary key column, pCtx->hasNull always be false, pCtx->isSmaSet == false;
*/
if (pCtx->isSmaSet) {
numOfElem = pCtx->size - pCtx->sma.numOfNull;
} else {
if (pCtx->hasNull) {
for (int32_t i = 0; i < pCtx->size; ++i) {
char *val = GET_INPUT_DATA(pCtx, i);
if (isNull(val, pCtx->inputType)) {
continue;
}
numOfElem += 1;
}
} else {
//when counting on the primary time stamp column and no statistics data is presented, use the size value directly.
numOfElem = pCtx->size;
}
}
if (numOfElem > 0) {
GET_RES_INFO(pCtx)->hasResult = DATA_SET_FLAG;
}
*((int64_t *)pCtx->pOutput) += numOfElem;
SET_VAL(pCtx, numOfElem, 1);
}
static void count_func_merge(SQLFunctionCtx *pCtx) {
int64_t *pData = (int64_t *)GET_INPUT_DATA_LIST(pCtx);
for (int32_t i = 0; i < pCtx->size; ++i) {
*((int64_t *)pCtx->pOutput) += pData[i];
}
SET_VAL(pCtx, pCtx->size, 1);
}
/**
* 1. If the column value for filter exists, we need to load the SFields, which serves
* as the pre-filter to decide if the actual data block is required or not.
* 2. If it queries on the non-primary timestamp column, SFields is also required to get the not-null value.
*
* @param colId
* @param filterCols
* @return
*/
int32_t countRequired(SQLFunctionCtx *pCtx, STimeWindow* w, int32_t colId) {
if (colId == PRIMARYKEY_TIMESTAMP_COL_INDEX) {
return BLK_DATA_NO_NEEDED;
} else {
return BLK_DATA_STATIS_NEEDED;
}
}
int32_t noDataRequired(SQLFunctionCtx *pCtx, STimeWindow* w, int32_t colId) {
return BLK_DATA_NO_NEEDED;
}
#define LIST_ADD_N_DOUBLE_FLOAT(x, ctx, p, t, numOfElem, tsdbType) \
do { \
t *d = (t *)(p); \
for (int32_t i = 0; i < (ctx)->size; ++i) { \
if (((ctx)->hasNull) && isNull((char *)&(d)[i], tsdbType)) { \
continue; \
}; \
SET_DOUBLE_VAL(&(x) , GET_DOUBLE_VAL(&(x)) + GET_FLOAT_VAL(&(d)[i])); \
(numOfElem)++; \
} \
} while(0)
#define LIST_ADD_N_DOUBLE(x, ctx, p, t, numOfElem, tsdbType) \
do { \
t *d = (t *)(p); \
for (int32_t i = 0; i < (ctx)->size; ++i) { \
if (((ctx)->hasNull) && isNull((char *)&(d)[i], tsdbType)) { \
continue; \
}; \
SET_DOUBLE_VAL(&(x) , (x) + (d)[i]); \
(numOfElem)++; \
} \
} while(0)
#define LIST_ADD_N(x, ctx, p, t, numOfElem, tsdbType) \
do { \
t *d = (t *)(p); \
for (int32_t i = 0; i < (ctx)->size; ++i) { \
if (((ctx)->hasNull) && isNull((char *)&(d)[i], tsdbType)) { \
continue; \
}; \
(x) += (d)[i]; \
(numOfElem)++; \
} \
} while(0)
#define UPDATE_DATA(ctx, left, right, num, sign, k) \
do { \
if (((left) < (right)) ^ (sign)) { \
(left) = (right); \
DO_UPDATE_TAG_COLUMNS(ctx, k); \
(num) += 1; \
} \
} while (0)
#define DUPATE_DATA_WITHOUT_TS(ctx, left, right, num, sign) \
do { \
if (((left) < (right)) ^ (sign)) { \
(left) = (right); \
DO_UPDATE_TAG_COLUMNS_WITHOUT_TS(ctx); \
(num) += 1; \
} \
} while (0)
#define LOOPCHECK_N(val, list, ctx, tsdbType, sign, num) \
for (int32_t i = 0; i < ((ctx)->size); ++i) { \
if ((ctx)->hasNull && isNull((char *)&(list)[i], tsdbType)) { \
continue; \
} \
TSKEY key = (ctx)->ptsList != NULL? GET_TS_DATA(ctx, i):0; \
UPDATE_DATA(ctx, val, (list)[i], num, sign, key); \
}
#define TYPED_LOOPCHECK_N(type, data, list, ctx, tsdbType, sign, notNullElems) \
do { \
type *_data = (type *)data; \
type *_list = (type *)list; \
LOOPCHECK_N(*_data, _list, ctx, tsdbType, sign, notNullElems); \
} while (0)
static void do_sum(SQLFunctionCtx *pCtx) {
int32_t notNullElems = 0;
// Only the pre-computing information loaded and actual data does not loaded
if (pCtx->isSmaSet) {
notNullElems = pCtx->size - pCtx->sma.numOfNull;
assert(pCtx->size >= pCtx->sma.numOfNull);
if (IS_SIGNED_NUMERIC_TYPE(pCtx->inputType)) {
int64_t *retVal = (int64_t *)pCtx->pOutput;
*retVal += pCtx->sma.sum;
} else if (IS_UNSIGNED_NUMERIC_TYPE(pCtx->inputType)) {
uint64_t *retVal = (uint64_t *)pCtx->pOutput;
*retVal += (uint64_t)pCtx->sma.sum;
} else if (IS_FLOAT_TYPE(pCtx->inputType)) {
double *retVal = (double*) pCtx->pOutput;
SET_DOUBLE_VAL(retVal, *retVal + GET_DOUBLE_VAL((const char*)&(pCtx->sma.sum)));
}
} else { // computing based on the true data block
void *pData = GET_INPUT_DATA_LIST(pCtx);
notNullElems = 0;
if (IS_SIGNED_NUMERIC_TYPE(pCtx->inputType)) {
int64_t *retVal = (int64_t *)pCtx->pOutput;
if (pCtx->inputType == TSDB_DATA_TYPE_TINYINT) {
LIST_ADD_N(*retVal, pCtx, pData, int8_t, notNullElems, pCtx->inputType);
} else if (pCtx->inputType == TSDB_DATA_TYPE_SMALLINT) {
LIST_ADD_N(*retVal, pCtx, pData, int16_t, notNullElems, pCtx->inputType);
} else if (pCtx->inputType == TSDB_DATA_TYPE_INT) {
LIST_ADD_N(*retVal, pCtx, pData, int32_t, notNullElems, pCtx->inputType);
} else if (pCtx->inputType == TSDB_DATA_TYPE_BIGINT) {
LIST_ADD_N(*retVal, pCtx, pData, int64_t, notNullElems, pCtx->inputType);
}
} else if (IS_UNSIGNED_NUMERIC_TYPE(pCtx->inputType)) {
uint64_t *retVal = (uint64_t *)pCtx->pOutput;
if (pCtx->inputType == TSDB_DATA_TYPE_UTINYINT) {
LIST_ADD_N(*retVal, pCtx, pData, uint8_t, notNullElems, pCtx->inputType);
} else if (pCtx->inputType == TSDB_DATA_TYPE_USMALLINT) {
LIST_ADD_N(*retVal, pCtx, pData, uint16_t, notNullElems, pCtx->inputType);
} else if (pCtx->inputType == TSDB_DATA_TYPE_UINT) {
LIST_ADD_N(*retVal, pCtx, pData, uint32_t, notNullElems, pCtx->inputType);
} else if (pCtx->inputType == TSDB_DATA_TYPE_UBIGINT) {
LIST_ADD_N(*retVal, pCtx, pData, uint64_t, notNullElems, pCtx->inputType);
}
} else if (pCtx->inputType == TSDB_DATA_TYPE_DOUBLE) {
double *retVal = (double *)pCtx->pOutput;
LIST_ADD_N_DOUBLE(*retVal, pCtx, pData, double, notNullElems, pCtx->inputType);
} else if (pCtx->inputType == TSDB_DATA_TYPE_FLOAT) {
double *retVal = (double *)pCtx->pOutput;
LIST_ADD_N_DOUBLE_FLOAT(*retVal, pCtx, pData, float, notNullElems, pCtx->inputType);
}
}
// data in the check operation are all null, not output
SET_VAL(pCtx, notNullElems, 1);
if (notNullElems > 0) {
GET_RES_INFO(pCtx)->hasResult = DATA_SET_FLAG;
}
}
static void sum_function(SQLFunctionCtx *pCtx) {
do_sum(pCtx);
// keep the result data in output buffer, not in the intermediate buffer
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
if (pResInfo->hasResult == DATA_SET_FLAG && pCtx->stableQuery) {
// set the flag for super table query
SSumInfo *pSum = (SSumInfo *)pCtx->pOutput;
pSum->hasResult = DATA_SET_FLAG;
}
}
static void sum_func_merge(SQLFunctionCtx *pCtx) {
int32_t notNullElems = 0;
GET_TRUE_DATA_TYPE();
assert(pCtx->stableQuery);
for (int32_t i = 0; i < pCtx->size; ++i) {
char * input = GET_INPUT_DATA(pCtx, i);
SSumInfo *pInput = (SSumInfo *)input;
if (pInput->hasResult != DATA_SET_FLAG) {
continue;
}
notNullElems++;
if (IS_SIGNED_NUMERIC_TYPE(type)) {
*(int64_t *)pCtx->pOutput += pInput->isum;
} else if (IS_UNSIGNED_NUMERIC_TYPE(type)) {
*(uint64_t *) pCtx->pOutput += pInput->usum;
} else {
SET_DOUBLE_VAL((double *)pCtx->pOutput, *(double *)pCtx->pOutput + pInput->dsum);
}
}
SET_VAL(pCtx, notNullElems, 1);
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
if (notNullElems > 0) {
pResInfo->hasResult = DATA_SET_FLAG;
}
}
static int32_t statisRequired(SQLFunctionCtx *pCtx, STimeWindow* w, int32_t colId) {
return BLK_DATA_STATIS_NEEDED;
}
static int32_t dataBlockRequired(SQLFunctionCtx *pCtx, STimeWindow* w, int32_t colId) {
return BLK_DATA_ALL_NEEDED;
}
// todo: if column in current data block are null, opt for this case
static int32_t firstFuncRequired(SQLFunctionCtx *pCtx, STimeWindow* w, int32_t colId) {
if (pCtx->order == TSDB_ORDER_DESC) {
return BLK_DATA_NO_NEEDED;
}
// no result for first query, data block is required
if (GET_RES_INFO(pCtx) == NULL || GET_RES_INFO(pCtx)->numOfRes <= 0) {
return BLK_DATA_ALL_NEEDED;
} else {
return BLK_DATA_NO_NEEDED;
}
}
static int32_t lastFuncRequired(SQLFunctionCtx *pCtx, STimeWindow* w, int32_t colId) {
if (pCtx->order != pCtx->param[0].i64) {
return BLK_DATA_NO_NEEDED;
}
if (GET_RES_INFO(pCtx) == NULL || GET_RES_INFO(pCtx)->numOfRes <= 0) {
return BLK_DATA_ALL_NEEDED;
} else {
return BLK_DATA_NO_NEEDED;
}
}
static int32_t firstDistFuncRequired(SQLFunctionCtx *pCtx, STimeWindow* w, int32_t colId) {
if (pCtx->order == TSDB_ORDER_DESC) {
return BLK_DATA_NO_NEEDED;
}
// not initialized yet, it is the first block, load it.
if (pCtx->pOutput == NULL) {
return BLK_DATA_ALL_NEEDED;
}
// the pCtx should be set to current Ctx and output buffer before call this function. Otherwise, pCtx->pOutput is
// the previous windowRes output buffer, not current unloaded block. In this case, the following filter is invalid
SFirstLastInfo *pInfo = (SFirstLastInfo*) (pCtx->pOutput + pCtx->inputBytes);
if (pInfo->hasResult != DATA_SET_FLAG) {
return BLK_DATA_ALL_NEEDED;
} else { // data in current block is not earlier than current result
return (pInfo->ts <= w->skey) ? BLK_DATA_NO_NEEDED : BLK_DATA_ALL_NEEDED;
}
}
static int32_t lastDistFuncRequired(SQLFunctionCtx *pCtx, STimeWindow* w, int32_t colId) {
if (pCtx->order != pCtx->param[0].i64) {
return BLK_DATA_NO_NEEDED;
}
// not initialized yet, it is the first block, load it.
if (pCtx->pOutput == NULL) {
return BLK_DATA_ALL_NEEDED;
}
// the pCtx should be set to current Ctx and output buffer before call this function. Otherwise, pCtx->pOutput is
// the previous windowRes output buffer, not current unloaded block. In this case, the following filter is invalid
SFirstLastInfo *pInfo = (SFirstLastInfo*) (pCtx->pOutput + pCtx->inputBytes);
if (pInfo->hasResult != DATA_SET_FLAG) {
return BLK_DATA_ALL_NEEDED;
} else {
return (pInfo->ts > w->ekey) ? BLK_DATA_NO_NEEDED : BLK_DATA_ALL_NEEDED;
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
/*
* The intermediate result of average is kept in the interResultBuf.
* For super table query, once the avg_function/avg_function_f is finished, copy the intermediate
* result into output buffer.
*/
static void avg_function(SQLFunctionCtx *pCtx) {
int32_t notNullElems = 0;
// NOTE: keep the intermediate result into the interResultBuf
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
SAvgInfo *pAvgInfo = (SAvgInfo *)GET_ROWCELL_INTERBUF(pResInfo);
double *pVal = &pAvgInfo->sum;
if (pCtx->isSmaSet) { // Pre-aggregation
notNullElems = pCtx->size - pCtx->sma.numOfNull;
assert(notNullElems >= 0);
if (IS_SIGNED_NUMERIC_TYPE(pCtx->inputType)) {
*pVal += pCtx->sma.sum;
} else if (IS_UNSIGNED_NUMERIC_TYPE(pCtx->inputType)) {
*pVal += (uint64_t) pCtx->sma.sum;
} else if (pCtx->inputType == TSDB_DATA_TYPE_DOUBLE || pCtx->inputType == TSDB_DATA_TYPE_FLOAT) {
*pVal += GET_DOUBLE_VAL((const char *)&(pCtx->sma.sum));
}
} else {
void *pData = GET_INPUT_DATA_LIST(pCtx);
if (pCtx->inputType == TSDB_DATA_TYPE_TINYINT) {
LIST_ADD_N(*pVal, pCtx, pData, int8_t, notNullElems, pCtx->inputType);
} else if (pCtx->inputType == TSDB_DATA_TYPE_SMALLINT) {
LIST_ADD_N(*pVal, pCtx, pData, int16_t, notNullElems, pCtx->inputType);
} else if (pCtx->inputType == TSDB_DATA_TYPE_INT) {
LIST_ADD_N(*pVal, pCtx, pData, int32_t, notNullElems, pCtx->inputType);
} else if (pCtx->inputType == TSDB_DATA_TYPE_BIGINT) {
LIST_ADD_N(*pVal, pCtx, pData, int64_t, notNullElems, pCtx->inputType);
} else if (pCtx->inputType == TSDB_DATA_TYPE_DOUBLE) {
LIST_ADD_N_DOUBLE(*pVal, pCtx, pData, double, notNullElems, pCtx->inputType);
} else if (pCtx->inputType == TSDB_DATA_TYPE_FLOAT) {
LIST_ADD_N_DOUBLE_FLOAT(*pVal, pCtx, pData, float, notNullElems, pCtx->inputType);
} else if (pCtx->inputType == TSDB_DATA_TYPE_UTINYINT) {
LIST_ADD_N(*pVal, pCtx, pData, uint8_t, notNullElems, pCtx->inputType);
} else if (pCtx->inputType == TSDB_DATA_TYPE_USMALLINT) {
LIST_ADD_N(*pVal, pCtx, pData, uint16_t, notNullElems, pCtx->inputType);
} else if (pCtx->inputType == TSDB_DATA_TYPE_UINT) {
LIST_ADD_N(*pVal, pCtx, pData, uint32_t, notNullElems, pCtx->inputType);
} else if (pCtx->inputType == TSDB_DATA_TYPE_UBIGINT) {
LIST_ADD_N(*pVal, pCtx, pData, uint64_t, notNullElems, pCtx->inputType);
}
}
if (!pCtx->hasNull) {
assert(notNullElems == pCtx->size);
}
SET_VAL(pCtx, notNullElems, 1);
pAvgInfo->num += notNullElems;
if (notNullElems > 0) {
pResInfo->hasResult = DATA_SET_FLAG;
}
// keep the data into the final output buffer for super table query since this execution may be the last one
if (pCtx->stableQuery) {
memcpy(pCtx->pOutput, GET_ROWCELL_INTERBUF(pResInfo), sizeof(SAvgInfo));
}
}
static void avg_func_merge(SQLFunctionCtx *pCtx) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
double *sum = (double*) pCtx->pOutput;
char *input = GET_INPUT_DATA_LIST(pCtx);
for (int32_t i = 0; i < pCtx->size; ++i, input += pCtx->inputBytes) {
SAvgInfo *pInput = (SAvgInfo *)input;
if (pInput->num == 0) { // current input is null
continue;
}
SET_DOUBLE_VAL(sum, *sum + pInput->sum);
// keep the number of data into the temp buffer
*(int64_t *)GET_ROWCELL_INTERBUF(pResInfo) += pInput->num;
}
}
/*
* the average value is calculated in finalize routine, since current routine does not know the exact number of points
*/
static void avg_finalizer(SQLFunctionCtx *pCtx) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
if (pCtx->currentStage == MERGE_STAGE) {
assert(pCtx->inputType == TSDB_DATA_TYPE_BINARY);
if (GET_INT64_VAL(GET_ROWCELL_INTERBUF(pResInfo)) <= 0) {
setNull(pCtx->pOutput, pCtx->outputType, pCtx->outputBytes);
return;
}
SET_DOUBLE_VAL((double *)pCtx->pOutput,(*(double *)pCtx->pOutput) / *(int64_t *)GET_ROWCELL_INTERBUF(pResInfo));
} else { // this is the secondary merge, only in the secondary merge, the input type is TSDB_DATA_TYPE_BINARY
assert(IS_NUMERIC_TYPE(pCtx->inputType));
SAvgInfo *pAvgInfo = (SAvgInfo *)GET_ROWCELL_INTERBUF(pResInfo);
if (pAvgInfo->num == 0) { // all data are NULL or empty table
setNull(pCtx->pOutput, pCtx->outputType, pCtx->outputBytes);
return;
}
SET_DOUBLE_VAL((double *)pCtx->pOutput, pAvgInfo->sum / pAvgInfo->num);
}
// cannot set the numOfIteratedElems again since it is set during previous iteration
GET_RES_INFO(pCtx)->numOfRes = 1;
doFinalizer(pCtx);
}
/////////////////////////////////////////////////////////////////////////////////////////////
static void minMax_function(SQLFunctionCtx *pCtx, char *pOutput, int32_t isMin, int32_t *notNullElems) {
// data in current data block are qualified to the query
if (pCtx->isSmaSet) {
*notNullElems = pCtx->size - pCtx->sma.numOfNull;
assert(*notNullElems >= 0);
if (*notNullElems == 0) {
return;
}
void* tval = NULL;
int16_t index = 0;
if (isMin) {
tval = &pCtx->sma.min;
index = pCtx->sma.minIndex;
} else {
tval = &pCtx->sma.max;
index = pCtx->sma.maxIndex;
}
TSKEY key = TSKEY_INITIAL_VAL;
if (pCtx->ptsList != NULL) {
/**
* NOTE: work around the bug caused by invalid pre-calculated function.
* Here the selectivity + ts will not return correct value.
*
* The following codes of 3 lines will be removed later.
*/
// if (index < 0 || index >= pCtx->size + pCtx->startOffset) {
// index = 0;
// }
// the index is the original position, not the relative position
key = pCtx->ptsList[index];
}
if (IS_SIGNED_NUMERIC_TYPE(pCtx->inputType)) {
int64_t val = GET_INT64_VAL(tval);
if (pCtx->inputType == TSDB_DATA_TYPE_TINYINT) {
int8_t *data = (int8_t *)pOutput;
UPDATE_DATA(pCtx, *data, (int8_t)val, notNullElems, isMin, key);
} else if (pCtx->inputType == TSDB_DATA_TYPE_SMALLINT) {
int16_t *data = (int16_t *)pOutput;
UPDATE_DATA(pCtx, *data, (int16_t)val, notNullElems, isMin, key);
} else if (pCtx->inputType == TSDB_DATA_TYPE_INT) {
int32_t *data = (int32_t *)pOutput;
#if defined(_DEBUG_VIEW)
qDebug("max value updated according to pre-cal:%d", *data);
#endif
if ((*data < val) ^ isMin) {
*data = (int32_t)val;
for (int32_t i = 0; i < (pCtx)->tagInfo.numOfTagCols; ++i) {
SQLFunctionCtx *__ctx = pCtx->tagInfo.pTagCtxList[i];
if (__ctx->functionId == FUNCTION_TS_DUMMY) {
__ctx->tag.i64 = key;
__ctx->tag.nType = TSDB_DATA_TYPE_BIGINT;
}
aggFunc[FUNCTION_TAG].exec(__ctx);
}
}
} else if (pCtx->inputType == TSDB_DATA_TYPE_BIGINT) {
int64_t *data = (int64_t *)pOutput;
UPDATE_DATA(pCtx, *data, val, notNullElems, isMin, key);
}
} else if (IS_UNSIGNED_NUMERIC_TYPE(pCtx->inputType)) {
uint64_t val = GET_UINT64_VAL(tval);
if (pCtx->inputType == TSDB_DATA_TYPE_UTINYINT) {
uint8_t *data = (uint8_t *)pOutput;
UPDATE_DATA(pCtx, *data, (uint8_t)val, notNullElems, isMin, key);
} else if (pCtx->inputType == TSDB_DATA_TYPE_USMALLINT) {
uint16_t *data = (uint16_t *)pOutput;
UPDATE_DATA(pCtx, *data, (uint16_t)val, notNullElems, isMin, key);
} else if (pCtx->inputType == TSDB_DATA_TYPE_UINT) {
uint32_t *data = (uint32_t *)pOutput;
UPDATE_DATA(pCtx, *data, (uint32_t)val, notNullElems, isMin, key);
} else if (pCtx->inputType == TSDB_DATA_TYPE_UBIGINT) {
uint64_t *data = (uint64_t *)pOutput;
UPDATE_DATA(pCtx, *data, val, notNullElems, isMin, key);
}
} else if (pCtx->inputType == TSDB_DATA_TYPE_DOUBLE) {
double *data = (double *)pOutput;
double val = GET_DOUBLE_VAL(tval);
UPDATE_DATA(pCtx, *data, val, notNullElems, isMin, key);
} else if (pCtx->inputType == TSDB_DATA_TYPE_FLOAT) {
float *data = (float *)pOutput;
double val = GET_DOUBLE_VAL(tval);
UPDATE_DATA(pCtx, *data, (float)val, notNullElems, isMin, key);
}
return;
}
void *p = GET_INPUT_DATA_LIST(pCtx);
TSKEY *tsList = GET_TS_LIST(pCtx);
*notNullElems = 0;
if (IS_SIGNED_NUMERIC_TYPE(pCtx->inputType)) {
if (pCtx->inputType == TSDB_DATA_TYPE_TINYINT) {
TYPED_LOOPCHECK_N(int8_t, pOutput, p, pCtx, pCtx->inputType, isMin, *notNullElems);
} else if (pCtx->inputType == TSDB_DATA_TYPE_SMALLINT) {
TYPED_LOOPCHECK_N(int16_t, pOutput, p, pCtx, pCtx->inputType, isMin, *notNullElems);
} else if (pCtx->inputType == TSDB_DATA_TYPE_INT) {
int32_t *pData = p;
int32_t *retVal = (int32_t*) pOutput;
for (int32_t i = 0; i < pCtx->size; ++i) {
if (pCtx->hasNull && isNull((const char*)&pData[i], pCtx->inputType)) {
continue;
}
if ((*retVal < pData[i]) ^ isMin) {
*retVal = pData[i];
TSKEY k = tsList[i];
DO_UPDATE_TAG_COLUMNS(pCtx, k);
}
*notNullElems += 1;
}
#if defined(_DEBUG_VIEW)
qDebug("max value updated:%d", *retVal);
#endif
} else if (pCtx->inputType == TSDB_DATA_TYPE_BIGINT) {
TYPED_LOOPCHECK_N(int64_t, pOutput, p, pCtx, pCtx->inputType, isMin, *notNullElems);
}
} else if (IS_UNSIGNED_NUMERIC_TYPE(pCtx->inputType)) {
if (pCtx->inputType == TSDB_DATA_TYPE_UTINYINT) {
TYPED_LOOPCHECK_N(uint8_t, pOutput, p, pCtx, pCtx->inputType, isMin, *notNullElems);
} else if (pCtx->inputType == TSDB_DATA_TYPE_USMALLINT) {
TYPED_LOOPCHECK_N(uint16_t, pOutput, p, pCtx, pCtx->inputType, isMin, *notNullElems);
} else if (pCtx->inputType == TSDB_DATA_TYPE_UINT) {
TYPED_LOOPCHECK_N(uint32_t, pOutput, p, pCtx, pCtx->inputType, isMin, *notNullElems);
} else if (pCtx->inputType == TSDB_DATA_TYPE_UBIGINT) {
TYPED_LOOPCHECK_N(uint64_t, pOutput, p, pCtx, pCtx->inputType, isMin, *notNullElems);
}
} else if (pCtx->inputType == TSDB_DATA_TYPE_DOUBLE) {
TYPED_LOOPCHECK_N(double, pOutput, p, pCtx, pCtx->inputType, isMin, *notNullElems);
} else if (pCtx->inputType == TSDB_DATA_TYPE_FLOAT) {
TYPED_LOOPCHECK_N(float, pOutput, p, pCtx, pCtx->inputType, isMin, *notNullElems);
}
}
static bool min_func_setup(SQLFunctionCtx *pCtx, SResultRowCellInfo* pResultInfo) {
if (!function_setup(pCtx, pResultInfo)) {
return false; // not initialized since it has been initialized
}
GET_TRUE_DATA_TYPE();
switch (type) {
case TSDB_DATA_TYPE_TINYINT:
*((int8_t *)pCtx->pOutput) = INT8_MAX;
break;
case TSDB_DATA_TYPE_UTINYINT:
*(uint8_t *) pCtx->pOutput = UINT8_MAX;
break;
case TSDB_DATA_TYPE_SMALLINT:
*((int16_t *)pCtx->pOutput) = INT16_MAX;
break;
case TSDB_DATA_TYPE_USMALLINT:
*((uint16_t *)pCtx->pOutput) = UINT16_MAX;
break;
case TSDB_DATA_TYPE_INT:
*((int32_t *)pCtx->pOutput) = INT32_MAX;
break;
case TSDB_DATA_TYPE_UINT:
*((uint32_t *)pCtx->pOutput) = UINT32_MAX;
break;
case TSDB_DATA_TYPE_BIGINT:
*((int64_t *)pCtx->pOutput) = INT64_MAX;
break;
case TSDB_DATA_TYPE_UBIGINT:
*((uint64_t *)pCtx->pOutput) = UINT64_MAX;
break;
case TSDB_DATA_TYPE_FLOAT:
*((float *)pCtx->pOutput) = FLT_MAX;
break;
case TSDB_DATA_TYPE_DOUBLE:
SET_DOUBLE_VAL(((double *)pCtx->pOutput), DBL_MAX);
break;
default:
assert(0);
// qError("illegal data type:%d in min/max query", pCtx->inputType);
}
return true;
}
static bool max_func_setup(SQLFunctionCtx *pCtx, SResultRowCellInfo* pResultInfo) {
if (!function_setup(pCtx, pResultInfo)) {
return false; // not initialized since it has been initialized
}
GET_TRUE_DATA_TYPE();
switch (type) {
case TSDB_DATA_TYPE_INT:
*((int32_t *)pCtx->pOutput) = INT32_MIN;
break;
case TSDB_DATA_TYPE_UINT:
*((uint32_t *)pCtx->pOutput) = 0;
break;
case TSDB_DATA_TYPE_FLOAT:
*((float *)pCtx->pOutput) = -FLT_MAX;
break;
case TSDB_DATA_TYPE_DOUBLE:
SET_DOUBLE_VAL(((double *)pCtx->pOutput), -DBL_MAX);
break;
case TSDB_DATA_TYPE_BIGINT:
*((int64_t *)pCtx->pOutput) = INT64_MIN;
break;
case TSDB_DATA_TYPE_UBIGINT:
*((uint64_t *)pCtx->pOutput) = 0;
break;
case TSDB_DATA_TYPE_SMALLINT:
*((int16_t *)pCtx->pOutput) = INT16_MIN;
break;
case TSDB_DATA_TYPE_USMALLINT:
*((uint16_t *)pCtx->pOutput) = 0;
break;
case TSDB_DATA_TYPE_TINYINT:
*((int8_t *)pCtx->pOutput) = INT8_MIN;
break;
case TSDB_DATA_TYPE_UTINYINT:
*((uint8_t *)pCtx->pOutput) = 0;
break;
default:
assert(0);
// qError("illegal data type:%d in min/max query", pCtx->inputType);
}
return true;
}
/*
* the output result of min/max function is the final output buffer, not the intermediate result buffer
*/
static void min_function(SQLFunctionCtx *pCtx) {
int32_t notNullElems = 0;
minMax_function(pCtx, pCtx->pOutput, 1, &notNullElems);
SET_VAL(pCtx, notNullElems, 1);
if (notNullElems > 0) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
pResInfo->hasResult = DATA_SET_FLAG;
// set the flag for super table query
if (pCtx->stableQuery) {
*(pCtx->pOutput + pCtx->inputBytes) = DATA_SET_FLAG;
}
}
}
static void max_function(SQLFunctionCtx *pCtx) {
int32_t notNullElems = 0;
minMax_function(pCtx, pCtx->pOutput, 0, &notNullElems);
SET_VAL(pCtx, notNullElems, 1);
if (notNullElems > 0) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
pResInfo->hasResult = DATA_SET_FLAG;
// set the flag for super table query
if (pCtx->stableQuery) {
*(pCtx->pOutput + pCtx->inputBytes) = DATA_SET_FLAG;
}
}
}
static int32_t minmax_merge_impl(SQLFunctionCtx *pCtx, int32_t bytes, char *output, bool isMin) {
int32_t notNullElems = 0;
GET_TRUE_DATA_TYPE();
assert(pCtx->stableQuery);
for (int32_t i = 0; i < pCtx->size; ++i) {
char *input = GET_INPUT_DATA(pCtx, i);
if (input[bytes] != DATA_SET_FLAG) {
continue;
}
switch (type) {
case TSDB_DATA_TYPE_TINYINT: {
int8_t v = GET_INT8_VAL(input);
DUPATE_DATA_WITHOUT_TS(pCtx, *(int8_t *)output, v, notNullElems, isMin);
break;
}
case TSDB_DATA_TYPE_SMALLINT: {
int16_t v = GET_INT16_VAL(input);
DUPATE_DATA_WITHOUT_TS(pCtx, *(int16_t *)output, v, notNullElems, isMin);
break;
}
case TSDB_DATA_TYPE_INT: {
int32_t v = GET_INT32_VAL(input);
if ((*(int32_t *)output < v) ^ isMin) {
*(int32_t *)output = v;
for (int32_t j = 0; j < pCtx->tagInfo.numOfTagCols; ++j) {
SQLFunctionCtx *__ctx = pCtx->tagInfo.pTagCtxList[j];
aggFunc[FUNCTION_TAG].exec(__ctx);
}
notNullElems++;
}
break;
}
case TSDB_DATA_TYPE_FLOAT: {
float v = GET_FLOAT_VAL(input);
DUPATE_DATA_WITHOUT_TS(pCtx, *(float *)output, v, notNullElems, isMin);
break;
}
case TSDB_DATA_TYPE_DOUBLE: {
double v = GET_DOUBLE_VAL(input);
DUPATE_DATA_WITHOUT_TS(pCtx, *(double *)output, v, notNullElems, isMin);
break;
}
case TSDB_DATA_TYPE_BIGINT: {
int64_t v = GET_INT64_VAL(input);
DUPATE_DATA_WITHOUT_TS(pCtx, *(int64_t *)output, v, notNullElems, isMin);
break;
}
case TSDB_DATA_TYPE_UTINYINT: {
uint8_t v = GET_UINT8_VAL(input);
DUPATE_DATA_WITHOUT_TS(pCtx, *(uint8_t *)output, v, notNullElems, isMin);
break;
}
case TSDB_DATA_TYPE_USMALLINT: {
uint16_t v = GET_UINT16_VAL(input);
DUPATE_DATA_WITHOUT_TS(pCtx, *(uint16_t *)output, v, notNullElems, isMin);
break;
}
case TSDB_DATA_TYPE_UINT: {
uint32_t v = GET_UINT32_VAL(input);
DUPATE_DATA_WITHOUT_TS(pCtx, *(uint32_t *)output, v, notNullElems, isMin);
break;
}
case TSDB_DATA_TYPE_UBIGINT: {
uint64_t v = GET_UINT64_VAL(input);
DUPATE_DATA_WITHOUT_TS(pCtx, *(uint64_t *)output, v, notNullElems, isMin);
break;
}
default:
break;
}
}
return notNullElems;
}
static void min_func_merge(SQLFunctionCtx *pCtx) {
int32_t notNullElems = minmax_merge_impl(pCtx, pCtx->outputBytes, pCtx->pOutput, 1);
SET_VAL(pCtx, notNullElems, 1);
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
if (notNullElems > 0) {
pResInfo->hasResult = DATA_SET_FLAG;
}
}
static void max_func_merge(SQLFunctionCtx *pCtx) {
int32_t numOfElem = minmax_merge_impl(pCtx, pCtx->outputBytes, pCtx->pOutput, 0);
SET_VAL(pCtx, numOfElem, 1);
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
if (numOfElem > 0) {
pResInfo->hasResult = DATA_SET_FLAG;
}
}
#define LOOP_STDDEV_IMPL(type, r, d, ctx, delta, _type, num) \
for (int32_t i = 0; i < (ctx)->size; ++i) { \
if ((ctx)->hasNull && isNull((char *)&((type *)d)[i], (_type))) { \
continue; \
} \
(num) += 1; \
(r) += POW2(((type *)d)[i] - (delta)); \
}
static void stddev_function(SQLFunctionCtx *pCtx) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
SStddevInfo *pStd = GET_ROWCELL_INTERBUF(pResInfo);
if (pCtx->currentStage == REPEAT_SCAN && pStd->stage == 0) {
pStd->stage++;
avg_finalizer(pCtx);
pResInfo->initialized = true; // set it initialized to avoid re-initialization
// save average value into tmpBuf, for second stage scan
SAvgInfo *pAvg = GET_ROWCELL_INTERBUF(pResInfo);
pStd->avg = GET_DOUBLE_VAL(pCtx->pOutput);
assert((isnan(pAvg->sum) && pAvg->num == 0) || (pStd->num == pAvg->num && pStd->avg == pAvg->sum));
}
if (pStd->stage == 0) {
// the first stage is to calculate average value
avg_function(pCtx);
} else if (pStd->num > 0) {
// the second stage to calculate standard deviation
// if pStd->num == 0, there are no numbers in the first round check. No need to do the second round
double *retVal = &pStd->res;
double avg = pStd->avg;
void *pData = GET_INPUT_DATA_LIST(pCtx);
int32_t num = 0;
switch (pCtx->inputType) {
case TSDB_DATA_TYPE_INT: {
for (int32_t i = 0; i < pCtx->size; ++i) {
if (pCtx->hasNull && isNull((const char*) (&((int32_t *)pData)[i]), pCtx->inputType)) {
continue;
}
num += 1;
*retVal += POW2(((int32_t *)pData)[i] - avg);
}
break;
}
case TSDB_DATA_TYPE_FLOAT: {
LOOP_STDDEV_IMPL(float, *retVal, pData, pCtx, avg, pCtx->inputType, num);
break;
}
case TSDB_DATA_TYPE_DOUBLE: {
LOOP_STDDEV_IMPL(double, *retVal, pData, pCtx, avg, pCtx->inputType, num);
break;
}
case TSDB_DATA_TYPE_BIGINT: {
LOOP_STDDEV_IMPL(int64_t, *retVal, pData, pCtx, avg, pCtx->inputType, num);
break;
}
case TSDB_DATA_TYPE_SMALLINT: {
LOOP_STDDEV_IMPL(int16_t, *retVal, pData, pCtx, avg, pCtx->inputType, num);
break;
}
case TSDB_DATA_TYPE_TINYINT: {
LOOP_STDDEV_IMPL(int8_t, *retVal, pData, pCtx, avg, pCtx->inputType, num);
break;
}
case TSDB_DATA_TYPE_UBIGINT: {
LOOP_STDDEV_IMPL(uint64_t, *retVal, pData, pCtx, avg, pCtx->inputType, num);
break;
}
case TSDB_DATA_TYPE_USMALLINT: {
LOOP_STDDEV_IMPL(uint16_t, *retVal, pData, pCtx, avg, pCtx->inputType, num);
break;
}
case TSDB_DATA_TYPE_UTINYINT: {
LOOP_STDDEV_IMPL(uint8_t, *retVal, pData, pCtx, avg, pCtx->inputType, num);
break;
}
case TSDB_DATA_TYPE_UINT: {
LOOP_STDDEV_IMPL(uint32_t, *retVal, pData, pCtx, avg, pCtx->inputType, num);
break;
}
default:
assert(0);
// qError("stddev function not support data type:%d", pCtx->inputType);
}
SET_VAL(pCtx, 1, 1);
}
}
static void stddev_finalizer(SQLFunctionCtx *pCtx) {
SStddevInfo *pStd = GET_ROWCELL_INTERBUF(GET_RES_INFO(pCtx));
if (pStd->num <= 0) {
setNull(pCtx->pOutput, pCtx->outputType, pCtx->outputBytes);
} else {
double *retValue = (double *)pCtx->pOutput;
SET_DOUBLE_VAL(retValue, sqrt(pStd->res / pStd->num));
SET_VAL(pCtx, 1, 1);
}
doFinalizer(pCtx);
}
//////////////////////////////////////////////////////////////////////////////////////
int32_t tsCompare(const void* p1, const void* p2) {
TSKEY k = *(TSKEY*)p1;
SResPair* pair = (SResPair*)p2;
if (k == pair->key) {
return 0;
} else {
return k < pair->key? -1:1;
}
}
static void stddev_dst_function(SQLFunctionCtx *pCtx) {
SStddevdstInfo *pStd = GET_ROWCELL_INTERBUF(GET_RES_INFO(pCtx));
// the second stage to calculate standard deviation
double *retVal = &pStd->res;
// all data are null, no need to proceed
SArray* resList = (SArray*) pCtx->param[0].pz;
if (resList == NULL) {
return;
}
// find the correct group average results according to the tag value
int32_t len = (int32_t) taosArrayGetSize(resList);
assert(len > 0);
double avg = 0;
if (len == 1) {
SResPair* p = taosArrayGet(resList, 0);
avg = p->avg;
} else { // todo opt performance by using iterator since the timestamp lsit is matched with the output result
SResPair* p = bsearch(&pCtx->startTs, resList->pData, len, sizeof(SResPair), tsCompare);
if (p == NULL) {
return;
}
avg = p->avg;
}
void *pData = GET_INPUT_DATA_LIST(pCtx);
int32_t num = 0;
switch (pCtx->inputType) {
case TSDB_DATA_TYPE_INT: {
for (int32_t i = 0; i < pCtx->size; ++i) {
if (pCtx->hasNull && isNull((const char*) (&((int32_t *)pData)[i]), pCtx->inputType)) {
continue;
}
num += 1;
*retVal += POW2(((int32_t *)pData)[i] - avg);
}
break;
}
case TSDB_DATA_TYPE_FLOAT: {
LOOP_STDDEV_IMPL(float, *retVal, pData, pCtx, avg, pCtx->inputType, num);
break;
}
case TSDB_DATA_TYPE_DOUBLE: {
LOOP_STDDEV_IMPL(double, *retVal, pData, pCtx, avg, pCtx->inputType, num);
break;
}
case TSDB_DATA_TYPE_TINYINT: {
LOOP_STDDEV_IMPL(int8_t, *retVal, pData, pCtx, avg, pCtx->inputType, num);
break;
}
case TSDB_DATA_TYPE_UTINYINT: {
LOOP_STDDEV_IMPL(int8_t, *retVal, pData, pCtx, avg, pCtx->inputType, num);
break;
}
case TSDB_DATA_TYPE_SMALLINT: {
LOOP_STDDEV_IMPL(int16_t, *retVal, pData, pCtx, avg, pCtx->inputType, num);
break;
}
case TSDB_DATA_TYPE_USMALLINT: {
LOOP_STDDEV_IMPL(uint16_t, *retVal, pData, pCtx, avg, pCtx->inputType, num);
break;
}
case TSDB_DATA_TYPE_UINT: {
LOOP_STDDEV_IMPL(uint32_t, *retVal, pData, pCtx, avg, pCtx->inputType, num);
break;
}
case TSDB_DATA_TYPE_BIGINT: {
LOOP_STDDEV_IMPL(int64_t, *retVal, pData, pCtx, avg, pCtx->inputType, num);
break;
}
case TSDB_DATA_TYPE_UBIGINT: {
LOOP_STDDEV_IMPL(uint64_t, *retVal, pData, pCtx, avg, pCtx->inputType, num);
break;
}
default:
assert(0);
// qError("stddev function not support data type:%d", pCtx->inputType);
}
pStd->num += num;
SET_VAL(pCtx, num, 1);
// copy to the final output buffer for super table
memcpy(pCtx->pOutput, GET_ROWCELL_INTERBUF(GET_RES_INFO(pCtx)), sizeof(SAvgInfo));
}
static void stddev_dst_merge(SQLFunctionCtx *pCtx) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
SStddevdstInfo* pRes = GET_ROWCELL_INTERBUF(pResInfo);
char *input = GET_INPUT_DATA_LIST(pCtx);
for (int32_t i = 0; i < pCtx->size; ++i, input += pCtx->inputBytes) {
SStddevdstInfo *pInput = (SStddevdstInfo *)input;
if (pInput->num == 0) { // current input is null
continue;
}
pRes->num += pInput->num;
pRes->res += pInput->res;
}
}
static void stddev_dst_finalizer(SQLFunctionCtx *pCtx) {
SStddevdstInfo *pStd = GET_ROWCELL_INTERBUF(GET_RES_INFO(pCtx));
if (pStd->num <= 0) {
setNull(pCtx->pOutput, pCtx->outputType, pCtx->outputBytes);
} else {
double *retValue = (double *)pCtx->pOutput;
SET_DOUBLE_VAL(retValue, sqrt(pStd->res / pStd->num));
SET_VAL(pCtx, 1, 1);
}
doFinalizer(pCtx);
}
//////////////////////////////////////////////////////////////////////////////////////
static bool first_last_function_setup(SQLFunctionCtx *pCtx, SResultRowCellInfo* pResInfo) {
if (!function_setup(pCtx, pResInfo)) {
return false;
}
// used to keep the timestamp for comparison
pCtx->param[1].nType = 0;
pCtx->param[1].i64 = 0;
return true;
}
// todo opt for null block
static void first_function(SQLFunctionCtx *pCtx) {
if (pCtx->order == TSDB_ORDER_DESC) {
return;
}
int32_t notNullElems = 0;
// handle the null value
for (int32_t i = 0; i < pCtx->size; ++i) {
char *data = GET_INPUT_DATA(pCtx, i);
if (pCtx->hasNull && isNull(data, pCtx->inputType)) {
continue;
}
memcpy(pCtx->pOutput, data, pCtx->inputBytes);
if (pCtx->ptsList != NULL) {
TSKEY k = GET_TS_DATA(pCtx, i);
DO_UPDATE_TAG_COLUMNS(pCtx, k);
}
SResultRowCellInfo *pInfo = GET_RES_INFO(pCtx);
pInfo->hasResult = DATA_SET_FLAG;
pInfo->complete = true;
notNullElems++;
break;
}
SET_VAL(pCtx, notNullElems, 1);
}
static void first_data_assign_impl(SQLFunctionCtx *pCtx, char *pData, int32_t index) {
int64_t *timestamp = GET_TS_LIST(pCtx);
SFirstLastInfo *pInfo = (SFirstLastInfo *)(pCtx->pOutput + pCtx->inputBytes);
if (pInfo->hasResult != DATA_SET_FLAG || timestamp[index] < pInfo->ts) {
memcpy(pCtx->pOutput, pData, pCtx->inputBytes);
pInfo->hasResult = DATA_SET_FLAG;
pInfo->ts = timestamp[index];
DO_UPDATE_TAG_COLUMNS(pCtx, pInfo->ts);
}
}
/*
* format of intermediate result: "timestamp,value" need to compare the timestamp in the first part (before the comma)
* to decide if the value is earlier than current intermediate result
*/
static void first_dist_function(SQLFunctionCtx *pCtx) {
/*
* do not to check data in the following cases:
* 1. data block that are not loaded
* 2. scan data files in desc order
*/
if (pCtx->order == TSDB_ORDER_DESC) {
return;
}
int32_t notNullElems = 0;
// find the first not null value
for (int32_t i = 0; i < pCtx->size; ++i) {
char *data = GET_INPUT_DATA(pCtx, i);
if (pCtx->hasNull && isNull(data, pCtx->inputType)) {
continue;
}
first_data_assign_impl(pCtx, data, i);
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
pResInfo->hasResult = DATA_SET_FLAG;
notNullElems++;
break;
}
SET_VAL(pCtx, notNullElems, 1);
}
static void first_dist_func_merge(SQLFunctionCtx *pCtx) {
assert(pCtx->stableQuery);
char * pData = GET_INPUT_DATA_LIST(pCtx);
SFirstLastInfo *pInput = (SFirstLastInfo*) (pData + pCtx->outputBytes);
if (pInput->hasResult != DATA_SET_FLAG) {
return;
}
// The param[1] is used to keep the initial value of max ts value
if (pCtx->param[1].nType != pCtx->outputType || pCtx->param[1].i64 > pInput->ts) {
memcpy(pCtx->pOutput, pData, pCtx->outputBytes);
pCtx->param[1].i64 = pInput->ts;
pCtx->param[1].nType = pCtx->outputType;
DO_UPDATE_TAG_COLUMNS(pCtx, pInput->ts);
}
SET_VAL(pCtx, 1, 1);
GET_RES_INFO(pCtx)->hasResult = DATA_SET_FLAG;
}
//////////////////////////////////////////////////////////////////////////////////////////
/*
* last function:
* 1. since the last block may be all null value, so, we simply access the last block is not valid
* each block need to be checked.
* 2. If numOfNull == pBlock->numOfBlocks, the whole block is empty. Otherwise, there is at
* least one data in this block that is not null.(TODO opt for this case)
*/
static void last_function(SQLFunctionCtx *pCtx) {
if (pCtx->order != pCtx->param[0].i64) {
return;
}
SResultRowCellInfo* pResInfo = GET_RES_INFO(pCtx);
int32_t notNullElems = 0;
if (pCtx->order == TSDB_ORDER_DESC) {
for (int32_t i = pCtx->size - 1; i >= 0; --i) {
char *data = GET_INPUT_DATA(pCtx, i);
if (pCtx->hasNull && isNull(data, pCtx->inputType) && (!pCtx->requireNull)) {
continue;
}
memcpy(pCtx->pOutput, data, pCtx->inputBytes);
TSKEY ts = pCtx->ptsList ? GET_TS_DATA(pCtx, i) : 0;
DO_UPDATE_TAG_COLUMNS(pCtx, ts);
pResInfo->hasResult = DATA_SET_FLAG;
pResInfo->complete = true; // set query completed on this column
notNullElems++;
break;
}
} else { // ascending order
for (int32_t i = pCtx->size - 1; i >= 0; --i) {
char *data = GET_INPUT_DATA(pCtx, i);
if (pCtx->hasNull && isNull(data, pCtx->inputType) && (!pCtx->requireNull)) {
continue;
}
TSKEY ts = pCtx->ptsList ? GET_TS_DATA(pCtx, i) : 0;
char* buf = GET_ROWCELL_INTERBUF(pResInfo);
if (pResInfo->hasResult != DATA_SET_FLAG || (*(TSKEY*)buf) < ts) {
pResInfo->hasResult = DATA_SET_FLAG;
memcpy(pCtx->pOutput, data, pCtx->inputBytes);
*(TSKEY*)buf = ts;
DO_UPDATE_TAG_COLUMNS(pCtx, ts);
}
notNullElems++;
break;
}
}
SET_VAL(pCtx, notNullElems, 1);
}
static void last_data_assign_impl(SQLFunctionCtx *pCtx, char *pData, int32_t index) {
int64_t *timestamp = GET_TS_LIST(pCtx);
SFirstLastInfo *pInfo = (SFirstLastInfo *)(pCtx->pOutput + pCtx->inputBytes);
if (pInfo->hasResult != DATA_SET_FLAG || pInfo->ts < timestamp[index]) {
#if defined(_DEBUG_VIEW)
qDebug("assign index:%d, ts:%" PRId64 ", val:%d, ", index, timestamp[index], *(int32_t *)pData);
#endif
memcpy(pCtx->pOutput, pData, pCtx->inputBytes);
pInfo->hasResult = DATA_SET_FLAG;
pInfo->ts = timestamp[index];
DO_UPDATE_TAG_COLUMNS(pCtx, pInfo->ts);
}
}
static void last_dist_function(SQLFunctionCtx *pCtx) {
/*
* 1. for scan data is not the required order
* 2. for data blocks that are not loaded, no need to check data
*/
if (pCtx->order != pCtx->param[0].i64) {
return;
}
int32_t notNullElems = 0;
for (int32_t i = pCtx->size - 1; i >= 0; --i) {
char *data = GET_INPUT_DATA(pCtx, i);
if (pCtx->hasNull && isNull(data, pCtx->inputType)) {
if (!pCtx->requireNull) {
continue;
}
}
last_data_assign_impl(pCtx, data, i);
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
pResInfo->hasResult = DATA_SET_FLAG;
notNullElems++;
break;
}
SET_VAL(pCtx, notNullElems, 1);
}
/*
* in the secondary merge(local reduce), the output is limited by the
* final output size, so the main difference between last_dist_func_merge and second_merge
* is: the output data format in computing
*/
static void last_dist_func_merge(SQLFunctionCtx *pCtx) {
char *pData = GET_INPUT_DATA_LIST(pCtx);
SFirstLastInfo *pInput = (SFirstLastInfo*) (pData + pCtx->outputBytes);
if (pInput->hasResult != DATA_SET_FLAG) {
return;
}
/*
* param[1] used to keep the corresponding timestamp to decide if current result is
* the true last result
*/
if (pCtx->param[1].nType != pCtx->outputType || pCtx->param[1].i64 < pInput->ts) {
memcpy(pCtx->pOutput, pData, pCtx->outputBytes);
pCtx->param[1].i64 = pInput->ts;
pCtx->param[1].nType = pCtx->outputType;
DO_UPDATE_TAG_COLUMNS(pCtx, pInput->ts);
}
SET_VAL(pCtx, 1, 1);
GET_RES_INFO(pCtx)->hasResult = DATA_SET_FLAG;
}
//////////////////////////////////////////////////////////////////////////////////
/*
* NOTE: last_row does not use the interResultBuf to keep the result
*/
static void last_row_function(SQLFunctionCtx *pCtx) {
assert(pCtx->size >= 1);
char *pData = GET_INPUT_DATA_LIST(pCtx);
// assign the last element in current data block
assignVal(pCtx->pOutput, pData + (pCtx->size - 1) * pCtx->inputBytes, pCtx->inputBytes, pCtx->inputType);
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
pResInfo->hasResult = DATA_SET_FLAG;
// set the result to final result buffer in case of super table query
if (pCtx->stableQuery) {
SLastrowInfo *pInfo1 = (SLastrowInfo *)(pCtx->pOutput + pCtx->inputBytes);
pInfo1->ts = GET_TS_DATA(pCtx, pCtx->size - 1);
pInfo1->hasResult = DATA_SET_FLAG;
DO_UPDATE_TAG_COLUMNS(pCtx, pInfo1->ts);
} else {
TSKEY ts = GET_TS_DATA(pCtx, pCtx->size - 1);
DO_UPDATE_TAG_COLUMNS(pCtx, ts);
}
SET_VAL(pCtx, pCtx->size, 1);
}
static void last_row_finalizer(SQLFunctionCtx *pCtx) {
// do nothing at the first stage
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
if (pResInfo->hasResult != DATA_SET_FLAG) {
setNull(pCtx->pOutput, pCtx->outputType, pCtx->outputBytes);
return;
}
GET_RES_INFO(pCtx)->numOfRes = 1;
doFinalizer(pCtx);
}
//////////////////////////////////////////////////////////////////////////////////
static void valuePairAssign(tValuePair *dst, int16_t type, const char *val, int64_t tsKey, char *pTags,
SExtTagsInfo *pTagInfo, int16_t stage) {
dst->v.nType = type;
dst->v.i64 = *(int64_t *)val;
dst->timestamp = tsKey;
int32_t size = 0;
if (stage == MERGE_STAGE) {
memcpy(dst->pTags, pTags, (size_t)pTagInfo->tagsLen);
} else { // the tags are dumped from the ctx tag fields
for (int32_t i = 0; i < pTagInfo->numOfTagCols; ++i) {
SQLFunctionCtx* ctx = pTagInfo->pTagCtxList[i];
if (ctx->functionId == FUNCTION_TS_DUMMY) {
ctx->tag.nType = TSDB_DATA_TYPE_BIGINT;
ctx->tag.i64 = tsKey;
}
taosVariantDump(&ctx->tag, dst->pTags + size, ctx->tag.nType, true);
size += pTagInfo->pTagCtxList[i]->outputBytes;
}
}
}
#define VALUEPAIRASSIGN(dst, src, __l) \
do { \
(dst)->timestamp = (src)->timestamp; \
(dst)->v = (src)->v; \
memcpy((dst)->pTags, (src)->pTags, (size_t)(__l)); \
} while (0)
static int32_t topBotComparFn(const void *p1, const void *p2, const void *param)
{
uint16_t type = *(uint16_t *) param;
tValuePair *val1 = *(tValuePair **) p1;
tValuePair *val2 = *(tValuePair **) p2;
if (IS_SIGNED_NUMERIC_TYPE(type)) {
if (val1->v.i64 == val2->v.i64) {
return 0;
}
return (val1->v.i64 > val2->v.i64) ? 1 : -1;
} else if (IS_UNSIGNED_NUMERIC_TYPE(type)) {
if (val1->v.u64 == val2->v.u64) {
return 0;
}
return (val1->v.u64 > val2->v.u64) ? 1 : -1;
}
if (val1->v.d == val2->v.d) {
return 0;
}
return (val1->v.d > val2->v.d) ? 1 : -1;
}
static void topBotSwapFn(void *dst, void *src, const void *param)
{
char tag[32768];
tValuePair temp;
uint16_t tagLen = *(uint16_t *) param;
tValuePair *vdst = *(tValuePair **) dst;
tValuePair *vsrc = *(tValuePair **) src;
memset(tag, 0, sizeof(tag));
temp.pTags = tag;
VALUEPAIRASSIGN(&temp, vdst, tagLen);
VALUEPAIRASSIGN(vdst, vsrc, tagLen);
VALUEPAIRASSIGN(vsrc, &temp, tagLen);
}
static void do_top_function_add(STopBotInfo *pInfo, int32_t maxLen, void *pData, int64_t ts, uint16_t type,
SExtTagsInfo *pTagInfo, char *pTags, int16_t stage) {
SVariant val = {0};
taosVariantCreateFromBinary(&val, pData, tDataTypes[type].bytes, type);
tValuePair **pList = pInfo->res;
assert(pList != NULL);
if (pInfo->num < maxLen) {
valuePairAssign(pList[pInfo->num], type, (const char *)&val.i64, ts, pTags, pTagInfo, stage);
taosheapsort((void *) pList, sizeof(tValuePair **), pInfo->num + 1, (const void *) &type, topBotComparFn, (const void *) &pTagInfo->tagsLen, topBotSwapFn, 0);
pInfo->num++;
} else {
if ((IS_SIGNED_NUMERIC_TYPE(type) && val.i64 > pList[0]->v.i64) ||
(IS_UNSIGNED_NUMERIC_TYPE(type) && val.u64 > pList[0]->v.u64) ||
(IS_FLOAT_TYPE(type) && val.d > pList[0]->v.d)) {
valuePairAssign(pList[0], type, (const char *)&val.i64, ts, pTags, pTagInfo, stage);
taosheapadjust((void *) pList, sizeof(tValuePair **), 0, maxLen - 1, (const void *) &type, topBotComparFn, (const void *) &pTagInfo->tagsLen, topBotSwapFn, 0);
}
}
}
static void do_bottom_function_add(STopBotInfo *pInfo, int32_t maxLen, void *pData, int64_t ts, uint16_t type,
SExtTagsInfo *pTagInfo, char *pTags, int16_t stage) {
SVariant val = {0};
taosVariantCreateFromBinary(&val, pData, tDataTypes[type].bytes, type);
tValuePair **pList = pInfo->res;
assert(pList != NULL);
if (pInfo->num < maxLen) {
valuePairAssign(pList[pInfo->num], type, (const char *)&val.i64, ts, pTags, pTagInfo, stage);
taosheapsort((void *) pList, sizeof(tValuePair **), pInfo->num + 1, (const void *) &type, topBotComparFn, (const void *) &pTagInfo->tagsLen, topBotSwapFn, 1);
pInfo->num++;
} else {
if ((IS_SIGNED_NUMERIC_TYPE(type) && val.i64 < pList[0]->v.i64) ||
(IS_UNSIGNED_NUMERIC_TYPE(type) && val.u64 < pList[0]->v.u64) ||
(IS_FLOAT_TYPE(type) && val.d < pList[0]->v.d)) {
valuePairAssign(pList[0], type, (const char *)&val.i64, ts, pTags, pTagInfo, stage);
taosheapadjust((void *) pList, sizeof(tValuePair **), 0, maxLen - 1, (const void *) &type, topBotComparFn, (const void *) &pTagInfo->tagsLen, topBotSwapFn, 1);
}
}
}
static int32_t resAscComparFn(const void *pLeft, const void *pRight) {
tValuePair *pLeftElem = *(tValuePair **)pLeft;
tValuePair *pRightElem = *(tValuePair **)pRight;
if (pLeftElem->timestamp == pRightElem->timestamp) {
return 0;
} else {
return pLeftElem->timestamp > pRightElem->timestamp ? 1 : -1;
}
}
static int32_t resDescComparFn(const void *pLeft, const void *pRight) { return -resAscComparFn(pLeft, pRight); }
static int32_t resDataAscComparFn(const void *pLeft, const void *pRight) {
tValuePair *pLeftElem = *(tValuePair **)pLeft;
tValuePair *pRightElem = *(tValuePair **)pRight;
if (IS_FLOAT_TYPE(pLeftElem->v.nType)) {
if (pLeftElem->v.d == pRightElem->v.d) {
return 0;
} else {
return pLeftElem->v.d > pRightElem->v.d ? 1 : -1;
}
} else if (IS_SIGNED_NUMERIC_TYPE(pLeftElem->v.nType)){
if (pLeftElem->v.i64 == pRightElem->v.i64) {
return 0;
} else {
return pLeftElem->v.i64 > pRightElem->v.i64 ? 1 : -1;
}
} else {
if (pLeftElem->v.u64 == pRightElem->v.u64) {
return 0;
} else {
return pLeftElem->v.u64 > pRightElem->v.u64 ? 1 : -1;
}
}
}
static int32_t resDataDescComparFn(const void *pLeft, const void *pRight) { return -resDataAscComparFn(pLeft, pRight); }
static void copyTopBotRes(SQLFunctionCtx *pCtx, int32_t type) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
STopBotInfo *pRes = GET_ROWCELL_INTERBUF(pResInfo);
tValuePair **tvp = pRes->res;
int32_t step = QUERY_ASC_FORWARD_STEP;
int32_t len = (int32_t)(GET_RES_INFO(pCtx)->numOfRes);
switch (type) {
case TSDB_DATA_TYPE_UINT:
case TSDB_DATA_TYPE_INT: {
int32_t *output = (int32_t *)pCtx->pOutput;
for (int32_t i = 0; i < len; ++i, output += step) {
*output = (int32_t)tvp[i]->v.i64;
}
break;
}
case TSDB_DATA_TYPE_UBIGINT:
case TSDB_DATA_TYPE_BIGINT: {
int64_t *output = (int64_t *)pCtx->pOutput;
for (int32_t i = 0; i < len; ++i, output += step) {
*output = tvp[i]->v.i64;
}
break;
}
case TSDB_DATA_TYPE_DOUBLE: {
double *output = (double *)pCtx->pOutput;
for (int32_t i = 0; i < len; ++i, output += step) {
SET_DOUBLE_VAL(output, tvp[i]->v.d);
}
break;
}
case TSDB_DATA_TYPE_FLOAT: {
float *output = (float *)pCtx->pOutput;
for (int32_t i = 0; i < len; ++i, output += step) {
*output = (float)tvp[i]->v.d;
}
break;
}
case TSDB_DATA_TYPE_USMALLINT:
case TSDB_DATA_TYPE_SMALLINT: {
int16_t *output = (int16_t *)pCtx->pOutput;
for (int32_t i = 0; i < len; ++i, output += step) {
*output = (int16_t)tvp[i]->v.i64;
}
break;
}
case TSDB_DATA_TYPE_UTINYINT:
case TSDB_DATA_TYPE_TINYINT: {
int8_t *output = (int8_t *)pCtx->pOutput;
for (int32_t i = 0; i < len; ++i, output += step) {
*output = (int8_t)tvp[i]->v.i64;
}
break;
}
default: {
// qError("top/bottom function not support data type:%d", pCtx->inputType);
return;
}
}
// set the output timestamp of each record.
TSKEY *output = pCtx->ptsOutputBuf;
for (int32_t i = 0; i < len; ++i, output += step) {
*output = tvp[i]->timestamp;
}
// set the corresponding tag data for each record
// todo check malloc failure
char **pData = calloc(pCtx->tagInfo.numOfTagCols, POINTER_BYTES);
for (int32_t i = 0; i < pCtx->tagInfo.numOfTagCols; ++i) {
pData[i] = pCtx->tagInfo.pTagCtxList[i]->pOutput;
}
for (int32_t i = 0; i < len; ++i, output += step) {
int16_t offset = 0;
for (int32_t j = 0; j < pCtx->tagInfo.numOfTagCols; ++j) {
memcpy(pData[j], tvp[i]->pTags + offset, (size_t)pCtx->tagInfo.pTagCtxList[j]->outputBytes);
offset += pCtx->tagInfo.pTagCtxList[j]->outputBytes;
pData[j] += pCtx->tagInfo.pTagCtxList[j]->outputBytes;
}
}
tfree(pData);
}
/*
* Parameters values:
* 1. param[0]: maximum allowable results
* 2. param[1]: order by type (time or value)
* 3. param[2]: asc/desc order
*
* top/bottom use the intermediate result buffer to keep the intermediate result
*/
static STopBotInfo *getTopBotOutputInfo(SQLFunctionCtx *pCtx) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
// only the first_stage_merge is directly written data into final output buffer
if (pCtx->stableQuery && pCtx->currentStage != MERGE_STAGE) {
return (STopBotInfo*) pCtx->pOutput;
} else { // during normal table query and super table at the secondary_stage, result is written to intermediate buffer
return GET_ROWCELL_INTERBUF(pResInfo);
}
}
/*
* keep the intermediate results during scan data blocks in the format of:
* +-----------------------------------+-------------one value pair-----------+------------next value pair-----------+
* |-------------pointer area----------|----ts---+-----+-----n tags-----------|----ts---+-----+-----n tags-----------|
* +..[Value Pointer1][Value Pointer2].|timestamp|value|tags1|tags2|....|tagsn|timestamp|value|tags1|tags2|....|tagsn+
*/
static void buildTopBotStruct(STopBotInfo *pTopBotInfo, SQLFunctionCtx *pCtx) {
char *tmp = (char *)pTopBotInfo + sizeof(STopBotInfo);
pTopBotInfo->res = (tValuePair**) tmp;
tmp += POINTER_BYTES * pCtx->param[0].i64;
size_t size = sizeof(tValuePair) + pCtx->tagInfo.tagsLen;
for (int32_t i = 0; i < pCtx->param[0].i64; ++i) {
pTopBotInfo->res[i] = (tValuePair*) tmp;
pTopBotInfo->res[i]->pTags = tmp + sizeof(tValuePair);
tmp += size;
}
}
bool topbot_datablock_filter(SQLFunctionCtx *pCtx, const char *minval, const char *maxval) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
if (pResInfo == NULL) {
return true;
}
STopBotInfo *pTopBotInfo = getTopBotOutputInfo(pCtx);
// required number of results are not reached, continue load data block
if (pTopBotInfo->num < pCtx->param[0].i64) {
return true;
}
if ((void *)pTopBotInfo->res[0] != (void *)((char *)pTopBotInfo + sizeof(STopBotInfo) + POINTER_BYTES * pCtx->param[0].i64)) {
buildTopBotStruct(pTopBotInfo, pCtx);
}
tValuePair **pRes = (tValuePair**) pTopBotInfo->res;
if (pCtx->functionId == FUNCTION_TOP) {
switch (pCtx->inputType) {
case TSDB_DATA_TYPE_TINYINT:
return GET_INT8_VAL(maxval) > pRes[0]->v.i64;
case TSDB_DATA_TYPE_SMALLINT:
return GET_INT16_VAL(maxval) > pRes[0]->v.i64;
case TSDB_DATA_TYPE_INT:
return GET_INT32_VAL(maxval) > pRes[0]->v.i64;
case TSDB_DATA_TYPE_BIGINT:
return GET_INT64_VAL(maxval) > pRes[0]->v.i64;
case TSDB_DATA_TYPE_FLOAT:
return GET_FLOAT_VAL(maxval) > pRes[0]->v.d;
case TSDB_DATA_TYPE_DOUBLE:
return GET_DOUBLE_VAL(maxval) > pRes[0]->v.d;
default:
return true;
}
} else {
switch (pCtx->inputType) {
case TSDB_DATA_TYPE_TINYINT:
return GET_INT8_VAL(minval) < pRes[0]->v.i64;
case TSDB_DATA_TYPE_SMALLINT:
return GET_INT16_VAL(minval) < pRes[0]->v.i64;
case TSDB_DATA_TYPE_INT:
return GET_INT32_VAL(minval) < pRes[0]->v.i64;
case TSDB_DATA_TYPE_BIGINT:
return GET_INT64_VAL(minval) < pRes[0]->v.i64;
case TSDB_DATA_TYPE_FLOAT:
return GET_FLOAT_VAL(minval) < pRes[0]->v.d;
case TSDB_DATA_TYPE_DOUBLE:
return GET_DOUBLE_VAL(minval) < pRes[0]->v.d;
default:
return true;
}
}
}
static bool top_bottom_function_setup(SQLFunctionCtx *pCtx, SResultRowCellInfo* pResInfo) {
if (!function_setup(pCtx, pResInfo)) {
return false;
}
STopBotInfo *pInfo = getTopBotOutputInfo(pCtx);
buildTopBotStruct(pInfo, pCtx);
return true;
}
static void top_function(SQLFunctionCtx *pCtx) {
int32_t notNullElems = 0;
STopBotInfo *pRes = getTopBotOutputInfo(pCtx);
assert(pRes->num >= 0);
if ((void *)pRes->res[0] != (void *)((char *)pRes + sizeof(STopBotInfo) + POINTER_BYTES * pCtx->param[0].i64)) {
buildTopBotStruct(pRes, pCtx);
}
for (int32_t i = 0; i < pCtx->size; ++i) {
char *data = GET_INPUT_DATA(pCtx, i);
if (pCtx->hasNull && isNull(data, pCtx->inputType)) {
continue;
}
notNullElems++;
// NOTE: Set the default timestamp if it is missing [todo refactor]
TSKEY ts = (pCtx->ptsList != NULL)? GET_TS_DATA(pCtx, i):0;
do_top_function_add(pRes, (int32_t)pCtx->param[0].i64, data, ts, pCtx->inputType, &pCtx->tagInfo, NULL, 0);
}
if (!pCtx->hasNull) {
assert(pCtx->size == notNullElems);
}
// treat the result as only one result
SET_VAL(pCtx, notNullElems, 1);
if (notNullElems > 0) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
pResInfo->hasResult = DATA_SET_FLAG;
}
}
static void top_func_merge(SQLFunctionCtx *pCtx) {
STopBotInfo *pInput = (STopBotInfo *)GET_INPUT_DATA_LIST(pCtx);
// construct the input data struct from binary data
buildTopBotStruct(pInput, pCtx);
STopBotInfo *pOutput = getTopBotOutputInfo(pCtx);
// the intermediate result is binary, we only use the output data type
for (int32_t i = 0; i < pInput->num; ++i) {
int16_t type = (pCtx->outputType == TSDB_DATA_TYPE_FLOAT)? TSDB_DATA_TYPE_DOUBLE:pCtx->outputType;
do_top_function_add(pOutput, (int32_t)pCtx->param[0].i64, &pInput->res[i]->v.i64, pInput->res[i]->timestamp,
type, &pCtx->tagInfo, pInput->res[i]->pTags, pCtx->currentStage);
}
SET_VAL(pCtx, pInput->num, pOutput->num);
if (pOutput->num > 0) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
pResInfo->hasResult = DATA_SET_FLAG;
}
}
static void bottom_function(SQLFunctionCtx *pCtx) {
int32_t notNullElems = 0;
STopBotInfo *pRes = getTopBotOutputInfo(pCtx);
if ((void *)pRes->res[0] != (void *)((char *)pRes + sizeof(STopBotInfo) + POINTER_BYTES * pCtx->param[0].i64)) {
buildTopBotStruct(pRes, pCtx);
}
for (int32_t i = 0; i < pCtx->size; ++i) {
char *data = GET_INPUT_DATA(pCtx, i);
if (pCtx->hasNull && isNull(data, pCtx->inputType)) {
continue;
}
notNullElems++;
// NOTE: Set the default timestamp if it is missing [todo refactor]
TSKEY ts = (pCtx->ptsList != NULL)? GET_TS_DATA(pCtx, i):0;
do_bottom_function_add(pRes, (int32_t)pCtx->param[0].i64, data, ts, pCtx->inputType, &pCtx->tagInfo, NULL, 0);
}
if (!pCtx->hasNull) {
assert(pCtx->size == notNullElems);
}
// treat the result as only one result
SET_VAL(pCtx, notNullElems, 1);
if (notNullElems > 0) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
pResInfo->hasResult = DATA_SET_FLAG;
}
}
static void bottom_func_merge(SQLFunctionCtx *pCtx) {
STopBotInfo *pInput = (STopBotInfo *)GET_INPUT_DATA_LIST(pCtx);
// construct the input data struct from binary data
buildTopBotStruct(pInput, pCtx);
STopBotInfo *pOutput = getTopBotOutputInfo(pCtx);
// the intermediate result is binary, we only use the output data type
for (int32_t i = 0; i < pInput->num; ++i) {
int16_t type = (pCtx->outputType == TSDB_DATA_TYPE_FLOAT) ? TSDB_DATA_TYPE_DOUBLE : pCtx->outputType;
do_bottom_function_add(pOutput, (int32_t)pCtx->param[0].i64, &pInput->res[i]->v.i64, pInput->res[i]->timestamp, type,
&pCtx->tagInfo, pInput->res[i]->pTags, pCtx->currentStage);
}
SET_VAL(pCtx, pInput->num, pOutput->num);
if (pOutput->num > 0) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
pResInfo->hasResult = DATA_SET_FLAG;
}
}
static void top_bottom_func_finalizer(SQLFunctionCtx *pCtx) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
// data in temporary list is less than the required number of results, not enough qualified number of results
STopBotInfo *pRes = GET_ROWCELL_INTERBUF(pResInfo);
if (pRes->num == 0) { // no result
assert(pResInfo->hasResult != DATA_SET_FLAG);
// TODO:
}
GET_RES_INFO(pCtx)->numOfRes = pRes->num;
tValuePair **tvp = pRes->res;
// user specify the order of output by sort the result according to timestamp
if (pCtx->param[1].i64 == PRIMARYKEY_TIMESTAMP_COL_INDEX) {
__compar_fn_t comparator = (pCtx->param[2].i64 == TSDB_ORDER_ASC) ? resAscComparFn : resDescComparFn;
qsort(tvp, (size_t)pResInfo->numOfRes, POINTER_BYTES, comparator);
} else /*if (pCtx->param[1].i64 > PRIMARYKEY_TIMESTAMP_COL_INDEX)*/ {
__compar_fn_t comparator = (pCtx->param[2].i64 == TSDB_ORDER_ASC) ? resDataAscComparFn : resDataDescComparFn;
qsort(tvp, (size_t)pResInfo->numOfRes, POINTER_BYTES, comparator);
}
GET_TRUE_DATA_TYPE();
copyTopBotRes(pCtx, type);
doFinalizer(pCtx);
}
///////////////////////////////////////////////////////////////////////////////////////////////
static bool percentile_function_setup(SQLFunctionCtx *pCtx, SResultRowCellInfo* pResultInfo) {
if (!function_setup(pCtx, pResultInfo)) {
return false;
}
// in the first round, get the min-max value of all involved data
SPercentileInfo *pInfo = GET_ROWCELL_INTERBUF(pResultInfo);
SET_DOUBLE_VAL(&pInfo->minval, DBL_MAX);
SET_DOUBLE_VAL(&pInfo->maxval, -DBL_MAX);
pInfo->numOfElems = 0;
return true;
}
static void percentile_function(SQLFunctionCtx *pCtx) {
int32_t notNullElems = 0;
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
SPercentileInfo *pInfo = GET_ROWCELL_INTERBUF(pResInfo);
if (pCtx->currentStage == REPEAT_SCAN && pInfo->stage == 0) {
pInfo->stage += 1;
// all data are null, set it completed
if (pInfo->numOfElems == 0) {
pResInfo->complete = true;
return;
} else {
pInfo->pMemBucket = tMemBucketCreate(pCtx->inputBytes, pCtx->inputType, pInfo->minval, pInfo->maxval);
}
}
// the first stage, only acquire the min/max value
if (pInfo->stage == 0) {
if (pCtx->isSmaSet) {
double tmin = 0.0, tmax = 0.0;
if (IS_SIGNED_NUMERIC_TYPE(pCtx->inputType)) {
tmin = (double)GET_INT64_VAL(&pCtx->sma.min);
tmax = (double)GET_INT64_VAL(&pCtx->sma.max);
} else if (IS_FLOAT_TYPE(pCtx->inputType)) {
tmin = GET_DOUBLE_VAL(&pCtx->sma.min);
tmax = GET_DOUBLE_VAL(&pCtx->sma.max);
} else if (IS_UNSIGNED_NUMERIC_TYPE(pCtx->inputType)) {
tmin = (double)GET_UINT64_VAL(&pCtx->sma.min);
tmax = (double)GET_UINT64_VAL(&pCtx->sma.max);
} else {
assert(true);
}
if (GET_DOUBLE_VAL(&pInfo->minval) > tmin) {
SET_DOUBLE_VAL(&pInfo->minval, tmin);
}
if (GET_DOUBLE_VAL(&pInfo->maxval) < tmax) {
SET_DOUBLE_VAL(&pInfo->maxval, tmax);
}
pInfo->numOfElems += (pCtx->size - pCtx->sma.numOfNull);
} else {
for (int32_t i = 0; i < pCtx->size; ++i) {
char *data = GET_INPUT_DATA(pCtx, i);
if (pCtx->hasNull && isNull(data, pCtx->inputType)) {
continue;
}
double v = 0;
GET_TYPED_DATA(v, double, pCtx->inputType, data);
if (v < GET_DOUBLE_VAL(&pInfo->minval)) {
SET_DOUBLE_VAL(&pInfo->minval, v);
}
if (v > GET_DOUBLE_VAL(&pInfo->maxval)) {
SET_DOUBLE_VAL(&pInfo->maxval, v);
}
pInfo->numOfElems += 1;
}
}
return;
}
// the second stage, calculate the true percentile value
for (int32_t i = 0; i < pCtx->size; ++i) {
char *data = GET_INPUT_DATA(pCtx, i);
if (pCtx->hasNull && isNull(data, pCtx->inputType)) {
continue;
}
notNullElems += 1;
tMemBucketPut(pInfo->pMemBucket, data, 1);
}
SET_VAL(pCtx, notNullElems, 1);
pResInfo->hasResult = DATA_SET_FLAG;
}
static void percentile_finalizer(SQLFunctionCtx *pCtx) {
double v = pCtx->param[0].nType == TSDB_DATA_TYPE_INT ? pCtx->param[0].i64 : pCtx->param[0].d;
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
SPercentileInfo* ppInfo = (SPercentileInfo *) GET_ROWCELL_INTERBUF(pResInfo);
tMemBucket * pMemBucket = ppInfo->pMemBucket;
if (pMemBucket == NULL || pMemBucket->total == 0) { // check for null
assert(ppInfo->numOfElems == 0);
setNull(pCtx->pOutput, pCtx->outputType, pCtx->outputBytes);
} else {
SET_DOUBLE_VAL((double *)pCtx->pOutput, getPercentile(pMemBucket, v));
}
tMemBucketDestroy(pMemBucket);
doFinalizer(pCtx);
}
//////////////////////////////////////////////////////////////////////////////////
static void buildHistogramInfo(SAPercentileInfo* pInfo) {
pInfo->pHisto = (SHistogramInfo*) ((char*) pInfo + sizeof(SAPercentileInfo));
pInfo->pHisto->elems = (SHistBin*) ((char*)pInfo->pHisto + sizeof(SHistogramInfo));
}
static SAPercentileInfo *getAPerctInfo(SQLFunctionCtx *pCtx) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
SAPercentileInfo* pInfo = NULL;
if (pCtx->stableQuery && pCtx->currentStage != MERGE_STAGE) {
pInfo = (SAPercentileInfo*) pCtx->pOutput;
} else {
pInfo = GET_ROWCELL_INTERBUF(pResInfo);
}
buildHistogramInfo(pInfo);
return pInfo;
}
static bool apercentile_function_setup(SQLFunctionCtx *pCtx, SResultRowCellInfo* pResultInfo) {
if (!function_setup(pCtx, pResultInfo)) {
return false;
}
SAPercentileInfo *pInfo = getAPerctInfo(pCtx);
char *tmp = (char *)pInfo + sizeof(SAPercentileInfo);
pInfo->pHisto = tHistogramCreateFrom(tmp, MAX_HISTOGRAM_BIN);
return true;
}
static void apercentile_function(SQLFunctionCtx *pCtx) {
int32_t notNullElems = 0;
SResultRowCellInfo * pResInfo = GET_RES_INFO(pCtx);
SAPercentileInfo *pInfo = getAPerctInfo(pCtx);
assert(pInfo->pHisto->elems != NULL);
for (int32_t i = 0; i < pCtx->size; ++i) {
char *data = GET_INPUT_DATA(pCtx, i);
if (pCtx->hasNull && isNull(data, pCtx->inputType)) {
continue;
}
notNullElems += 1;
double v = 0;
GET_TYPED_DATA(v, double, pCtx->inputType, data);
tHistogramAdd(&pInfo->pHisto, v);
}
if (!pCtx->hasNull) {
assert(pCtx->size == notNullElems);
}
SET_VAL(pCtx, notNullElems, 1);
if (notNullElems > 0) {
pResInfo->hasResult = DATA_SET_FLAG;
}
}
static void apercentile_func_merge(SQLFunctionCtx *pCtx) {
SAPercentileInfo *pInput = (SAPercentileInfo *)GET_INPUT_DATA_LIST(pCtx);
pInput->pHisto = (SHistogramInfo*) ((char *)pInput + sizeof(SAPercentileInfo));
pInput->pHisto->elems = (SHistBin*) ((char *)pInput->pHisto + sizeof(SHistogramInfo));
if (pInput->pHisto->numOfElems <= 0) {
return;
}
SAPercentileInfo *pOutput = getAPerctInfo(pCtx);
SHistogramInfo *pHisto = pOutput->pHisto;
if (pHisto->numOfElems <= 0) {
memcpy(pHisto, pInput->pHisto, sizeof(SHistogramInfo) + sizeof(SHistBin) * (MAX_HISTOGRAM_BIN + 1));
pHisto->elems = (SHistBin*) ((char *)pHisto + sizeof(SHistogramInfo));
} else {
//TODO(dengyihao): avoid memcpy
pHisto->elems = (SHistBin*) ((char *)pHisto + sizeof(SHistogramInfo));
SHistogramInfo *pRes = tHistogramMerge(pHisto, pInput->pHisto, MAX_HISTOGRAM_BIN);
memcpy(pHisto, pRes, sizeof(SHistogramInfo) + sizeof(SHistBin) * MAX_HISTOGRAM_BIN);
pHisto->elems = (SHistBin*) ((char *)pHisto + sizeof(SHistogramInfo));
tHistogramDestroy(&pRes);
}
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
pResInfo->hasResult = DATA_SET_FLAG;
SET_VAL(pCtx, 1, 1);
}
static void apercentile_finalizer(SQLFunctionCtx *pCtx) {
double v = (pCtx->param[0].nType == TSDB_DATA_TYPE_INT) ? pCtx->param[0].i64 : pCtx->param[0].d;
SResultRowCellInfo * pResInfo = GET_RES_INFO(pCtx);
SAPercentileInfo *pOutput = GET_ROWCELL_INTERBUF(pResInfo);
if (pCtx->currentStage == MERGE_STAGE) {
if (pResInfo->hasResult == DATA_SET_FLAG) { // check for null
assert(pOutput->pHisto->numOfElems > 0);
double ratio[] = {v};
double *res = tHistogramUniform(pOutput->pHisto, ratio, 1);
memcpy(pCtx->pOutput, res, sizeof(double));
free(res);
} else {
setNull(pCtx->pOutput, pCtx->outputType, pCtx->outputBytes);
return;
}
} else {
if (pOutput->pHisto->numOfElems > 0) {
double ratio[] = {v};
double *res = tHistogramUniform(pOutput->pHisto, ratio, 1);
memcpy(pCtx->pOutput, res, sizeof(double));
free(res);
} else { // no need to free
setNull(pCtx->pOutput, pCtx->outputType, pCtx->outputBytes);
return;
}
}
doFinalizer(pCtx);
}
/////////////////////////////////////////////////////////////////////////////////
static bool leastsquares_function_setup(SQLFunctionCtx *pCtx, SResultRowCellInfo* pResInfo) {
if (!function_setup(pCtx, pResInfo)) {
return false;
}
SLeastsquaresInfo *pInfo = GET_ROWCELL_INTERBUF(pResInfo);
// 2*3 matrix
pInfo->startVal = pCtx->param[0].d;
return true;
}
#define LEASTSQR_CAL(p, x, y, index, step) \
do { \
(p)[0][0] += (double)(x) * (x); \
(p)[0][1] += (double)(x); \
(p)[0][2] += (double)(x) * (y)[index]; \
(p)[1][2] += (y)[index]; \
(x) += step; \
} while (0)
#define LEASTSQR_CAL_LOOP(ctx, param, x, y, tsdbType, n, step) \
for (int32_t i = 0; i < (ctx)->size; ++i) { \
if ((ctx)->hasNull && isNull((char *)&(y)[i], tsdbType)) { \
continue; \
} \
(n)++; \
LEASTSQR_CAL(param, x, y, i, step); \
}
static void leastsquares_function(SQLFunctionCtx *pCtx) {
SResultRowCellInfo * pResInfo = GET_RES_INFO(pCtx);
SLeastsquaresInfo *pInfo = GET_ROWCELL_INTERBUF(pResInfo);
double(*param)[3] = pInfo->mat;
double x = pInfo->startVal;
void *pData = GET_INPUT_DATA_LIST(pCtx);
int32_t numOfElem = 0;
switch (pCtx->inputType) {
case TSDB_DATA_TYPE_INT: {
int32_t *p = pData;
// LEASTSQR_CAL_LOOP(pCtx, param, pParamData, p);
for (int32_t i = 0; i < pCtx->size; ++i) {
if (pCtx->hasNull && isNull((const char*) p, pCtx->inputType)) {
continue;
}
param[0][0] += x * x;
param[0][1] += x;
param[0][2] += x * p[i];
param[1][2] += p[i];
x += pCtx->param[1].d;
numOfElem++;
}
break;
}
case TSDB_DATA_TYPE_BIGINT: {
int64_t *p = pData;
LEASTSQR_CAL_LOOP(pCtx, param, x, p, pCtx->inputType, numOfElem, pCtx->param[1].d);
break;
}
case TSDB_DATA_TYPE_DOUBLE: {
double *p = pData;
LEASTSQR_CAL_LOOP(pCtx, param, x, p, pCtx->inputType, numOfElem, pCtx->param[1].d);
break;
}
case TSDB_DATA_TYPE_FLOAT: {
float *p = pData;
LEASTSQR_CAL_LOOP(pCtx, param, x, p, pCtx->inputType, numOfElem, pCtx->param[1].d);
break;
};
case TSDB_DATA_TYPE_SMALLINT: {
int16_t *p = pData;
LEASTSQR_CAL_LOOP(pCtx, param, x, p, pCtx->inputType, numOfElem, pCtx->param[1].d);
break;
}
case TSDB_DATA_TYPE_TINYINT: {
int8_t *p = pData;
LEASTSQR_CAL_LOOP(pCtx, param, x, p, pCtx->inputType, numOfElem, pCtx->param[1].d);
break;
}
case TSDB_DATA_TYPE_UTINYINT: {
uint8_t *p = pData;
LEASTSQR_CAL_LOOP(pCtx, param, x, p, pCtx->inputType, numOfElem, pCtx->param[1].d);
break;
}
case TSDB_DATA_TYPE_USMALLINT: {
uint16_t *p = pData;
LEASTSQR_CAL_LOOP(pCtx, param, x, p, pCtx->inputType, numOfElem, pCtx->param[1].d);
break;
}
case TSDB_DATA_TYPE_UINT: {
uint32_t *p = pData;
LEASTSQR_CAL_LOOP(pCtx, param, x, p, pCtx->inputType, numOfElem, pCtx->param[1].d);
break;
}
case TSDB_DATA_TYPE_UBIGINT: {
uint64_t *p = pData;
LEASTSQR_CAL_LOOP(pCtx, param, x, p, pCtx->inputType, numOfElem, pCtx->param[1].d);
break;
}
}
pInfo->startVal = x;
pInfo->num += numOfElem;
if (pInfo->num > 0) {
pResInfo->hasResult = DATA_SET_FLAG;
}
SET_VAL(pCtx, numOfElem, 1);
}
static void leastsquares_finalizer(SQLFunctionCtx *pCtx) {
// no data in query
SResultRowCellInfo * pResInfo = GET_RES_INFO(pCtx);
SLeastsquaresInfo *pInfo = GET_ROWCELL_INTERBUF(pResInfo);
if (pInfo->num == 0) {
setNull(pCtx->pOutput, pCtx->outputType, pCtx->outputBytes);
return;
}
double(*param)[3] = pInfo->mat;
param[1][1] = (double)pInfo->num;
param[1][0] = param[0][1];
param[0][0] -= param[1][0] * (param[0][1] / param[1][1]);
param[0][2] -= param[1][2] * (param[0][1] / param[1][1]);
param[0][1] = 0;
param[1][2] -= param[0][2] * (param[1][0] / param[0][0]);
param[1][0] = 0;
param[0][2] /= param[0][0];
param[1][2] /= param[1][1];
int32_t maxOutputSize = AVG_FUNCTION_INTER_BUFFER_SIZE - VARSTR_HEADER_SIZE;
size_t n = snprintf(varDataVal(pCtx->pOutput), maxOutputSize, "{slop:%.6lf, intercept:%.6lf}",
param[0][2], param[1][2]);
varDataSetLen(pCtx->pOutput, n);
doFinalizer(pCtx);
}
static void date_col_output_function(SQLFunctionCtx *pCtx) {
SET_VAL(pCtx, pCtx->size, 1);
*(int64_t *)(pCtx->pOutput) = pCtx->startTs;
}
static void col_project_function(SQLFunctionCtx *pCtx) {
// the number of output rows should not affect the final number of rows, so set it to be 0
if (pCtx->numOfParams == 2) {
return;
}
// only one row is required.
if (pCtx->param[0].i64 == 1) {
SET_VAL(pCtx, pCtx->size, 1);
} else {
INC_INIT_VAL(pCtx, pCtx->size);
}
char *pData = GET_INPUT_DATA_LIST(pCtx);
if (pCtx->order == TSDB_ORDER_ASC) {
int32_t numOfRows = (pCtx->param[0].i64 == 1)? 1:pCtx->size;
memcpy(pCtx->pOutput, pData, (size_t) numOfRows * pCtx->inputBytes);
} else {
for(int32_t i = 0; i < pCtx->size; ++i) {
memcpy(pCtx->pOutput + (pCtx->size - 1 - i) * pCtx->inputBytes, pData + i * pCtx->inputBytes,
pCtx->inputBytes);
}
}
}
/**
* only used for tag projection query in select clause
* @param pCtx
* @return
*/
static void tag_project_function(SQLFunctionCtx *pCtx) {
INC_INIT_VAL(pCtx, pCtx->size);
assert(pCtx->inputBytes == pCtx->outputBytes);
taosVariantDump(&pCtx->tag, pCtx->pOutput, pCtx->outputType, true);
char* data = pCtx->pOutput;
pCtx->pOutput += pCtx->outputBytes;
// directly copy from the first one
for (int32_t i = 1; i < pCtx->size; ++i) {
memmove(pCtx->pOutput, data, pCtx->outputBytes);
pCtx->pOutput += pCtx->outputBytes;
}
}
/**
* used in group by clause. when applying group by tags, the tags value is
* assign by using tag function.
* NOTE: there is only ONE output for ONE query range
* @param pCtx
* @return
*/
static void copy_function(SQLFunctionCtx *pCtx);
static void tag_function(SQLFunctionCtx *pCtx) {
SET_VAL(pCtx, 1, 1);
if (pCtx->currentStage == MERGE_STAGE) {
copy_function(pCtx);
} else {
taosVariantDump(&pCtx->tag, pCtx->pOutput, pCtx->outputType, true);
}
}
static void copy_function(SQLFunctionCtx *pCtx) {
SET_VAL(pCtx, pCtx->size, 1);
char *pData = GET_INPUT_DATA_LIST(pCtx);
assignVal(pCtx->pOutput, pData, pCtx->inputBytes, pCtx->inputType);
}
enum {
INITIAL_VALUE_NOT_ASSIGNED = 0,
};
static bool diff_function_setup(SQLFunctionCtx *pCtx, SResultRowCellInfo* pResInfo) {
if (!function_setup(pCtx, pResInfo)) {
return false;
}
// diff function require the value is set to -1
pCtx->param[1].nType = INITIAL_VALUE_NOT_ASSIGNED;
return false;
}
static bool deriv_function_setup(SQLFunctionCtx *pCtx, SResultRowCellInfo* pResultInfo) {
if (!function_setup(pCtx, pResultInfo)) {
return false;
}
// diff function require the value is set to -1
SDerivInfo* pDerivInfo = GET_ROWCELL_INTERBUF(pResultInfo);
pDerivInfo->ignoreNegative = pCtx->param[1].i64;
pDerivInfo->prevTs = -1;
pDerivInfo->tsWindow = pCtx->param[0].i64;
pDerivInfo->valueSet = false;
return false;
}
static void deriv_function(SQLFunctionCtx *pCtx) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
SDerivInfo* pDerivInfo = GET_ROWCELL_INTERBUF(pResInfo);
void *data = GET_INPUT_DATA_LIST(pCtx);
int32_t notNullElems = 0;
int32_t step = GET_FORWARD_DIRECTION_FACTOR(pCtx->order);
int32_t i = (pCtx->order == TSDB_ORDER_ASC) ? 0 : pCtx->size - 1;
TSKEY *pTimestamp = pCtx->ptsOutputBuf;
TSKEY *tsList = GET_TS_LIST(pCtx);
double *pOutput = (double *)pCtx->pOutput;
switch (pCtx->inputType) {
case TSDB_DATA_TYPE_INT: {
int32_t *pData = (int32_t *)data;
for (; i < pCtx->size && i >= 0; i += step) {
if (pCtx->hasNull && isNull((const char *)&pData[i], pCtx->inputType)) {
continue;
}
if (!pDerivInfo->valueSet) { // initial value is not set yet
pDerivInfo->valueSet = true;
} else {
SET_DOUBLE_VAL(pOutput, ((pData[i] - pDerivInfo->prevValue) * pDerivInfo->tsWindow) / (tsList[i] - pDerivInfo->prevTs));
if (pDerivInfo->ignoreNegative && *pOutput < 0) {
} else {
*pTimestamp = tsList[i];
pOutput += 1;
pTimestamp += 1;
notNullElems++;
}
}
pDerivInfo->prevValue = pData[i];
pDerivInfo->prevTs = tsList[i];
}
break;
};
case TSDB_DATA_TYPE_BIGINT: {
int64_t *pData = (int64_t *)data;
for (; i < pCtx->size && i >= 0; i += step) {
if (pCtx->hasNull && isNull((const char *)&pData[i], pCtx->inputType)) {
continue;
}
if (!pDerivInfo->valueSet) { // initial value is not set yet
pDerivInfo->valueSet = true;
} else {
*pOutput = ((pData[i] - pDerivInfo->prevValue) * pDerivInfo->tsWindow) / (tsList[i] - pDerivInfo->prevTs);
if (pDerivInfo->ignoreNegative && *pOutput < 0) {
} else {
*pTimestamp = tsList[i];
pOutput += 1;
pTimestamp += 1;
notNullElems++;
}
}
pDerivInfo->prevValue = (double) pData[i];
pDerivInfo->prevTs = tsList[i];
}
break;
}
case TSDB_DATA_TYPE_DOUBLE: {
double *pData = (double *)data;
for (; i < pCtx->size && i >= 0; i += step) {
if (pCtx->hasNull && isNull((const char *)&pData[i], pCtx->inputType)) {
continue;
}
if (!pDerivInfo->valueSet) { // initial value is not set yet
pDerivInfo->valueSet = true;
} else {
*pOutput = ((pData[i] - pDerivInfo->prevValue) * pDerivInfo->tsWindow) / (tsList[i] - pDerivInfo->prevTs);
if (pDerivInfo->ignoreNegative && *pOutput < 0) {
} else {
*pTimestamp = tsList[i];
pOutput += 1;
pTimestamp += 1;
notNullElems++;
}
}
pDerivInfo->prevValue = pData[i];
pDerivInfo->prevTs = tsList[i];
}
break;
}
case TSDB_DATA_TYPE_FLOAT: {
float *pData = (float *)data;
for (; i < pCtx->size && i >= 0; i += step) {
if (pCtx->hasNull && isNull((const char *)&pData[i], pCtx->inputType)) {
continue;
}
if (!pDerivInfo->valueSet) { // initial value is not set yet
pDerivInfo->valueSet = true;
} else {
*pOutput = ((pData[i] - pDerivInfo->prevValue) * pDerivInfo->tsWindow) / (tsList[i] - pDerivInfo->prevTs);
if (pDerivInfo->ignoreNegative && *pOutput < 0) {
} else {
*pTimestamp = tsList[i];
pOutput += 1;
pTimestamp += 1;
notNullElems++;
}
}
pDerivInfo->prevValue = pData[i];
pDerivInfo->prevTs = tsList[i];
}
break;
}
case TSDB_DATA_TYPE_SMALLINT: {
int16_t *pData = (int16_t *)data;
for (; i < pCtx->size && i >= 0; i += step) {
if (pCtx->hasNull && isNull((const char *)&pData[i], pCtx->inputType)) {
continue;
}
if (!pDerivInfo->valueSet) { // initial value is not set yet
pDerivInfo->valueSet = true;
} else {
*pOutput = ((pData[i] - pDerivInfo->prevValue) * pDerivInfo->tsWindow) / (tsList[i] - pDerivInfo->prevTs);
if (pDerivInfo->ignoreNegative && *pOutput < 0) {
} else {
*pTimestamp = tsList[i];
pOutput += 1;
pTimestamp += 1;
notNullElems++;
}
}
pDerivInfo->prevValue = pData[i];
pDerivInfo->prevTs = tsList[i];
}
break;
}
case TSDB_DATA_TYPE_TINYINT: {
int8_t *pData = (int8_t *)data;
for (; i < pCtx->size && i >= 0; i += step) {
if (pCtx->hasNull && isNull((char *)&pData[i], pCtx->inputType)) {
continue;
}
if (!pDerivInfo->valueSet) { // initial value is not set yet
pDerivInfo->valueSet = true;
} else {
*pOutput = ((pData[i] - pDerivInfo->prevValue) * pDerivInfo->tsWindow) / (tsList[i] - pDerivInfo->prevTs);
if (pDerivInfo->ignoreNegative && *pOutput < 0) {
} else {
*pTimestamp = tsList[i];
pOutput += 1;
pTimestamp += 1;
notNullElems++;
}
}
pDerivInfo->prevValue = pData[i];
pDerivInfo->prevTs = tsList[i];
}
break;
}
default:
assert(0);
// qError("error input type");
}
GET_RES_INFO(pCtx)->numOfRes += notNullElems;
}
#define DIFF_IMPL(ctx, d, type) \
do { \
if ((ctx)->param[1].nType == INITIAL_VALUE_NOT_ASSIGNED) { \
(ctx)->param[1].nType = (ctx)->inputType; \
*(type *)&(ctx)->param[1].i64 = *(type *)(d); \
} else { \
*(type *)(ctx)->pOutput = *(type *)(d) - (*(type *)(&(ctx)->param[1].i64)); \
*(type *)(&(ctx)->param[1].i64) = *(type *)(d); \
*(int64_t *)(ctx)->ptsOutputBuf = GET_TS_DATA(ctx, index); \
} \
} while (0);
// TODO difference in date column
static void diff_function(SQLFunctionCtx *pCtx) {
void *data = GET_INPUT_DATA_LIST(pCtx);
bool isFirstBlock = (pCtx->param[1].nType == INITIAL_VALUE_NOT_ASSIGNED);
int32_t notNullElems = 0;
int32_t step = GET_FORWARD_DIRECTION_FACTOR(pCtx->order);
int32_t i = (pCtx->order == TSDB_ORDER_ASC) ? 0 : pCtx->size - 1;
TSKEY* pTimestamp = pCtx->ptsOutputBuf;
TSKEY* tsList = GET_TS_LIST(pCtx);
switch (pCtx->inputType) {
case TSDB_DATA_TYPE_INT: {
int32_t *pData = (int32_t *)data;
int32_t *pOutput = (int32_t *)pCtx->pOutput;
for (; i < pCtx->size && i >= 0; i += step) {
if (pCtx->hasNull && isNull((const char*) &pData[i], pCtx->inputType)) {
continue;
}
if (pCtx->param[1].nType != INITIAL_VALUE_NOT_ASSIGNED) { // initial value is not set yet
*pOutput = (int32_t)(pData[i] - pCtx->param[1].i64); // direct previous may be null
*pTimestamp = (tsList != NULL)? tsList[i]:0;
pOutput += 1;
pTimestamp += 1;
}
pCtx->param[1].i64 = pData[i];
pCtx->param[1].nType = pCtx->inputType;
notNullElems++;
}
break;
};
case TSDB_DATA_TYPE_BIGINT: {
int64_t *pData = (int64_t *)data;
int64_t *pOutput = (int64_t *)pCtx->pOutput;
for (; i < pCtx->size && i >= 0; i += step) {
if (pCtx->hasNull && isNull((const char*) &pData[i], pCtx->inputType)) {
continue;
}
if (pCtx->param[1].nType != INITIAL_VALUE_NOT_ASSIGNED) { // initial value is not set yet
*pOutput = pData[i] - pCtx->param[1].i64; // direct previous may be null
*pTimestamp = (tsList != NULL)? tsList[i]:0;
pOutput += 1;
pTimestamp += 1;
}
pCtx->param[1].i64 = pData[i];
pCtx->param[1].nType = pCtx->inputType;
notNullElems++;
}
break;
}
case TSDB_DATA_TYPE_DOUBLE: {
double *pData = (double *)data;
double *pOutput = (double *)pCtx->pOutput;
for (; i < pCtx->size && i >= 0; i += step) {
if (pCtx->hasNull && isNull((const char*) &pData[i], pCtx->inputType)) {
continue;
}
if (pCtx->param[1].nType != INITIAL_VALUE_NOT_ASSIGNED) { // initial value is not set yet
SET_DOUBLE_VAL(pOutput, pData[i] - pCtx->param[1].d); // direct previous may be null
*pTimestamp = (tsList != NULL)? tsList[i]:0;
pOutput += 1;
pTimestamp += 1;
}
pCtx->param[1].d = pData[i];
pCtx->param[1].nType = pCtx->inputType;
notNullElems++;
}
break;
}
case TSDB_DATA_TYPE_FLOAT: {
float *pData = (float *)data;
float *pOutput = (float *)pCtx->pOutput;
for (; i < pCtx->size && i >= 0; i += step) {
if (pCtx->hasNull && isNull((const char*) &pData[i], pCtx->inputType)) {
continue;
}
if (pCtx->param[1].nType != INITIAL_VALUE_NOT_ASSIGNED) { // initial value is not set yet
*pOutput = (float)(pData[i] - pCtx->param[1].d); // direct previous may be null
*pTimestamp = (tsList != NULL)? tsList[i]:0;
pOutput += 1;
pTimestamp += 1;
}
pCtx->param[1].d = pData[i];
pCtx->param[1].nType = pCtx->inputType;
notNullElems++;
}
break;
}
case TSDB_DATA_TYPE_SMALLINT: {
int16_t *pData = (int16_t *)data;
int16_t *pOutput = (int16_t *)pCtx->pOutput;
for (; i < pCtx->size && i >= 0; i += step) {
if (pCtx->hasNull && isNull((const char*) &pData[i], pCtx->inputType)) {
continue;
}
if (pCtx->param[1].nType != INITIAL_VALUE_NOT_ASSIGNED) { // initial value is not set yet
*pOutput = (int16_t)(pData[i] - pCtx->param[1].i64); // direct previous may be null
*pTimestamp = (tsList != NULL)? tsList[i]:0;
pOutput += 1;
pTimestamp += 1;
}
pCtx->param[1].i64 = pData[i];
pCtx->param[1].nType = pCtx->inputType;
notNullElems++;
}
break;
}
case TSDB_DATA_TYPE_TINYINT: {
int8_t *pData = (int8_t *)data;
int8_t *pOutput = (int8_t *)pCtx->pOutput;
for (; i < pCtx->size && i >= 0; i += step) {
if (pCtx->hasNull && isNull((char *)&pData[i], pCtx->inputType)) {
continue;
}
if (pCtx->param[1].nType != INITIAL_VALUE_NOT_ASSIGNED) { // initial value is not set yet
*pOutput = (int8_t)(pData[i] - pCtx->param[1].i64); // direct previous may be null
*pTimestamp = (tsList != NULL)? tsList[i]:0;
pOutput += 1;
pTimestamp += 1;
}
pCtx->param[1].i64 = pData[i];
pCtx->param[1].nType = pCtx->inputType;
notNullElems++;
}
break;
}
default:
assert(0);
// qError("error input type");
}
// initial value is not set yet
if (pCtx->param[1].nType == INITIAL_VALUE_NOT_ASSIGNED || notNullElems <= 0) {
/*
* 1. current block and blocks before are full of null
* 2. current block may be null value
*/
assert(pCtx->hasNull);
} else {
int32_t forwardStep = (isFirstBlock) ? notNullElems - 1 : notNullElems;
GET_RES_INFO(pCtx)->numOfRes += forwardStep;
}
}
char *getArithColumnData(void *param, const char* name, int32_t colId) {
SArithmeticSupport *pSupport = (SArithmeticSupport *)param;
int32_t index = -1;
for (int32_t i = 0; i < pSupport->numOfCols; ++i) {
if (colId == pSupport->colList[i].colId) {
index = i;
break;
}
}
assert(index >= 0);
return pSupport->data[index] + pSupport->offset * pSupport->colList[index].bytes;
}
static void arithmetic_function(SQLFunctionCtx *pCtx) {
GET_RES_INFO(pCtx)->numOfRes += pCtx->size;
SArithmeticSupport *sas = (SArithmeticSupport *)pCtx->param[1].pz;
// arithmeticTreeTraverse(sas->pExprInfo->pExpr, pCtx->size, pCtx->pOutput, sas, pCtx->order, getArithColumnData);
}
#define LIST_MINMAX_N(ctx, minOutput, maxOutput, elemCnt, data, type, tsdbType, numOfNotNullElem) \
{ \
type *inputData = (type *)data; \
for (int32_t i = 0; i < elemCnt; ++i) { \
if ((ctx)->hasNull && isNull((char *)&inputData[i], tsdbType)) { \
continue; \
} \
if (inputData[i] < minOutput) { \
minOutput = (double)inputData[i]; \
} \
if (inputData[i] > maxOutput) { \
maxOutput = (double)inputData[i]; \
} \
numOfNotNullElem++; \
} \
}
/////////////////////////////////////////////////////////////////////////////////
static bool spread_function_setup(SQLFunctionCtx *pCtx, SResultRowCellInfo* pResInfo) {
if (!function_setup(pCtx, pResInfo)) {
return false;
}
SSpreadInfo *pInfo = GET_ROWCELL_INTERBUF(pResInfo);
// this is the server-side setup function in client-side, the secondary merge do not need this procedure
if (pCtx->currentStage == MERGE_STAGE) {
pCtx->param[0].d = DBL_MAX;
pCtx->param[3].d = -DBL_MAX;
} else {
pInfo->min = DBL_MAX;
pInfo->max = -DBL_MAX;
}
return true;
}
static void spread_function(SQLFunctionCtx *pCtx) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
SSpreadInfo *pInfo = GET_ROWCELL_INTERBUF(pResInfo);
int32_t numOfElems = 0;
// todo : opt with pre-calculated result
// column missing cause the hasNull to be true
if (pCtx->isSmaSet) {
numOfElems = pCtx->size - pCtx->sma.numOfNull;
// all data are null in current data block, ignore current data block
if (numOfElems == 0) {
goto _spread_over;
}
if (IS_SIGNED_NUMERIC_TYPE(pCtx->inputType) || IS_UNSIGNED_NUMERIC_TYPE(pCtx->inputType) ||
(pCtx->inputType == TSDB_DATA_TYPE_TIMESTAMP)) {
if (pInfo->min > pCtx->sma.min) {
pInfo->min = (double)pCtx->sma.min;
}
if (pInfo->max < pCtx->sma.max) {
pInfo->max = (double)pCtx->sma.max;
}
} else if (IS_FLOAT_TYPE(pCtx->inputType)) {
if (pInfo->min > GET_DOUBLE_VAL((const char *)&(pCtx->sma.min))) {
pInfo->min = GET_DOUBLE_VAL((const char *)&(pCtx->sma.min));
}
if (pInfo->max < GET_DOUBLE_VAL((const char *)&(pCtx->sma.max))) {
pInfo->max = GET_DOUBLE_VAL((const char *)&(pCtx->sma.max));
}
}
goto _spread_over;
}
void *pData = GET_INPUT_DATA_LIST(pCtx);
numOfElems = 0;
if (pCtx->inputType == TSDB_DATA_TYPE_TINYINT) {
LIST_MINMAX_N(pCtx, pInfo->min, pInfo->max, pCtx->size, pData, int8_t, pCtx->inputType, numOfElems);
} else if (pCtx->inputType == TSDB_DATA_TYPE_SMALLINT) {
LIST_MINMAX_N(pCtx, pInfo->min, pInfo->max, pCtx->size, pData, int16_t, pCtx->inputType, numOfElems);
} else if (pCtx->inputType == TSDB_DATA_TYPE_INT) {
LIST_MINMAX_N(pCtx, pInfo->min, pInfo->max, pCtx->size, pData, int32_t, pCtx->inputType, numOfElems);
} else if (pCtx->inputType == TSDB_DATA_TYPE_BIGINT || pCtx->inputType == TSDB_DATA_TYPE_TIMESTAMP) {
LIST_MINMAX_N(pCtx, pInfo->min, pInfo->max, pCtx->size, pData, int64_t, pCtx->inputType, numOfElems);
} else if (pCtx->inputType == TSDB_DATA_TYPE_DOUBLE) {
LIST_MINMAX_N(pCtx, pInfo->min, pInfo->max, pCtx->size, pData, double, pCtx->inputType, numOfElems);
} else if (pCtx->inputType == TSDB_DATA_TYPE_FLOAT) {
LIST_MINMAX_N(pCtx, pInfo->min, pInfo->max, pCtx->size, pData, float, pCtx->inputType, numOfElems);
} else if (pCtx->inputType == TSDB_DATA_TYPE_UTINYINT) {
LIST_MINMAX_N(pCtx, pInfo->min, pInfo->max, pCtx->size, pData, uint8_t, pCtx->inputType, numOfElems);
} else if (pCtx->inputType == TSDB_DATA_TYPE_USMALLINT) {
LIST_MINMAX_N(pCtx, pInfo->min, pInfo->max, pCtx->size, pData, uint16_t, pCtx->inputType, numOfElems);
} else if (pCtx->inputType == TSDB_DATA_TYPE_UINT) {
LIST_MINMAX_N(pCtx, pInfo->min, pInfo->max, pCtx->size, pData, uint32_t, pCtx->inputType, numOfElems);
} else if (pCtx->inputType == TSDB_DATA_TYPE_UBIGINT) {
LIST_MINMAX_N(pCtx, pInfo->min, pInfo->max, pCtx->size, pData, uint64_t, pCtx->inputType, numOfElems);
}
if (!pCtx->hasNull) {
assert(pCtx->size == numOfElems);
}
_spread_over:
SET_VAL(pCtx, numOfElems, 1);
if (numOfElems > 0) {
pResInfo->hasResult = DATA_SET_FLAG;
pInfo->hasResult = DATA_SET_FLAG;
}
// keep the data into the final output buffer for super table query since this execution may be the last one
if (pCtx->stableQuery) {
memcpy(pCtx->pOutput, GET_ROWCELL_INTERBUF(pResInfo), sizeof(SSpreadInfo));
}
}
/*
* here we set the result value back to the intermediate buffer, to apply the finalize the function
* the final result is generated in spread_function_finalizer
*/
void spread_func_merge(SQLFunctionCtx *pCtx) {
SSpreadInfo *pData = (SSpreadInfo *)GET_INPUT_DATA_LIST(pCtx);
if (pData->hasResult != DATA_SET_FLAG) {
return;
}
if (pCtx->param[0].d > pData->min) {
pCtx->param[0].d = pData->min;
}
if (pCtx->param[3].d < pData->max) {
pCtx->param[3].d = pData->max;
}
GET_RES_INFO(pCtx)->hasResult = DATA_SET_FLAG;
}
void spread_function_finalizer(SQLFunctionCtx *pCtx) {
/*
* here we do not check the input data types, because in case of metric query,
* the type of intermediate data is binary
*/
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
if (pCtx->currentStage == MERGE_STAGE) {
assert(pCtx->inputType == TSDB_DATA_TYPE_BINARY);
if (pResInfo->hasResult != DATA_SET_FLAG) {
setNull(pCtx->pOutput, pCtx->outputType, pCtx->outputBytes);
return;
}
SET_DOUBLE_VAL((double *)pCtx->pOutput, pCtx->param[3].d - pCtx->param[0].d);
} else {
assert(IS_NUMERIC_TYPE(pCtx->inputType) || (pCtx->inputType == TSDB_DATA_TYPE_TIMESTAMP));
SSpreadInfo *pInfo = GET_ROWCELL_INTERBUF(GET_RES_INFO(pCtx));
if (pInfo->hasResult != DATA_SET_FLAG) {
setNull(pCtx->pOutput, pCtx->outputType, pCtx->outputBytes);
return;
}
SET_DOUBLE_VAL((double *)pCtx->pOutput, pInfo->max - pInfo->min);
}
GET_RES_INFO(pCtx)->numOfRes = 1; // todo add test case
doFinalizer(pCtx);
}
/**
* param[1]: start time
* param[2]: end time
* @param pCtx
*/
static bool twa_function_setup(SQLFunctionCtx *pCtx, SResultRowCellInfo* pResInfo) {
if (!function_setup(pCtx, pResInfo)) {
return false;
}
STwaInfo *pInfo = GET_ROWCELL_INTERBUF(pResInfo);
pInfo->p.key = INT64_MIN;
pInfo->win = TSWINDOW_INITIALIZER;
return true;
}
static double twa_get_area(SPoint1 s, SPoint1 e) {
if ((s.val >= 0 && e.val >= 0)|| (s.val <=0 && e.val <= 0)) {
return (s.val + e.val) * (e.key - s.key) / 2;
}
double x = (s.key * e.val - e.key * s.val)/(e.val - s.val);
double val = (s.val * (x - s.key) + e.val * (e.key - x)) / 2;
return val;
}
static int32_t twa_function_impl(SQLFunctionCtx* pCtx, int32_t index, int32_t size) {
int32_t notNullElems = 0;
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
STwaInfo *pInfo = GET_ROWCELL_INTERBUF(pResInfo);
TSKEY *tsList = GET_TS_LIST(pCtx);
int32_t i = index;
int32_t step = GET_FORWARD_DIRECTION_FACTOR(pCtx->order);
SPoint1* last = &pInfo->p;
if (pCtx->start.key != INT64_MIN) {
assert((pCtx->start.key < tsList[i] && pCtx->order == TSDB_ORDER_ASC) ||
(pCtx->start.key > tsList[i] && pCtx->order == TSDB_ORDER_DESC));
assert(last->key == INT64_MIN);
last->key = tsList[i];
GET_TYPED_DATA(last->val, double, pCtx->inputType, GET_INPUT_DATA(pCtx, index));
pInfo->dOutput += twa_get_area(pCtx->start, *last);
pInfo->hasResult = DATA_SET_FLAG;
pInfo->win.skey = pCtx->start.key;
notNullElems++;
i += step;
} else if (pInfo->p.key == INT64_MIN) {
last->key = tsList[i];
GET_TYPED_DATA(last->val, double, pCtx->inputType, GET_INPUT_DATA(pCtx, index));
pInfo->hasResult = DATA_SET_FLAG;
pInfo->win.skey = last->key;
notNullElems++;
i += step;
}
// calculate the value of
switch(pCtx->inputType) {
case TSDB_DATA_TYPE_TINYINT: {
int8_t *val = (int8_t*) GET_INPUT_DATA(pCtx, 0);
for (; i < size && i >= 0; i += step) {
if (pCtx->hasNull && isNull((const char*) &val[i], pCtx->inputType)) {
continue;
}
#ifndef _TD_NINGSI_60
SPoint1 st = {.key = tsList[i], .val = val[i]};
#else
SPoint1 st;
st.key = tsList[i];
st.val = val[i];
#endif
pInfo->dOutput += twa_get_area(pInfo->p, st);
pInfo->p = st;
}
break;
}
case TSDB_DATA_TYPE_SMALLINT: {
int16_t *val = (int16_t*) GET_INPUT_DATA(pCtx, 0);
for (; i < size && i >= 0; i += step) {
if (pCtx->hasNull && isNull((const char*) &val[i], pCtx->inputType)) {
continue;
}
#ifndef _TD_NINGSI_60
SPoint1 st = {.key = tsList[i], .val = val[i]};
#else
SPoint1 st;
st.key = tsList[i];
st.val = val[i];
#endif
pInfo->dOutput += twa_get_area(pInfo->p, st);
pInfo->p = st;
}
break;
}
case TSDB_DATA_TYPE_INT: {
int32_t *val = (int32_t*) GET_INPUT_DATA(pCtx, 0);
for (; i < size && i >= 0; i += step) {
if (pCtx->hasNull && isNull((const char*) &val[i], pCtx->inputType)) {
continue;
}
#ifndef _TD_NINGSI_60
SPoint1 st = {.key = tsList[i], .val = val[i]};
#else
SPoint1 st;
st.key = tsList[i];
st.val = val[i];
#endif
pInfo->dOutput += twa_get_area(pInfo->p, st);
pInfo->p = st;
}
break;
}
case TSDB_DATA_TYPE_BIGINT: {
int64_t *val = (int64_t*) GET_INPUT_DATA(pCtx, 0);
for (; i < size && i >= 0; i += step) {
if (pCtx->hasNull && isNull((const char*) &val[i], pCtx->inputType)) {
continue;
}
#ifndef _TD_NINGSI_60
SPoint1 st = {.key = tsList[i], .val = (double) val[i]};
#else
SPoint1 st;
st.key = tsList[i];
st.val = (double)val[i];
#endif
pInfo->dOutput += twa_get_area(pInfo->p, st);
pInfo->p = st;
}
break;
}
case TSDB_DATA_TYPE_FLOAT: {
float *val = (float*) GET_INPUT_DATA(pCtx, 0);
for (; i < size && i >= 0; i += step) {
if (pCtx->hasNull && isNull((const char*) &val[i], pCtx->inputType)) {
continue;
}
#ifndef _TD_NINGSI_60
SPoint1 st = {.key = tsList[i], .val = val[i]};
#else
SPoint1 st;
st.key = tsList[i];
st.val = (double)val[i];
#endif
pInfo->dOutput += twa_get_area(pInfo->p, st);
pInfo->p = st;
}
break;
}
case TSDB_DATA_TYPE_DOUBLE: {
double *val = (double*) GET_INPUT_DATA(pCtx, 0);
for (; i < size && i >= 0; i += step) {
if (pCtx->hasNull && isNull((const char*) &val[i], pCtx->inputType)) {
continue;
}
#ifndef _TD_NINGSI_60
SPoint1 st = {.key = tsList[i], .val = val[i]};
#else
SPoint1 st;
st.key = tsList[i];
st.val = val[i];
#endif
pInfo->dOutput += twa_get_area(pInfo->p, st);
pInfo->p = st;
}
break;
}
case TSDB_DATA_TYPE_UTINYINT: {
uint8_t *val = (uint8_t*) GET_INPUT_DATA(pCtx, 0);
for (; i < size && i >= 0; i += step) {
if (pCtx->hasNull && isNull((const char*) &val[i], pCtx->inputType)) {
continue;
}
#ifndef _TD_NINGSI_60
SPoint1 st = {.key = tsList[i], .val = val[i]};
#else
SPoint1 st;
st.key = tsList[i];
st.val = val[i];
#endif
pInfo->dOutput += twa_get_area(pInfo->p, st);
pInfo->p = st;
}
break;
}
case TSDB_DATA_TYPE_USMALLINT: {
uint16_t *val = (uint16_t*) GET_INPUT_DATA(pCtx, 0);
for (; i < size && i >= 0; i += step) {
if (pCtx->hasNull && isNull((const char*) &val[i], pCtx->inputType)) {
continue;
}
#ifndef _TD_NINGSI_60
SPoint1 st = {.key = tsList[i], .val = val[i]};
#else
SPoint1 st;
st.key = tsList[i];
st.val = val[i];
#endif
pInfo->dOutput += twa_get_area(pInfo->p, st);
pInfo->p = st;
}
break;
}
case TSDB_DATA_TYPE_UINT: {
uint32_t *val = (uint32_t*) GET_INPUT_DATA(pCtx, 0);
for (; i < size && i >= 0; i += step) {
if (pCtx->hasNull && isNull((const char*) &val[i], pCtx->inputType)) {
continue;
}
#ifndef _TD_NINGSI_60
SPoint1 st = {.key = tsList[i], .val = val[i]};
#else
SPoint1 st;
st.key = tsList[i];
st.val = val[i];
#endif
pInfo->dOutput += twa_get_area(pInfo->p, st);
pInfo->p = st;
}
break;
}
case TSDB_DATA_TYPE_UBIGINT: {
uint64_t *val = (uint64_t*) GET_INPUT_DATA(pCtx, 0);
for (; i < size && i >= 0; i += step) {
if (pCtx->hasNull && isNull((const char*) &val[i], pCtx->inputType)) {
continue;
}
#ifndef _TD_NINGSI_60
SPoint1 st = {.key = tsList[i], .val = (double) val[i]};
#else
SPoint1 st;
st.key = tsList[i];
st.val = (double) val[i];
#endif
pInfo->dOutput += twa_get_area(pInfo->p, st);
pInfo->p = st;
}
break;
}
default: assert(0);
}
// the last interpolated time window value
if (pCtx->end.key != INT64_MIN) {
pInfo->dOutput += twa_get_area(pInfo->p, pCtx->end);
pInfo->p = pCtx->end;
}
pInfo->win.ekey = pInfo->p.key;
return notNullElems;
}
static void twa_function(SQLFunctionCtx *pCtx) {
void *data = GET_INPUT_DATA_LIST(pCtx);
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
STwaInfo *pInfo = GET_ROWCELL_INTERBUF(pResInfo);
// skip null value
int32_t step = GET_FORWARD_DIRECTION_FACTOR(pCtx->order);
int32_t i = (pCtx->order == TSDB_ORDER_ASC)? 0:(pCtx->size - 1);
while (pCtx->hasNull && i < pCtx->size && i >= 0 && isNull((char *)data + pCtx->inputBytes * i, pCtx->inputType)) {
i += step;
}
int32_t notNullElems = 0;
if (i >= 0 && i < pCtx->size) {
notNullElems = twa_function_impl(pCtx, i, pCtx->size);
}
SET_VAL(pCtx, notNullElems, 1);
if (notNullElems > 0) {
pResInfo->hasResult = DATA_SET_FLAG;
}
if (pCtx->stableQuery) {
memcpy(pCtx->pOutput, pInfo, sizeof(STwaInfo));
}
}
/*
* To copy the input to interResBuf to avoid the input buffer space be over writen
* by next input data. The TWA function only applies to each table, so no merge procedure
* is required, we simply copy to the resut ot interResBuffer.
*/
void twa_function_copy(SQLFunctionCtx *pCtx) {
assert(pCtx->inputType == TSDB_DATA_TYPE_BINARY);
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
memcpy(GET_ROWCELL_INTERBUF(pResInfo), pCtx->pInput, (size_t)pCtx->inputBytes);
pResInfo->hasResult = ((STwaInfo *)pCtx->pInput)->hasResult;
}
void twa_function_finalizer(SQLFunctionCtx *pCtx) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
STwaInfo *pInfo = (STwaInfo *)GET_ROWCELL_INTERBUF(pResInfo);
if (pInfo->hasResult != DATA_SET_FLAG) {
setNull(pCtx->pOutput, TSDB_DATA_TYPE_DOUBLE, sizeof(double));
return;
}
assert(pInfo->win.ekey == pInfo->p.key && pInfo->hasResult == pResInfo->hasResult);
if (pInfo->win.ekey == pInfo->win.skey) {
SET_DOUBLE_VAL((double *)pCtx->pOutput, pInfo->p.val);
} else {
SET_DOUBLE_VAL((double *)pCtx->pOutput , pInfo->dOutput / (pInfo->win.ekey - pInfo->win.skey));
}
GET_RES_INFO(pCtx)->numOfRes = 1;
doFinalizer(pCtx);
}
/**
*
* @param pCtx
*/
static void interp_function_impl(SQLFunctionCtx *pCtx) {
int32_t type = (int32_t) pCtx->param[2].i64;
if (type == TSDB_FILL_NONE) {
return;
}
bool ascQuery = (pCtx->order == TSDB_ORDER_ASC);
if (pCtx->inputType == TSDB_DATA_TYPE_TIMESTAMP) {
*(TSKEY *)pCtx->pOutput = pCtx->startTs;
} else if (type == TSDB_FILL_NULL) {
setNull(pCtx->pOutput, pCtx->outputType, pCtx->outputBytes);
} else if (type == TSDB_FILL_SET_VALUE) {
taosVariantDump(&pCtx->param[1], pCtx->pOutput, pCtx->inputType, true);
} else {
if (pCtx->start.key != INT64_MIN && ((ascQuery && pCtx->start.key <= pCtx->startTs && pCtx->end.key >= pCtx->startTs) || ((!ascQuery) && pCtx->start.key >= pCtx->startTs && pCtx->end.key <= pCtx->startTs))) {
if (type == TSDB_FILL_PREV) {
if (IS_NUMERIC_TYPE(pCtx->inputType) || pCtx->inputType == TSDB_DATA_TYPE_BOOL) {
SET_TYPED_DATA(pCtx->pOutput, pCtx->inputType, pCtx->start.val);
} else {
assignVal(pCtx->pOutput, pCtx->start.ptr, pCtx->outputBytes, pCtx->inputType);
}
} else if (type == TSDB_FILL_NEXT) {
if (IS_NUMERIC_TYPE(pCtx->inputType) || pCtx->inputType == TSDB_DATA_TYPE_BOOL) {
SET_TYPED_DATA(pCtx->pOutput, pCtx->inputType, pCtx->end.val);
} else {
assignVal(pCtx->pOutput, pCtx->end.ptr, pCtx->outputBytes, pCtx->inputType);
}
} else if (type == TSDB_FILL_LINEAR) {
SPoint point1 = {.key = pCtx->start.key, .val = &pCtx->start.val};
SPoint point2 = {.key = pCtx->end.key, .val = &pCtx->end.val};
SPoint point = {.key = pCtx->startTs, .val = pCtx->pOutput};
int32_t srcType = pCtx->inputType;
if (IS_NUMERIC_TYPE(srcType)) { // TODO should find the not null data?
if (isNull((char *)&pCtx->start.val, srcType) || isNull((char *)&pCtx->end.val, srcType)) {
setNull(pCtx->pOutput, srcType, pCtx->inputBytes);
} else {
taosGetLinearInterpolationVal(&point, pCtx->outputType, &point1, &point2, TSDB_DATA_TYPE_DOUBLE);
}
} else {
setNull(pCtx->pOutput, srcType, pCtx->inputBytes);
}
}
} else {
// no data generated yet
if (pCtx->size < 1) {
return;
}
// check the timestamp in input buffer
TSKEY skey = GET_TS_DATA(pCtx, 0);
if (type == TSDB_FILL_PREV) {
if ((ascQuery && skey > pCtx->startTs) || ((!ascQuery) && skey < pCtx->startTs)) {
return;
}
if (pCtx->size > 1) {
TSKEY ekey = GET_TS_DATA(pCtx, 1);
if ((ascQuery && ekey > skey && ekey <= pCtx->startTs) ||
((!ascQuery) && ekey < skey && ekey >= pCtx->startTs)){
skey = ekey;
}
}
assignVal(pCtx->pOutput, pCtx->pInput, pCtx->outputBytes, pCtx->inputType);
} else if (type == TSDB_FILL_NEXT) {
TSKEY ekey = skey;
char* val = NULL;
if ((ascQuery && ekey < pCtx->startTs) || ((!ascQuery) && ekey > pCtx->startTs)) {
if (pCtx->size > 1) {
ekey = GET_TS_DATA(pCtx, 1);
if ((ascQuery && ekey < pCtx->startTs) || ((!ascQuery) && ekey > pCtx->startTs)) {
return;
}
val = ((char*)pCtx->pInput) + pCtx->inputBytes;
} else {
return;
}
} else {
val = (char*)pCtx->pInput;
}
assignVal(pCtx->pOutput, val, pCtx->outputBytes, pCtx->inputType);
} else if (type == TSDB_FILL_LINEAR) {
if (pCtx->size <= 1) {
return;
}
TSKEY ekey = GET_TS_DATA(pCtx, 1);
// no data generated yet
if ((ascQuery && !(skey <= pCtx->startTs && ekey >= pCtx->startTs))
|| ((!ascQuery) && !(skey >= pCtx->startTs && ekey <= pCtx->startTs))) {
return;
}
char *start = GET_INPUT_DATA(pCtx, 0);
char *end = GET_INPUT_DATA(pCtx, 1);
SPoint point1 = {.key = skey, .val = start};
SPoint point2 = {.key = ekey, .val = end};
SPoint point = {.key = pCtx->startTs, .val = pCtx->pOutput};
int32_t srcType = pCtx->inputType;
if (IS_NUMERIC_TYPE(srcType)) { // TODO should find the not null data?
if (isNull(start, srcType) || isNull(end, srcType)) {
setNull(pCtx->pOutput, srcType, pCtx->inputBytes);
} else {
taosGetLinearInterpolationVal(&point, pCtx->outputType, &point1, &point2, srcType);
}
} else {
setNull(pCtx->pOutput, srcType, pCtx->inputBytes);
}
}
}
}
SET_VAL(pCtx, 1, 1);
}
static void interp_function(SQLFunctionCtx *pCtx) {
// at this point, the value is existed, return directly
if (pCtx->size > 0) {
bool ascQuery = (pCtx->order == TSDB_ORDER_ASC);
TSKEY key;
char *pData;
int32_t typedData = 0;
if (ascQuery) {
key = GET_TS_DATA(pCtx, 0);
pData = GET_INPUT_DATA(pCtx, 0);
} else {
key = pCtx->start.key;
if (key == INT64_MIN) {
key = GET_TS_DATA(pCtx, 0);
pData = GET_INPUT_DATA(pCtx, 0);
} else {
if (!(IS_NUMERIC_TYPE(pCtx->inputType) || pCtx->inputType == TSDB_DATA_TYPE_BOOL)) {
pData = pCtx->start.ptr;
} else {
typedData = 1;
pData = (char *)&pCtx->start.val;
}
}
}
//if (key == pCtx->startTs && (ascQuery || !(IS_NUMERIC_TYPE(pCtx->inputType) || pCtx->inputType == TSDB_DATA_TYPE_BOOL))) {
if (key == pCtx->startTs) {
if (typedData) {
SET_TYPED_DATA(pCtx->pOutput, pCtx->inputType, *(double *)pData);
} else {
assignVal(pCtx->pOutput, pData, pCtx->inputBytes, pCtx->inputType);
}
SET_VAL(pCtx, 1, 1);
} else {
interp_function_impl(pCtx);
}
} else { //no qualified data rows and interpolation is required
interp_function_impl(pCtx);
}
}
static bool ts_comp_function_setup(SQLFunctionCtx *pCtx, SResultRowCellInfo* pResInfo) {
if (!function_setup(pCtx, pResInfo)) {
return false; // not initialized since it has been initialized
}
STSCompInfo *pInfo = GET_ROWCELL_INTERBUF(pResInfo);
pInfo->pTSBuf = tsBufCreate(false, pCtx->order);
pInfo->pTSBuf->tsOrder = pCtx->order;
return true;
}
static void ts_comp_function(SQLFunctionCtx *pCtx) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
STSBuf * pTSbuf = ((STSCompInfo *)(GET_ROWCELL_INTERBUF(pResInfo)))->pTSBuf;
const char *input = GET_INPUT_DATA_LIST(pCtx);
// primary ts must be existed, so no need to check its existance
if (pCtx->order == TSDB_ORDER_ASC) {
tsBufAppend(pTSbuf, (int32_t)pCtx->param[0].i64, &pCtx->tag, input, pCtx->size * TSDB_KEYSIZE);
} else {
for (int32_t i = pCtx->size - 1; i >= 0; --i) {
char *d = GET_INPUT_DATA(pCtx, i);
tsBufAppend(pTSbuf, (int32_t)pCtx->param[0].i64, &pCtx->tag, d, (int32_t)TSDB_KEYSIZE);
}
}
SET_VAL(pCtx, pCtx->size, 1);
pResInfo->hasResult = DATA_SET_FLAG;
}
static void ts_comp_finalize(SQLFunctionCtx *pCtx) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
STSCompInfo *pInfo = GET_ROWCELL_INTERBUF(pResInfo);
STSBuf * pTSbuf = pInfo->pTSBuf;
tsBufFlush(pTSbuf);
// qDebug("total timestamp :%"PRId64, pTSbuf->numOfTotal);
// TODO refactor transfer ownership of current file
*(FILE **)pCtx->pOutput = pTSbuf->f;
pResInfo->complete = true;
// get the file size
struct stat fStat;
if ((fstat(fileno(pTSbuf->f), &fStat) == 0)) {
pResInfo->numOfRes = fStat.st_size;
}
pTSbuf->remainOpen = true;
tsBufDestroy(pTSbuf);
doFinalizer(pCtx);
}
//////////////////////////////////////////////////////////////////////////////////////////////
// rate functions
static double do_calc_rate(const SRateInfo* pRateInfo, double tickPerSec) {
if ((INT64_MIN == pRateInfo->lastKey) || (INT64_MIN == pRateInfo->firstKey) ||
(pRateInfo->firstKey >= pRateInfo->lastKey)) {
return 0.0;
}
double diff = 0;
if (pRateInfo->isIRate) {
// If the previous value of the last is greater than the last value, only keep the last point instead of the delta
// value between two values.
diff = pRateInfo->lastValue;
if (diff >= pRateInfo->firstValue) {
diff -= pRateInfo->firstValue;
}
} else {
diff = pRateInfo->correctionValue + pRateInfo->lastValue - pRateInfo->firstValue;
if (diff <= 0) {
return 0;
}
}
int64_t duration = pRateInfo->lastKey - pRateInfo->firstKey;
if (duration == 0) {
return 0;
}
return (duration > 0)? ((double)diff) / (duration/tickPerSec):0.0;
}
static bool rate_function_setup(SQLFunctionCtx *pCtx, SResultRowCellInfo* pResInfo) {
if (!function_setup(pCtx, pResInfo)) {
return false;
}
SRateInfo *pInfo = GET_ROWCELL_INTERBUF(pResInfo);
pInfo->correctionValue = 0;
pInfo->firstKey = INT64_MIN;
pInfo->lastKey = INT64_MIN;
pInfo->firstValue = (double) INT64_MIN;
pInfo->lastValue = (double) INT64_MIN;
pInfo->hasResult = 0;
pInfo->isIRate = (pCtx->functionId == FUNCTION_IRATE);
return true;
}
static void rate_function(SQLFunctionCtx *pCtx) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
int32_t notNullElems = 0;
SRateInfo *pRateInfo = (SRateInfo *)GET_ROWCELL_INTERBUF(pResInfo);
TSKEY *primaryKey = GET_TS_LIST(pCtx);
// qDebug("%p rate_function() size:%d, hasNull:%d", pCtx, pCtx->size, pCtx->hasNull);
for (int32_t i = 0; i < pCtx->size; ++i) {
char *pData = GET_INPUT_DATA(pCtx, i);
if (pCtx->hasNull && isNull(pData, pCtx->inputType)) {
// qDebug("%p rate_function() index of null data:%d", pCtx, i);
continue;
}
notNullElems++;
double v = 0;
GET_TYPED_DATA(v, double, pCtx->inputType, pData);
if ((INT64_MIN == pRateInfo->firstValue) || (INT64_MIN == pRateInfo->firstKey)) {
pRateInfo->firstValue = v;
pRateInfo->firstKey = primaryKey[i];
}
if (INT64_MIN == pRateInfo->lastValue) {
pRateInfo->lastValue = v;
} else if (v < pRateInfo->lastValue) {
pRateInfo->correctionValue += pRateInfo->lastValue;
}
pRateInfo->lastValue = v;
pRateInfo->lastKey = primaryKey[i];
}
if (!pCtx->hasNull) {
assert(pCtx->size == notNullElems);
}
SET_VAL(pCtx, notNullElems, 1);
if (notNullElems > 0) {
pRateInfo->hasResult = DATA_SET_FLAG;
pResInfo->hasResult = DATA_SET_FLAG;
}
// keep the data into the final output buffer for super table query since this execution may be the last one
if (pCtx->stableQuery) {
memcpy(pCtx->pOutput, GET_ROWCELL_INTERBUF(pResInfo), sizeof(SRateInfo));
}
}
static void rate_func_copy(SQLFunctionCtx *pCtx) {
assert(pCtx->inputType == TSDB_DATA_TYPE_BINARY);
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
memcpy(GET_ROWCELL_INTERBUF(pResInfo), pCtx->pInput, (size_t)pCtx->inputBytes);
pResInfo->hasResult = ((SRateInfo*)pCtx->pInput)->hasResult;
}
static void rate_finalizer(SQLFunctionCtx *pCtx) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
SRateInfo *pRateInfo = (SRateInfo *)GET_ROWCELL_INTERBUF(pResInfo);
if (pRateInfo->hasResult != DATA_SET_FLAG) {
setNull(pCtx->pOutput, TSDB_DATA_TYPE_DOUBLE, sizeof(double));
return;
}
SET_DOUBLE_VAL((double*) pCtx->pOutput, do_calc_rate(pRateInfo, (double) TSDB_TICK_PER_SECOND(pCtx->param[0].i64)));
// cannot set the numOfIteratedElems again since it is set during previous iteration
pResInfo->numOfRes = 1;
pResInfo->hasResult = DATA_SET_FLAG;
doFinalizer(pCtx);
}
static void irate_function(SQLFunctionCtx *pCtx) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
int32_t notNullElems = 0;
SRateInfo *pRateInfo = (SRateInfo *)GET_ROWCELL_INTERBUF(pResInfo);
TSKEY *primaryKey = GET_TS_LIST(pCtx);
for (int32_t i = pCtx->size - 1; i >= 0; --i) {
char *pData = GET_INPUT_DATA(pCtx, i);
if (pCtx->hasNull && isNull(pData, pCtx->inputType)) {
continue;
}
notNullElems++;
double v = 0;
GET_TYPED_DATA(v, double, pCtx->inputType, pData);
if ((INT64_MIN == pRateInfo->lastKey) || primaryKey[i] > pRateInfo->lastKey) {
pRateInfo->lastValue = v;
pRateInfo->lastKey = primaryKey[i];
continue;
}
if ((INT64_MIN == pRateInfo->firstKey) || primaryKey[i] > pRateInfo->firstKey) {
pRateInfo->firstValue = v;
pRateInfo->firstKey = primaryKey[i];
break;
}
}
SET_VAL(pCtx, notNullElems, 1);
if (notNullElems > 0) {
pRateInfo->hasResult = DATA_SET_FLAG;
pResInfo->hasResult = DATA_SET_FLAG;
}
// keep the data into the final output buffer for super table query since this execution may be the last one
if (pCtx->stableQuery) {
memcpy(pCtx->pOutput, GET_ROWCELL_INTERBUF(pResInfo), sizeof(SRateInfo));
}
}
static void blockDistInfoFromBinary(const char* data, int32_t len, STableBlockDist* pDist) {
SBufferReader br = tbufInitReader(data, len, false);
pDist->numOfTables = tbufReadUint32(&br);
pDist->numOfFiles = tbufReadUint16(&br);
pDist->totalSize = tbufReadUint64(&br);
pDist->totalRows = tbufReadUint64(&br);
pDist->maxRows = tbufReadInt32(&br);
pDist->minRows = tbufReadInt32(&br);
pDist->numOfRowsInMemTable = tbufReadUint32(&br);
pDist->numOfSmallBlocks = tbufReadUint32(&br);
int64_t numSteps = tbufReadUint64(&br);
bool comp = tbufReadUint8(&br);
uint32_t compLen = tbufReadUint32(&br);
size_t originalLen = (size_t) (numSteps *sizeof(SFileBlockInfo));
char* outputBuf = NULL;
if (comp) {
outputBuf = malloc(originalLen);
size_t actualLen = compLen;
const char* compStr = tbufReadBinary(&br, &actualLen);
int32_t orignalLen = tsDecompressString(compStr, compLen, 1, outputBuf,
(int32_t)originalLen , ONE_STAGE_COMP, NULL, 0);
assert(orignalLen == numSteps *sizeof(SFileBlockInfo));
} else {
outputBuf = (char*) tbufReadBinary(&br, &originalLen);
}
pDist->dataBlockInfos = taosArrayFromList(outputBuf, (uint32_t)numSteps, sizeof(SFileBlockInfo));
if (comp) {
tfree(outputBuf);
}
}
static void blockInfo_func(SQLFunctionCtx* pCtx) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
STableBlockDist* pDist = (STableBlockDist*) GET_ROWCELL_INTERBUF(pResInfo);
int32_t len = *(int32_t*) pCtx->pInput;
blockDistInfoFromBinary((char*)pCtx->pInput + sizeof(int32_t), len, pDist);
pDist->rowSize = (uint16_t)pCtx->param[0].i64;
memcpy(pCtx->pOutput, pCtx->pInput, sizeof(int32_t) + len);
pResInfo->numOfRes = 1;
pResInfo->hasResult = DATA_SET_FLAG;
}
static void mergeTableBlockDist(SResultRowCellInfo* pResInfo, const STableBlockDist* pSrc) {
STableBlockDist* pDist = (STableBlockDist*) GET_ROWCELL_INTERBUF(pResInfo);
assert(pDist != NULL && pSrc != NULL);
pDist->numOfTables += pSrc->numOfTables;
pDist->numOfRowsInMemTable += pSrc->numOfRowsInMemTable;
pDist->numOfSmallBlocks += pSrc->numOfSmallBlocks;
pDist->numOfFiles += pSrc->numOfFiles;
pDist->totalSize += pSrc->totalSize;
pDist->totalRows += pSrc->totalRows;
if (pResInfo->hasResult == DATA_SET_FLAG) {
pDist->maxRows = MAX(pDist->maxRows, pSrc->maxRows);
pDist->minRows = MIN(pDist->minRows, pSrc->minRows);
} else {
pDist->maxRows = pSrc->maxRows;
pDist->minRows = pSrc->minRows;
int32_t maxSteps = TSDB_MAX_MAX_ROW_FBLOCK/TSDB_BLOCK_DIST_STEP_ROWS;
if (TSDB_MAX_MAX_ROW_FBLOCK % TSDB_BLOCK_DIST_STEP_ROWS != 0) {
++maxSteps;
}
pDist->dataBlockInfos = taosArrayInit(maxSteps, sizeof(SFileBlockInfo));
taosArraySetSize(pDist->dataBlockInfos, maxSteps);
}
size_t steps = taosArrayGetSize(pSrc->dataBlockInfos);
for (int32_t i = 0; i < steps; ++i) {
int32_t srcNumBlocks = ((SFileBlockInfo*)taosArrayGet(pSrc->dataBlockInfos, i))->numBlocksOfStep;
SFileBlockInfo* blockInfo = (SFileBlockInfo*)taosArrayGet(pDist->dataBlockInfos, i);
blockInfo->numBlocksOfStep += srcNumBlocks;
}
}
void block_func_merge(SQLFunctionCtx* pCtx) {
STableBlockDist info = {0};
int32_t len = *(int32_t*) pCtx->pInput;
blockDistInfoFromBinary(((char*)pCtx->pInput) + sizeof(int32_t), len, &info);
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
mergeTableBlockDist(pResInfo, &info);
taosArrayDestroy(info.dataBlockInfos);
pResInfo->numOfRes = 1;
pResInfo->hasResult = DATA_SET_FLAG;
}
void getPercentiles(STableBlockDist *pTableBlockDist, int64_t totalBlocks, int32_t numOfPercents,
double* percents, int32_t* percentiles) {
if (totalBlocks == 0) {
for (int32_t i = 0; i < numOfPercents; ++i) {
percentiles[i] = 0;
}
return;
}
SArray *blocksInfos = pTableBlockDist->dataBlockInfos;
size_t numSteps = taosArrayGetSize(blocksInfos);
size_t cumulativeBlocks = 0;
int percentIndex = 0;
for (int32_t indexStep = 0; indexStep < numSteps; ++indexStep) {
int32_t numStepBlocks = ((SFileBlockInfo *)taosArrayGet(blocksInfos, indexStep))->numBlocksOfStep;
if (numStepBlocks == 0) continue;
cumulativeBlocks += numStepBlocks;
while (percentIndex < numOfPercents) {
double blockRank = totalBlocks * percents[percentIndex];
if (blockRank <= cumulativeBlocks) {
percentiles[percentIndex] = indexStep;
++percentIndex;
} else {
break;
}
}
}
for (int32_t i = 0; i < numOfPercents; ++i) {
percentiles[i] = (percentiles[i]+1) * TSDB_BLOCK_DIST_STEP_ROWS - TSDB_BLOCK_DIST_STEP_ROWS/2;
}
}
void generateBlockDistResult(STableBlockDist *pTableBlockDist, char* result) {
if (pTableBlockDist == NULL) {
return;
}
SArray* blockInfos = pTableBlockDist->dataBlockInfos;
uint64_t totalRows = pTableBlockDist->totalRows;
size_t numSteps = taosArrayGetSize(blockInfos);
int64_t totalBlocks = 0;
int64_t min = -1, max = -1, avg = 0;
for (int32_t i = 0; i < numSteps; i++) {
SFileBlockInfo *blockInfo = taosArrayGet(blockInfos, i);
int64_t blocks = blockInfo->numBlocksOfStep;
totalBlocks += blocks;
}
avg = totalBlocks > 0 ? (int64_t)(totalRows/totalBlocks) : 0;
min = totalBlocks > 0 ? pTableBlockDist->minRows : 0;
max = totalBlocks > 0 ? pTableBlockDist->maxRows : 0;
double stdDev = 0;
if (totalBlocks > 0) {
double variance = 0;
for (int32_t i = 0; i < numSteps; i++) {
SFileBlockInfo *blockInfo = taosArrayGet(blockInfos, i);
int64_t blocks = blockInfo->numBlocksOfStep;
int32_t rows = (i * TSDB_BLOCK_DIST_STEP_ROWS + TSDB_BLOCK_DIST_STEP_ROWS / 2);
variance += blocks * (rows - avg) * (rows - avg);
}
variance = variance / totalBlocks;
stdDev = sqrt(variance);
}
double percents[] = {0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 0.99};
int32_t percentiles[] = {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1};
assert(sizeof(percents)/sizeof(double) == sizeof(percentiles)/sizeof(int32_t));
getPercentiles(pTableBlockDist, totalBlocks, sizeof(percents)/sizeof(double), percents, percentiles);
uint64_t totalLen = pTableBlockDist->totalSize;
int32_t rowSize = pTableBlockDist->rowSize;
int32_t smallBlocks = pTableBlockDist->numOfSmallBlocks;
double compRatio = (totalRows>0) ? ((double)(totalLen)/(rowSize*totalRows)) : 1;
int sz = sprintf(result + VARSTR_HEADER_SIZE,
"summary: \n\t "
"5th=[%d], 10th=[%d], 20th=[%d], 30th=[%d], 40th=[%d], 50th=[%d]\n\t "
"60th=[%d], 70th=[%d], 80th=[%d], 90th=[%d], 95th=[%d], 99th=[%d]\n\t "
"Min=[%"PRId64"(Rows)] Max=[%"PRId64"(Rows)] Avg=[%"PRId64"(Rows)] Stddev=[%.2f] \n\t "
"Rows=[%"PRIu64"], Blocks=[%"PRId64"], SmallBlocks=[%d], Size=[%.3f(Kb)] Comp=[%.2f]\n\t "
"RowsInMem=[%d] \n\t",
percentiles[0], percentiles[1], percentiles[2], percentiles[3], percentiles[4], percentiles[5],
percentiles[6], percentiles[7], percentiles[8], percentiles[9], percentiles[10], percentiles[11],
min, max, avg, stdDev,
totalRows, totalBlocks, smallBlocks, totalLen/1024.0, compRatio,
pTableBlockDist->numOfRowsInMemTable);
varDataSetLen(result, sz);
UNUSED(sz);
}
void blockinfo_func_finalizer(SQLFunctionCtx* pCtx) {
SResultRowCellInfo *pResInfo = GET_RES_INFO(pCtx);
STableBlockDist* pDist = (STableBlockDist*) GET_ROWCELL_INTERBUF(pResInfo);
pDist->rowSize = (uint16_t)pCtx->param[0].i64;
generateBlockDistResult(pDist, pCtx->pOutput);
if (pDist->dataBlockInfos != NULL) {
taosArrayDestroy(pDist->dataBlockInfos);
pDist->dataBlockInfos = NULL;
}
// cannot set the numOfIteratedElems again since it is set during previous iteration
pResInfo->numOfRes = 1;
pResInfo->hasResult = DATA_SET_FLAG;
doFinalizer(pCtx);
}
/////////////////////////////////////////////////////////////////////////////////////////////
/*
* function compatible list.
* tag and ts are not involved in the compatibility check
*
* 1. functions that are not simultaneously present with any other functions. e.g., diff/ts_z/top/bottom
* 2. functions that are only allowed to be present only with same functions. e.g., last_row, interp
* 3. functions that are allowed to be present with other functions.
* e.g., count/sum/avg/min/max/stddev/percentile/apercentile/first/last...
*
*/
int32_t functionCompatList[] = {
// count, sum, avg, min, max, stddev, percentile, apercentile, first, last
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
// last_row,top, bottom, spread, twa, leastsqr, ts, ts_dummy, tag_dummy, ts_comp
4, -1, -1, 1, 1, 1, 1, 1, 1, -1,
// tag, colprj, tagprj, arithmetic, diff, first_dist, last_dist, stddev_dst, interp rate irate
1, 1, 1, 1, -1, 1, 1, 1, 5, 1, 1,
// tid_tag, derivative, blk_info
6, 8, 7,
};
SAggFunctionInfo aggFunc[34] = {{
// 0, count function does not invoke the finalize function
"count",
FUNCTION_AGG,
FUNCTION_COUNT,
FUNCTION_COUNT,
BASIC_FUNC_SO,
function_setup,
count_function,
doFinalizer,
count_func_merge,
countRequired,
},
{
// 1
"sum",
FUNCTION_SUM,
FUNCTION_SUM,
BASIC_FUNC_SO,
FUNCTION_AGG,
function_setup,
sum_function,
function_finalizer,
sum_func_merge,
statisRequired,
},
{
// 2
"avg",
FUNCTION_AVG,
FUNCTION_AVG,
BASIC_FUNC_SO,
FUNCTION_AGG,
function_setup,
avg_function,
avg_finalizer,
avg_func_merge,
statisRequired,
},
{
// 3
"min",
FUNCTION_MIN,
FUNCTION_MIN,
BASIC_FUNC_SO | FUNCSTATE_SELECTIVITY,
FUNCTION_AGG,
min_func_setup,
min_function,
function_finalizer,
min_func_merge,
statisRequired,
},
{
// 4
"max",
FUNCTION_MAX,
FUNCTION_MAX,
BASIC_FUNC_SO | FUNCSTATE_SELECTIVITY,
FUNCTION_AGG,
max_func_setup,
max_function,
function_finalizer,
max_func_merge,
statisRequired,
},
{
// 5
"stddev",
FUNCTION_STDDEV,
FUNCTION_STDDEV_DST,
FUNCSTATE_SO | FUNCSTATE_STREAM,
FUNCTION_AGG,
function_setup,
stddev_function,
stddev_finalizer,
noop1,
dataBlockRequired,
},
{
// 6
"percentile",
FUNCTION_PERCT,
FUNCTION_INVALID_ID,
FUNCSTATE_SO | FUNCSTATE_STREAM,
FUNCTION_AGG,
percentile_function_setup,
percentile_function,
percentile_finalizer,
noop1,
dataBlockRequired,
},
{
// 7
"apercentile",
FUNCTION_APERCT,
FUNCTION_APERCT,
FUNCSTATE_SO | FUNCSTATE_STREAM | FUNCSTATE_STABLE,
FUNCTION_AGG,
apercentile_function_setup,
apercentile_function,
apercentile_finalizer,
apercentile_func_merge,
dataBlockRequired,
},
{
// 8
"first",
FUNCTION_FIRST,
FUNCTION_FIRST_DST,
BASIC_FUNC_SO | FUNCSTATE_SELECTIVITY,
FUNCTION_AGG,
function_setup,
first_function,
function_finalizer,
noop1,
firstFuncRequired,
},
{
// 9
"last",
FUNCTION_LAST,
FUNCTION_LAST_DST,
BASIC_FUNC_SO | FUNCSTATE_SELECTIVITY,
FUNCTION_AGG,
function_setup,
last_function,
function_finalizer,
noop1,
lastFuncRequired,
},
{
// 10
"last_row",
FUNCTION_LAST_ROW,
FUNCTION_LAST_ROW,
FUNCSTATE_SO | FUNCSTATE_STABLE | FUNCSTATE_NEED_TS | FUNCSTATE_SELECTIVITY,
FUNCTION_AGG,
first_last_function_setup,
last_row_function,
last_row_finalizer,
last_dist_func_merge,
dataBlockRequired,
},
{
// 11
"top",
FUNCTION_TOP,
FUNCTION_TOP,
FUNCSTATE_MO | FUNCSTATE_STABLE | FUNCSTATE_NEED_TS | FUNCSTATE_SELECTIVITY,
FUNCTION_AGG,
top_bottom_function_setup,
top_function,
top_bottom_func_finalizer,
top_func_merge,
dataBlockRequired,
},
{
// 12
"bottom",
FUNCTION_BOTTOM,
FUNCTION_BOTTOM,
FUNCSTATE_MO | FUNCSTATE_STABLE | FUNCSTATE_NEED_TS | FUNCSTATE_SELECTIVITY,
FUNCTION_AGG,
top_bottom_function_setup,
bottom_function,
top_bottom_func_finalizer,
bottom_func_merge,
dataBlockRequired,
},
{
// 13
"spread",
FUNCTION_SPREAD,
FUNCTION_SPREAD,
BASIC_FUNC_SO,
FUNCTION_AGG,
spread_function_setup,
spread_function,
spread_function_finalizer,
spread_func_merge,
countRequired,
},
{
// 14
"twa",
FUNCTION_TWA,
FUNCTION_TWA,
BASIC_FUNC_SO | FUNCSTATE_NEED_TS,
FUNCTION_AGG,
twa_function_setup,
twa_function,
twa_function_finalizer,
twa_function_copy,
dataBlockRequired,
},
{
// 15
"leastsquares",
FUNCTION_LEASTSQR,
FUNCTION_INVALID_ID,
FUNCSTATE_SO | FUNCSTATE_STREAM,
FUNCTION_AGG,
leastsquares_function_setup,
leastsquares_function,
leastsquares_finalizer,
noop1,
dataBlockRequired,
},
{
// 16
"ts",
FUNCTION_TS,
FUNCTION_TS,
BASIC_FUNC_SO | FUNCSTATE_NEED_TS,
FUNCTION_AGG,
function_setup,
date_col_output_function,
doFinalizer,
copy_function,
noDataRequired,
},
{
// 17
"ts",
FUNCTION_TS_DUMMY,
FUNCTION_TS_DUMMY,
BASIC_FUNC_SO | FUNCSTATE_NEED_TS,
FUNCTION_AGG,
function_setup,
noop1,
doFinalizer,
copy_function,
dataBlockRequired,
},
{
// 18
"tag_dummy",
FUNCTION_TAG_DUMMY,
FUNCTION_TAG_DUMMY,
BASIC_FUNC_SO,
FUNCTION_AGG,
function_setup,
tag_function,
doFinalizer,
copy_function,
noDataRequired,
},
{
// 19
"ts",
FUNCTION_TS_COMP,
FUNCTION_TS_COMP,
FUNCSTATE_MO | FUNCSTATE_NEED_TS,
FUNCTION_AGG,
ts_comp_function_setup,
ts_comp_function,
ts_comp_finalize,
copy_function,
dataBlockRequired,
},
{
// 20
"tag",
FUNCTION_TAG,
FUNCTION_TAG,
BASIC_FUNC_SO,
FUNCTION_AGG,
function_setup,
tag_function,
doFinalizer,
copy_function,
noDataRequired,
},
{//TODO this is a scala function
// 21, column project sql function
"colprj",
FUNCTION_PRJ,
FUNCTION_PRJ,
BASIC_FUNC_MO | FUNCSTATE_NEED_TS,
FUNCTION_AGG,
function_setup,
col_project_function,
doFinalizer,
copy_function,
dataBlockRequired,
},
{
// 22, multi-output, tag function has only one result
"tagprj",
FUNCTION_TAGPRJ,
FUNCTION_TAGPRJ,
BASIC_FUNC_MO,
FUNCTION_AGG,
function_setup,
tag_project_function,
doFinalizer,
copy_function,
noDataRequired,
},
{
// 23
"arithmetic",
FUNCTION_ARITHM,
FUNCTION_ARITHM,
FUNCSTATE_MO | FUNCSTATE_STABLE | FUNCSTATE_NEED_TS,
FUNCTION_AGG,
function_setup,
arithmetic_function,
doFinalizer,
copy_function,
dataBlockRequired,
},
{
// 24
"diff",
FUNCTION_DIFF,
FUNCTION_INVALID_ID,
FUNCSTATE_MO | FUNCSTATE_STABLE | FUNCSTATE_NEED_TS | FUNCSTATE_SELECTIVITY,
FUNCTION_AGG,
diff_function_setup,
diff_function,
doFinalizer,
noop1,
dataBlockRequired,
},
// distributed version used in two-stage aggregation processes
{
// 25
"first_dist",
FUNCTION_FIRST_DST,
FUNCTION_FIRST_DST,
BASIC_FUNC_SO | FUNCSTATE_NEED_TS | FUNCSTATE_SELECTIVITY,
FUNCTION_AGG,
first_last_function_setup,
first_dist_function,
function_finalizer,
first_dist_func_merge,
firstDistFuncRequired,
},
{
// 26
"last_dist",
FUNCTION_LAST_DST,
FUNCTION_LAST_DST,
BASIC_FUNC_SO | FUNCSTATE_NEED_TS | FUNCSTATE_SELECTIVITY,
FUNCTION_AGG,
first_last_function_setup,
last_dist_function,
function_finalizer,
last_dist_func_merge,
lastDistFuncRequired,
},
{
// 27
"stddev", // return table id and the corresponding tags for join match and subscribe
FUNCTION_STDDEV_DST,
FUNCTION_AVG,
FUNCSTATE_SO | FUNCSTATE_STABLE,
FUNCTION_AGG,
function_setup,
stddev_dst_function,
stddev_dst_finalizer,
stddev_dst_merge,
dataBlockRequired,
},
{
// 28
"interp",
FUNCTION_INTERP,
FUNCTION_INTERP,
FUNCSTATE_SO | FUNCSTATE_STABLE | FUNCSTATE_NEED_TS ,
FUNCTION_AGG,
function_setup,
interp_function,
doFinalizer,
copy_function,
dataBlockRequired,
},
{
// 29
"rate",
FUNCTION_RATE,
FUNCTION_RATE,
BASIC_FUNC_SO | FUNCSTATE_NEED_TS,
FUNCTION_AGG,
rate_function_setup,
rate_function,
rate_finalizer,
rate_func_copy,
dataBlockRequired,
},
{
// 30
"irate",
FUNCTION_IRATE,
FUNCTION_IRATE,
BASIC_FUNC_SO | FUNCSTATE_NEED_TS,
FUNCTION_AGG,
rate_function_setup,
irate_function,
rate_finalizer,
rate_func_copy,
dataBlockRequired,
},
{
// 31
"tbid", // return table id and the corresponding tags for join match and subscribe
FUNCTION_TID_TAG,
FUNCTION_TID_TAG,
FUNCSTATE_MO | FUNCSTATE_STABLE,
FUNCTION_AGG,
function_setup,
noop1,
noop1,
noop1,
dataBlockRequired,
},
{ //32
"derivative", // return table id and the corresponding tags for join match and subscribe
FUNCTION_DERIVATIVE,
FUNCTION_INVALID_ID,
FUNCSTATE_MO | FUNCSTATE_STABLE | FUNCSTATE_NEED_TS | FUNCSTATE_SELECTIVITY,
FUNCTION_AGG,
deriv_function_setup,
deriv_function,
doFinalizer,
noop1,
dataBlockRequired,
},
{
// 33
"_block_dist", // return table id and the corresponding tags for join match and subscribe
FUNCTION_BLKINFO,
FUNCTION_BLKINFO,
FUNCSTATE_SO | FUNCSTATE_STABLE,
FUNCTION_AGG,
function_setup,
blockInfo_func,
blockinfo_func_finalizer,
block_func_merge,
dataBlockRequired,
}};
/*
* Copyright (c) 2019 TAOS Data, Inc. <jhtao@taosdata.com>
*
* This program is free software: you can use, redistribute, and/or modify
* it under the terms of the GNU Affero General Public License, version 3
* or later ("AGPL"), as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "os.h"
#include "taosdef.h"
#include "taosmsg.h"
#include "ttypes.h"
#include "tfill.h"
#include "thash.h"
#include "function.h"
#include "common.h"
#include "ttime.h"
#define FILL_IS_ASC_FILL(_f) ((_f)->order == TSDB_ORDER_ASC)
#define DO_INTERPOLATION(_v1, _v2, _k1, _k2, _k) ((_v1) + ((_v2) - (_v1)) * (((double)(_k)) - ((double)(_k1))) / (((double)(_k2)) - ((double)(_k1))))
#define GET_FORWARD_DIRECTION_FACTOR(_ord) (((_ord) == TSDB_ORDER_ASC)? 1:-1)
static void setTagsValue(SFillInfo* pFillInfo, void** data, int32_t genRows) {
for(int32_t j = 0; j < pFillInfo->numOfCols; ++j) {
SFillColInfo* pCol = &pFillInfo->pFillCol[j];
if (TSDB_COL_IS_NORMAL_COL(pCol->flag) || TSDB_COL_IS_UD_COL(pCol->flag)) {
continue;
}
char* val1 = elePtrAt(data[j], pCol->col.bytes, genRows);
assert(pCol->tagIndex >= 0 && pCol->tagIndex < pFillInfo->numOfTags);
SFillTagColInfo* pTag = &pFillInfo->pTags[pCol->tagIndex];
assert (pTag->col.colId == pCol->col.colId);
assignVal(val1, pTag->tagVal, pCol->col.bytes, pCol->col.type);
}
}
static void setNullValueForRow(SFillInfo* pFillInfo, void** data, int32_t numOfCol, int32_t rowIndex) {
// the first are always the timestamp column, so start from the second column.
for (int32_t i = 1; i < numOfCol; ++i) {
SFillColInfo* pCol = &pFillInfo->pFillCol[i];
char* output = elePtrAt(data[i], pCol->col.bytes, rowIndex);
setNull(output, pCol->col.type, pCol->col.bytes);
}
}
static void doFillOneRowResult(SFillInfo* pFillInfo, void** data, char** srcData, int64_t ts, bool outOfBound) {
char* prev = pFillInfo->prevValues;
char* next = pFillInfo->nextValues;
SPoint point1, point2, point;
int32_t step = GET_FORWARD_DIRECTION_FACTOR(pFillInfo->order);
// set the primary timestamp column value
int32_t index = pFillInfo->numOfCurrent;
char* val = elePtrAt(data[0], TSDB_KEYSIZE, index);
*(TSKEY*) val = pFillInfo->currentKey;
// set the other values
if (pFillInfo->type == TSDB_FILL_PREV) {
char* p = FILL_IS_ASC_FILL(pFillInfo) ? prev : next;
if (p != NULL) {
for (int32_t i = 1; i < pFillInfo->numOfCols; ++i) {
SFillColInfo* pCol = &pFillInfo->pFillCol[i];
if (TSDB_COL_IS_TAG(pCol->flag)) {
continue;
}
char* output = elePtrAt(data[i], pCol->col.bytes, index);
assignVal(output, p + pCol->col.offset, pCol->col.bytes, pCol->col.type);
}
} else { // no prev value yet, set the value for NULL
setNullValueForRow(pFillInfo, data, pFillInfo->numOfCols, index);
}
} else if (pFillInfo->type == TSDB_FILL_NEXT) {
char* p = FILL_IS_ASC_FILL(pFillInfo)? next : prev;
if (p != NULL) {
for (int32_t i = 1; i < pFillInfo->numOfCols; ++i) {
SFillColInfo* pCol = &pFillInfo->pFillCol[i];
if (TSDB_COL_IS_TAG(pCol->flag)) {
continue;
}
char* output = elePtrAt(data[i], pCol->col.bytes, index);
assignVal(output, p + pCol->col.offset, pCol->col.bytes, pCol->col.type);
}
} else { // no prev value yet, set the value for NULL
setNullValueForRow(pFillInfo, data, pFillInfo->numOfCols, index);
}
} else if (pFillInfo->type == TSDB_FILL_LINEAR) {
// TODO : linear interpolation supports NULL value
if (prev != NULL && !outOfBound) {
for (int32_t i = 1; i < pFillInfo->numOfCols; ++i) {
SFillColInfo* pCol = &pFillInfo->pFillCol[i];
if (TSDB_COL_IS_TAG(pCol->flag)) {
continue;
}
int16_t type = pCol->col.type;
int16_t bytes = pCol->col.bytes;
char *val1 = elePtrAt(data[i], pCol->col.bytes, index);
if (type == TSDB_DATA_TYPE_BINARY|| type == TSDB_DATA_TYPE_NCHAR || type == TSDB_DATA_TYPE_BOOL) {
setNull(val1, pCol->col.type, bytes);
continue;
}
point1 = (SPoint){.key = *(TSKEY*)(prev), .val = prev + pCol->col.offset};
point2 = (SPoint){.key = ts, .val = srcData[i] + pFillInfo->index * bytes};
point = (SPoint){.key = pFillInfo->currentKey, .val = val1};
taosGetLinearInterpolationVal(&point, type, &point1, &point2, type);
}
} else {
setNullValueForRow(pFillInfo, data, pFillInfo->numOfCols, index);
}
} else { // fill the default value */
for (int32_t i = 1; i < pFillInfo->numOfCols; ++i) {
SFillColInfo* pCol = &pFillInfo->pFillCol[i];
if (TSDB_COL_IS_TAG(pCol->flag)/* || IS_VAR_DATA_TYPE(pCol->col.type)*/) {
continue;
}
char* val1 = elePtrAt(data[i], pCol->col.bytes, index);
assignVal(val1, (char*)&pCol->fillVal.i, pCol->col.bytes, pCol->col.type);
}
}
setTagsValue(pFillInfo, data, index);
pFillInfo->currentKey = taosTimeAdd(pFillInfo->currentKey, pFillInfo->interval.sliding * step, pFillInfo->interval.slidingUnit, pFillInfo->precision);
pFillInfo->numOfCurrent++;
}
static void initBeforeAfterDataBuf(SFillInfo* pFillInfo, char** next) {
if (*next != NULL) {
return;
}
*next = calloc(1, pFillInfo->rowSize);
for (int i = 1; i < pFillInfo->numOfCols; i++) {
SFillColInfo* pCol = &pFillInfo->pFillCol[i];
setNull(*next + pCol->col.offset, pCol->col.type, pCol->col.bytes);
}
}
static void copyCurrentRowIntoBuf(SFillInfo* pFillInfo, char** srcData, char* buf) {
int32_t rowIndex = pFillInfo->index;
for (int32_t i = 0; i < pFillInfo->numOfCols; ++i) {
SFillColInfo* pCol = &pFillInfo->pFillCol[i];
memcpy(buf + pCol->col.offset, srcData[i] + rowIndex * pCol->col.bytes, pCol->col.bytes);
}
}
static int32_t fillResultImpl(SFillInfo* pFillInfo, void** data, int32_t outputRows) {
pFillInfo->numOfCurrent = 0;
char** srcData = pFillInfo->pData;
char** prev = &pFillInfo->prevValues;
char** next = &pFillInfo->nextValues;
int32_t step = GET_FORWARD_DIRECTION_FACTOR(pFillInfo->order);
if (FILL_IS_ASC_FILL(pFillInfo)) {
assert(pFillInfo->currentKey >= pFillInfo->start);
} else {
assert(pFillInfo->currentKey <= pFillInfo->start);
}
while (pFillInfo->numOfCurrent < outputRows) {
int64_t ts = ((int64_t*)pFillInfo->pData[0])[pFillInfo->index];
// set the next value for interpolation
if ((pFillInfo->currentKey < ts && FILL_IS_ASC_FILL(pFillInfo)) ||
(pFillInfo->currentKey > ts && !FILL_IS_ASC_FILL(pFillInfo))) {
initBeforeAfterDataBuf(pFillInfo, next);
copyCurrentRowIntoBuf(pFillInfo, srcData, *next);
}
if (((pFillInfo->currentKey < ts && FILL_IS_ASC_FILL(pFillInfo)) || (pFillInfo->currentKey > ts && !FILL_IS_ASC_FILL(pFillInfo))) &&
pFillInfo->numOfCurrent < outputRows) {
// fill the gap between two actual input rows
while (((pFillInfo->currentKey < ts && FILL_IS_ASC_FILL(pFillInfo)) ||
(pFillInfo->currentKey > ts && !FILL_IS_ASC_FILL(pFillInfo))) &&
pFillInfo->numOfCurrent < outputRows) {
doFillOneRowResult(pFillInfo, data, srcData, ts, false);
}
// output buffer is full, abort
if (pFillInfo->numOfCurrent == outputRows) {
pFillInfo->numOfTotal += pFillInfo->numOfCurrent;
return outputRows;
}
} else {
assert(pFillInfo->currentKey == ts);
initBeforeAfterDataBuf(pFillInfo, prev);
if (pFillInfo->type == TSDB_FILL_NEXT && (pFillInfo->index + 1) < pFillInfo->numOfRows) {
initBeforeAfterDataBuf(pFillInfo, next);
++pFillInfo->index;
copyCurrentRowIntoBuf(pFillInfo, srcData, *next);
--pFillInfo->index;
}
// assign rows to dst buffer
for (int32_t i = 0; i < pFillInfo->numOfCols; ++i) {
SFillColInfo* pCol = &pFillInfo->pFillCol[i];
if (TSDB_COL_IS_TAG(pCol->flag)/* || IS_VAR_DATA_TYPE(pCol->col.type)*/) {
continue;
}
char* output = elePtrAt(data[i], pCol->col.bytes, pFillInfo->numOfCurrent);
char* src = elePtrAt(srcData[i], pCol->col.bytes, pFillInfo->index);
if (i == 0 || (pCol->functionId != FUNCTION_COUNT && !isNull(src, pCol->col.type)) ||
(pCol->functionId == FUNCTION_COUNT && GET_INT64_VAL(src) != 0)) {
assignVal(output, src, pCol->col.bytes, pCol->col.type);
memcpy(*prev + pCol->col.offset, src, pCol->col.bytes);
} else { // i > 0 and data is null , do interpolation
if (pFillInfo->type == TSDB_FILL_PREV) {
assignVal(output, *prev + pCol->col.offset, pCol->col.bytes, pCol->col.type);
} else if (pFillInfo->type == TSDB_FILL_LINEAR) {
assignVal(output, src, pCol->col.bytes, pCol->col.type);
memcpy(*prev + pCol->col.offset, src, pCol->col.bytes);
} else if (pFillInfo->type == TSDB_FILL_NEXT) {
if (*next) {
assignVal(output, *next + pCol->col.offset, pCol->col.bytes, pCol->col.type);
} else {
setNull(output, pCol->col.type, pCol->col.bytes);
}
} else {
assignVal(output, (char*)&pCol->fillVal.i, pCol->col.bytes, pCol->col.type);
}
}
}
// set the tag value for final result
setTagsValue(pFillInfo, data, pFillInfo->numOfCurrent);
pFillInfo->currentKey = taosTimeAdd(pFillInfo->currentKey, pFillInfo->interval.sliding * step,
pFillInfo->interval.slidingUnit, pFillInfo->precision);
pFillInfo->index += 1;
pFillInfo->numOfCurrent += 1;
}
if (pFillInfo->index >= pFillInfo->numOfRows || pFillInfo->numOfCurrent >= outputRows) {
/* the raw data block is exhausted, next value does not exists */
if (pFillInfo->index >= pFillInfo->numOfRows) {
tfree(*next);
}
pFillInfo->numOfTotal += pFillInfo->numOfCurrent;
return pFillInfo->numOfCurrent;
}
}
return pFillInfo->numOfCurrent;
}
static int64_t appendFilledResult(SFillInfo* pFillInfo, void** output, int64_t resultCapacity) {
/*
* These data are generated according to fill strategy, since the current timestamp is out of the time window of
* real result set. Note that we need to keep the direct previous result rows, to generated the filled data.
*/
pFillInfo->numOfCurrent = 0;
while (pFillInfo->numOfCurrent < resultCapacity) {
doFillOneRowResult(pFillInfo, output, pFillInfo->pData, pFillInfo->start, true);
}
pFillInfo->numOfTotal += pFillInfo->numOfCurrent;
assert(pFillInfo->numOfCurrent == resultCapacity);
return resultCapacity;
}
// there are no duplicated tags in the SFillTagColInfo list
static int32_t setTagColumnInfo(SFillInfo* pFillInfo, int32_t numOfCols, int32_t capacity) {
int32_t rowsize = 0;
int32_t numOfTags = 0;
int32_t k = 0;
for (int32_t i = 0; i < numOfCols; ++i) {
SFillColInfo* pColInfo = &pFillInfo->pFillCol[i];
pFillInfo->pData[i] = NULL;
if (TSDB_COL_IS_TAG(pColInfo->flag) || pColInfo->col.type == TSDB_DATA_TYPE_BINARY) {
numOfTags += 1;
bool exists = false;
int32_t index = -1;
for (int32_t j = 0; j < k; ++j) {
if (pFillInfo->pTags[j].col.colId == pColInfo->col.colId) {
exists = true;
index = j;
break;
}
}
if (!exists) {
SSchema* pSchema = &pFillInfo->pTags[k].col;
pSchema->colId = pColInfo->col.colId;
pSchema->type = pColInfo->col.type;
pSchema->bytes = pColInfo->col.bytes;
pFillInfo->pTags[k].tagVal = calloc(1, pColInfo->col.bytes);
pColInfo->tagIndex = k;
k += 1;
} else {
pColInfo->tagIndex = index;
}
}
rowsize += pColInfo->col.bytes;
}
pFillInfo->numOfTags = numOfTags;
assert(k <= pFillInfo->numOfTags);
return rowsize;
}
static int32_t taosNumOfRemainRows(SFillInfo* pFillInfo) {
if (pFillInfo->numOfRows == 0 || (pFillInfo->numOfRows > 0 && pFillInfo->index >= pFillInfo->numOfRows)) {
return 0;
}
return pFillInfo->numOfRows - pFillInfo->index;
}
SFillInfo* taosCreateFillInfo(int32_t order, TSKEY skey, int32_t numOfTags, int32_t capacity, int32_t numOfCols,
int64_t slidingTime, int8_t slidingUnit, int8_t precision, int32_t fillType,
SFillColInfo* pCol, void* handle) {
if (fillType == TSDB_FILL_NONE) {
return NULL;
}
SFillInfo* pFillInfo = calloc(1, sizeof(SFillInfo));
taosResetFillInfo(pFillInfo, skey);
pFillInfo->order = order;
pFillInfo->type = fillType;
pFillInfo->pFillCol = pCol;
pFillInfo->numOfTags = numOfTags;
pFillInfo->numOfCols = numOfCols;
pFillInfo->precision = precision;
pFillInfo->alloc = capacity;
pFillInfo->handle = handle;
pFillInfo->interval.interval = slidingTime;
pFillInfo->interval.intervalUnit = slidingUnit;
pFillInfo->interval.sliding = slidingTime;
pFillInfo->interval.slidingUnit = slidingUnit;
pFillInfo->pData = malloc(POINTER_BYTES * numOfCols);
// if (numOfTags > 0) {
pFillInfo->pTags = calloc(numOfCols, sizeof(SFillTagColInfo));
for (int32_t i = 0; i < numOfCols; ++i) {
pFillInfo->pTags[i].col.colId = -2; // TODO
}
// }
pFillInfo->rowSize = setTagColumnInfo(pFillInfo, pFillInfo->numOfCols, pFillInfo->alloc);
assert(pFillInfo->rowSize > 0);
return pFillInfo;
}
void taosResetFillInfo(SFillInfo* pFillInfo, TSKEY startTimestamp) {
pFillInfo->start = startTimestamp;
pFillInfo->currentKey = startTimestamp;
pFillInfo->end = startTimestamp;
pFillInfo->index = -1;
pFillInfo->numOfRows = 0;
pFillInfo->numOfCurrent = 0;
pFillInfo->numOfTotal = 0;
}
void* taosDestroyFillInfo(SFillInfo* pFillInfo) {
if (pFillInfo == NULL) {
return NULL;
}
tfree(pFillInfo->prevValues);
tfree(pFillInfo->nextValues);
for(int32_t i = 0; i < pFillInfo->numOfTags; ++i) {
tfree(pFillInfo->pTags[i].tagVal);
}
tfree(pFillInfo->pTags);
tfree(pFillInfo->pData);
tfree(pFillInfo->pFillCol);
tfree(pFillInfo);
return NULL;
}
void taosFillSetStartInfo(SFillInfo* pFillInfo, int32_t numOfRows, TSKEY endKey) {
if (pFillInfo->type == TSDB_FILL_NONE) {
return;
}
pFillInfo->end = endKey;
if (!FILL_IS_ASC_FILL(pFillInfo)) {
pFillInfo->end = taosTimeTruncate(endKey, &pFillInfo->interval, pFillInfo->precision);
}
pFillInfo->index = 0;
pFillInfo->numOfRows = numOfRows;
}
void taosFillSetInputDataBlock(SFillInfo* pFillInfo, const SSDataBlock* pInput) {
for (int32_t i = 0; i < pFillInfo->numOfCols; ++i) {
SFillColInfo* pCol = &pFillInfo->pFillCol[i];
SColumnInfoData* pColData = taosArrayGet(pInput->pDataBlock, i);
pFillInfo->pData[i] = pColData->pData;
if (TSDB_COL_IS_TAG(pCol->flag)) { // copy the tag value to tag value buffer
SFillTagColInfo* pTag = &pFillInfo->pTags[pCol->tagIndex];
assert (pTag->col.colId == pCol->col.colId);
memcpy(pTag->tagVal, pColData->pData, pCol->col.bytes); // TODO not memcpy??
}
}
}
bool taosFillHasMoreResults(SFillInfo* pFillInfo) {
int32_t remain = taosNumOfRemainRows(pFillInfo);
if (remain > 0) {
return true;
}
if (pFillInfo->numOfTotal > 0 && (((pFillInfo->end > pFillInfo->start) && FILL_IS_ASC_FILL(pFillInfo)) ||
(pFillInfo->end < pFillInfo->start && !FILL_IS_ASC_FILL(pFillInfo)))) {
return getNumOfResultsAfterFillGap(pFillInfo, pFillInfo->end, 4096) > 0;
}
return false;
}
int64_t getNumOfResultsAfterFillGap(SFillInfo* pFillInfo, TSKEY ekey, int32_t maxNumOfRows) {
int64_t* tsList = (int64_t*) pFillInfo->pData[0];
int32_t numOfRows = taosNumOfRemainRows(pFillInfo);
TSKEY ekey1 = ekey;
if (!FILL_IS_ASC_FILL(pFillInfo)) {
pFillInfo->end = taosTimeTruncate(ekey, &pFillInfo->interval, pFillInfo->precision);
}
int64_t numOfRes = -1;
if (numOfRows > 0) { // still fill gap within current data block, not generating data after the result set.
TSKEY lastKey = tsList[pFillInfo->numOfRows - 1];
numOfRes = taosTimeCountInterval(
lastKey,
pFillInfo->currentKey,
pFillInfo->interval.sliding,
pFillInfo->interval.slidingUnit,
pFillInfo->precision);
numOfRes += 1;
assert(numOfRes >= numOfRows);
} else { // reach the end of data
if ((ekey1 < pFillInfo->currentKey && FILL_IS_ASC_FILL(pFillInfo)) ||
(ekey1 > pFillInfo->currentKey && !FILL_IS_ASC_FILL(pFillInfo))) {
return 0;
}
numOfRes = taosTimeCountInterval(
ekey1,
pFillInfo->currentKey,
pFillInfo->interval.sliding,
pFillInfo->interval.slidingUnit,
pFillInfo->precision);
numOfRes += 1;
}
return (numOfRes > maxNumOfRows) ? maxNumOfRows : numOfRes;
}
int32_t taosGetLinearInterpolationVal(SPoint* point, int32_t outputType, SPoint* point1, SPoint* point2, int32_t inputType) {
double v1 = -1, v2 = -1;
GET_TYPED_DATA(v1, double, inputType, point1->val);
GET_TYPED_DATA(v2, double, inputType, point2->val);
double r = DO_INTERPOLATION(v1, v2, point1->key, point2->key, point->key);
SET_TYPED_DATA(point->val, outputType, r);
return TSDB_CODE_SUCCESS;
}
int64_t taosFillResultDataBlock(SFillInfo* pFillInfo, void** output, int32_t capacity) {
int32_t remain = taosNumOfRemainRows(pFillInfo);
int64_t numOfRes = getNumOfResultsAfterFillGap(pFillInfo, pFillInfo->end, capacity);
assert(numOfRes <= capacity);
// no data existed for fill operation now, append result according to the fill strategy
if (remain == 0) {
appendFilledResult(pFillInfo, output, numOfRes);
} else {
fillResultImpl(pFillInfo, output, (int32_t) numOfRes);
assert(numOfRes == pFillInfo->numOfCurrent);
}
// qDebug("fill:%p, generated fill result, src block:%d, index:%d, brange:%"PRId64"-%"PRId64", currentKey:%"PRId64", current:%d, total:%d, %p",
// pFillInfo, pFillInfo->numOfRows, pFillInfo->index, pFillInfo->start, pFillInfo->end, pFillInfo->currentKey, pFillInfo->numOfCurrent,
// pFillInfo->numOfTotal, pFillInfo->handle);
return numOfRes;
}
#include "os.h"
#include "tarray.h"
#include "function.h"
#include "thash.h"
#include "taggfunction.h"
#include "tscalarfunction.h"
static SHashObj* functionHashTable = NULL;
static void doInitFunctionHashTable() {
int numOfEntries = tListLen(aggFunc);
functionHashTable = taosHashInit(numOfEntries, MurmurHash3_32, false, false);
for (int32_t i = 0; i < numOfEntries; i++) {
int32_t len = (uint32_t)strlen(aggFunc[i].name);
taosHashPut(functionHashTable, aggFunc[i].name, len, (void*)&aggFunc[i], POINTER_BYTES);
}
numOfEntries = tListLen(scalarFunc);
for(int32_t i = 0; i < numOfEntries; ++i) {
int32_t len = (int32_t) strlen(scalarFunc[i].name);
taosHashPut(functionHashTable, scalarFunc[i].name, len, (void*)&scalarFunc[i], POINTER_BYTES);
}
}
static pthread_once_t functionHashTableInit = PTHREAD_ONCE_INIT;
int32_t qIsBuiltinFunction(const char* name, int32_t len) {
pthread_once(&functionHashTableInit, doInitFunctionHashTable);
SAggFunctionInfo** pInfo = taosHashGet(functionHashTable, name, len);
if (pInfo != NULL) {
return (*pInfo)->functionId;
} else {
return -1;
}
}
bool isTagsQuery(SArray* pFunctionIdList) {
int32_t num = (int32_t) taosArrayGetSize(pFunctionIdList);
for (int32_t i = 0; i < num; ++i) {
int16_t f = *(int16_t*) taosArrayGet(pFunctionIdList, i);
// "select count(tbname)" query
// if (functId == FUNCTION_COUNT && pExpr->base.colInfo.colId == TSDB_TBNAME_COLUMN_INDEX) {
// continue;
// }
if (f != FUNCTION_TAGPRJ && f != FUNCTION_TID_TAG) {
return false;
}
}
return true;
}
//bool tscMultiRoundQuery(SArray* pFunctionIdList, int32_t index) {
// if (!UTIL_TABLE_IS_SUPER_TABLE(pQueryInfo->pTableMetaInfo[index])) {
// return false;
// }
//
// size_t numOfExprs = (int32_t) getNumOfExprs(pQueryInfo);
// for(int32_t i = 0; i < numOfExprs; ++i) {
// SExprInfo* pExpr = getExprInfo(pQueryInfo, i);
// if (pExpr->base.functionId == FUNCTION_STDDEV_DST) {
// return true;
// }
// }
//
// return false;
//}
bool isBlockInfoQuery(SArray* pFunctionIdList) {
int32_t num = (int32_t) taosArrayGetSize(pFunctionIdList);
for (int32_t i = 0; i < num; ++i) {
int32_t f = *(int16_t*) taosArrayGet(pFunctionIdList, i);
if (f == FUNCTION_BLKINFO) {
return true;
}
}
return false;
}
bool isProjectionQuery(SArray* pFunctionIdList) {
int32_t num = (int32_t) taosArrayGetSize(pFunctionIdList);
for (int32_t i = 0; i < num; ++i) {
int32_t f = *(int16_t*) taosArrayGet(pFunctionIdList, i);
if (f == FUNCTION_TS_DUMMY) {
continue;
}
if (f != FUNCTION_PRJ && f != FUNCTION_TAGPRJ && f != FUNCTION_TAG &&
f != FUNCTION_TS && f != FUNCTION_ARITHM && f != FUNCTION_DIFF &&
f != FUNCTION_DERIVATIVE) {
return false;
}
}
return true;
}
bool isDiffDerivQuery(SArray* pFunctionIdList) {
int32_t num = (int32_t) taosArrayGetSize(pFunctionIdList);
for (int32_t i = 0; i < num; ++i) {
int32_t f = *(int16_t*) taosArrayGet(pFunctionIdList, i);
if (f == FUNCTION_TS_DUMMY) {
continue;
}
if (f == FUNCTION_DIFF || f == FUNCTION_DERIVATIVE) {
return true;
}
}
return false;
}
bool isPointInterpQuery(SArray* pFunctionIdList) {
int32_t num = (int32_t) taosArrayGetSize(pFunctionIdList);
for (int32_t i = 0; i < num; ++i) {
int32_t f = *(int16_t*) taosArrayGet(pFunctionIdList, i);
if (f == FUNCTION_TAG || f == FUNCTION_TS) {
continue;
}
if (f != FUNCTION_INTERP) {
return false;
}
}
return true;
}
bool isArithmeticQueryOnAggResult(SArray* pFunctionIdList) {
if (isProjectionQuery(pFunctionIdList)) {
return false;
}
assert(0);
// size_t numOfOutput = getNumOfFields(pQueryInfo);
// for(int32_t i = 0; i < numOfOutput; ++i) {
// SExprInfo* pExprInfo = tscFieldInfoGetInternalField(&pQueryInfo->fieldsInfo, i)->pExpr;
// if (pExprInfo->pExpr != NULL) {
// return true;
// }
// }
return false;
}
bool isGroupbyColumn(SArray* pFunctionIdList) {
// STableMetaInfo* pTableMetaInfo = tscGetMetaInfo(pQueryInfo, 0);
// int32_t numOfCols = getNumOfColumns(pTableMetaInfo->pTableMeta);
//
// SGroupbyExpr* pGroupbyExpr = &pQueryInfo->groupbyExpr;
// for (int32_t k = 0; k < pGroupbyExpr->numOfGroupCols; ++k) {
// SColIndex* pIndex = taosArrayGet(pGroupbyExpr->columnInfo, k);
// if (!TSDB_COL_IS_TAG(pIndex->flag) && pIndex->colIndex < numOfCols) { // group by normal columns
// return true;
// }
// }
return false;
}
bool isTopBotQuery(SArray* pFunctionIdList) {
int32_t num = (int32_t) taosArrayGetSize(pFunctionIdList);
for (int32_t i = 0; i < num; ++i) {
int32_t f = *(int16_t*) taosArrayGet(pFunctionIdList, i);
if (f == FUNCTION_TS) {
continue;
}
if (f == FUNCTION_TOP || f == FUNCTION_BOTTOM) {
return true;
}
}
return false;
}
bool isTsCompQuery(SArray* pFunctionIdList) {
int32_t num = (int32_t) taosArrayGetSize(pFunctionIdList);
if (num != 1) {
return false;
}
int32_t f = *(int16_t*) taosArrayGet(pFunctionIdList, 0);
return f == FUNCTION_TS_COMP;
}
bool isTWAQuery(SArray* pFunctionIdList) {
int32_t num = (int32_t) taosArrayGetSize(pFunctionIdList);
for (int32_t i = 0; i < num; ++i) {
int32_t f = *(int16_t*) taosArrayGet(pFunctionIdList, i);
if (f == FUNCTION_TWA) {
return true;
}
}
return false;
}
bool isIrateQuery(SArray* pFunctionIdList) {
int32_t num = (int32_t) taosArrayGetSize(pFunctionIdList);
for (int32_t i = 0; i < num; ++i) {
int32_t f = *(int16_t*) taosArrayGet(pFunctionIdList, i);
if (f == FUNCTION_IRATE) {
return true;
}
}
return false;
}
bool isStabledev(SArray* pFunctionIdList) {
int32_t num = (int32_t) taosArrayGetSize(pFunctionIdList);
for (int32_t i = 0; i < num; ++i) {
int32_t f = *(int16_t*) taosArrayGet(pFunctionIdList, i);
if (f == FUNCTION_STDDEV_DST) {
return true;
}
}
return false;
}
bool needReverseScan(SArray* pFunctionIdList) {
assert(0);
int32_t num = (int32_t) taosArrayGetSize(pFunctionIdList);
for (int32_t i = 0; i < num; ++i) {
int32_t f = *(int16_t*) taosArrayGet(pFunctionIdList, i);
if (f == FUNCTION_TS || f == FUNCTION_TS_DUMMY || f == FUNCTION_TAG) {
continue;
}
// if ((f == FUNCTION_FIRST || f == FUNCTION_FIRST_DST) && pQueryInfo->order.order == TSDB_ORDER_DESC) {
// return true;
// }
if (f == FUNCTION_LAST || f == FUNCTION_LAST_DST) {
// the scan order to acquire the last result of the specified column
// int32_t order = (int32_t)pExpr->base.param[0].i64;
// if (order != pQueryInfo->order.order) {
// return true;
// }
}
}
return false;
}
bool isSimpleAggregateRv(SArray* pFunctionIdList) {
assert(0);
// if (pQueryInfo->interval.interval > 0 || pQueryInfo->sessionWindow.gap > 0) {
// return false;
// }
//
// if (tscIsDiffDerivQuery(pQueryInfo)) {
// return false;
// }
//
// size_t numOfExprs = getNumOfExprs(pQueryInfo);
// for (int32_t i = 0; i < numOfExprs; ++i) {
// SExprInfo* pExpr = getExprInfo(pQueryInfo, i);
// if (pExpr == NULL) {
// continue;
// }
//
// int32_t functionId = pExpr->base.functionId;
// if (functionId < 0) {
// SUdfInfo* pUdfInfo = taosArrayGet(pQueryInfo->pUdfInfo, -1 * functionId - 1);
// if (pUdfInfo->funcType == TSDB_UDF_TYPE_AGGREGATE) {
// return true;
// }
//
// continue;
// }
//
// if (functionId == FUNCTION_TS || functionId == FUNCTION_TS_DUMMY) {
// continue;
// }
//
// if ((!IS_MULTIOUTPUT(aAggs[functionId].status)) ||
// (functionId == FUNCTION_TOP || functionId == FUNCTION_BOTTOM || functionId == FUNCTION_TS_COMP)) {
// return true;
// }
// }
return false;
}
bool isBlockDistQuery(SArray* pFunctionIdList) {
int32_t num = (int32_t) taosArrayGetSize(pFunctionIdList);
int32_t f = *(int16_t*) taosArrayGet(pFunctionIdList, 0);
return (num == 1 && f == FUNCTION_BLKINFO);
}
bool isTwoStageSTableQuery(SArray* pFunctionIdList, int32_t tableIndex) {
// if (pQueryInfo == NULL) {
// return false;
// }
//
// STableMetaInfo* pTableMetaInfo = tscGetMetaInfo(pQueryInfo, tableIndex);
// if (pTableMetaInfo == NULL) {
// return false;
// }
//
// if ((pQueryInfo->type & TSDB_QUERY_TYPE_FREE_RESOURCE) == TSDB_QUERY_TYPE_FREE_RESOURCE) {
// return false;
// }
//
// // for ordered projection query, iterate all qualified vnodes sequentially
// if (tscNonOrderedProjectionQueryOnSTable(pQueryInfo, tableIndex)) {
// return false;
// }
//
// if (!TSDB_QUERY_HAS_TYPE(pQueryInfo->type, TSDB_QUERY_TYPE_STABLE_SUBQUERY) && pQueryInfo->command == TSDB_SQL_SELECT) {
// return UTIL_TABLE_IS_SUPER_TABLE(pTableMetaInfo);
// }
return false;
}
bool isProjectionQueryOnSTable(SArray* pFunctionIdList, int32_t tableIndex) {
// STableMetaInfo* pTableMetaInfo = tscGetMetaInfo(pQueryInfo, tableIndex);
//
// /*
// * In following cases, return false for non ordered project query on super table
// * 1. failed to get tableMeta from server; 2. not a super table; 3. limitation is 0;
// * 4. show queries, instead of a select query
// */
// size_t numOfExprs = getNumOfExprs(pQueryInfo);
// if (pTableMetaInfo == NULL || !UTIL_TABLE_IS_SUPER_TABLE(pTableMetaInfo) ||
// pQueryInfo->command == TSDB_SQL_RETRIEVE_EMPTY_RESULT || numOfExprs == 0) {
// return false;
// }
//
// for (int32_t i = 0; i < numOfExprs; ++i) {
// int32_t functionId = getExprInfo(pQueryInfo, i)->base.functionId;
//
// if (functionId < 0) {
// SUdfInfo* pUdfInfo = taosArrayGet(pQueryInfo->pUdfInfo, -1 * functionId - 1);
// if (pUdfInfo->funcType == TSDB_UDF_TYPE_AGGREGATE) {
// return false;
// }
//
// continue;
// }
//
// if (functionId != FUNCTION_PRJ &&
// functionId != FUNCTION_TAGPRJ &&
// functionId != FUNCTION_TAG &&
// functionId != FUNCTION_TS &&
// functionId != FUNCTION_ARITHM &&
// functionId != FUNCTION_TS_COMP &&
// functionId != FUNCTION_DIFF &&
// functionId != FUNCTION_DERIVATIVE &&
// functionId != FUNCTION_TS_DUMMY &&
// functionId != FUNCTION_TID_TAG) {
// return false;
// }
// }
return true;
}
bool hasTagValOutput(SArray* pFunctionIdList) {
// size_t numOfExprs = getNumOfExprs(pQueryInfo);
// SExprInfo* pExpr1 = getExprInfo(pQueryInfo, 0);
//
// if (numOfExprs == 1 && pExpr1->base.functionId == FUNCTION_TS_COMP) {
// return true;
// }
//
// for (int32_t i = 0; i < numOfExprs; ++i) {
// SExprInfo* pExpr = getExprInfo(pQueryInfo, i);
// if (pExpr == NULL) {
// continue;
// }
//
// // ts_comp column required the tag value for join filter
// if (TSDB_COL_IS_TAG(pExpr->base.colInfo.flag)) {
// return true;
// }
// }
return false;
}
bool timeWindowInterpoRequired(SArray* pFunctionIdList) {
int32_t num = (int32_t) taosArrayGetSize(pFunctionIdList);
for (int32_t i = 0; i < num; ++i) {
int32_t f = *(int16_t*) taosArrayGet(pFunctionIdList, i);
if (f == FUNCTION_TWA || f == FUNCTION_INTERP) {
return true;
}
}
return false;
}
//SQueryType setQueryType(SArray* pFunctionIdList) {
// assert(pFunctionIdList != NULL);
//
//
//}
\ No newline at end of file
/*
* Copyright (c) 2019 TAOS Data, Inc. <jhtao@taosdata.com>
*
* This program is free software: you can use, redistribute, and/or modify
* it under the terms of the GNU Affero General Public License, version 3
* or later ("AGPL"), as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "os.h"
#include "thistogram.h"
#include "taosdef.h"
#include "taosmsg.h"
#include "tlosertree.h"
/**
*
* implement the histogram and percentile_approx based on the paper:
* Yael Ben-Haim, Elad Tom-Tov. A Streaming Parallel Decision Tree Algorithm,
* The Journal of Machine Learning Research.Volume 11, 3/1/2010 pp.849-872
* https://dl.acm.org/citation.cfm?id=1756034
*
* @data 2018-12-14
* @version 0.1
*
*/
static int32_t histogramCreateBin(SHistogramInfo* pHisto, int32_t index, double val);
SHistogramInfo* tHistogramCreate(int32_t numOfEntries) {
/* need one redundant slot */
SHistogramInfo* pHisto = malloc(sizeof(SHistogramInfo) + sizeof(SHistBin) * (numOfEntries + 1));
#if !defined(USE_ARRAYLIST)
pHisto->pList = SSkipListCreate(MAX_SKIP_LIST_LEVEL, TSDB_DATA_TYPE_DOUBLE, sizeof(double));
SInsertSupporter* pss = malloc(sizeof(SInsertSupporter));
pss->numOfEntries = pHisto->maxEntries;
pss->pSkipList = pHisto->pList;
int32_t ret = tLoserTreeCreate1(&pHisto->pLoserTree, numOfEntries, pss, compare);
pss->pTree = pHisto->pLoserTree;
#endif
return tHistogramCreateFrom(pHisto, numOfEntries);
}
SHistogramInfo* tHistogramCreateFrom(void* pBuf, int32_t numOfBins) {
memset(pBuf, 0, sizeof(SHistogramInfo) + sizeof(SHistBin) * (numOfBins + 1));
SHistogramInfo* pHisto = (SHistogramInfo*)pBuf;
pHisto->elems = (SHistBin*)((char*)pBuf + sizeof(SHistogramInfo));
for(int32_t i = 0; i < numOfBins; ++i) {
pHisto->elems[i].val = -DBL_MAX;
}
pHisto->maxEntries = numOfBins;
pHisto->min = DBL_MAX;
pHisto->max = -DBL_MAX;
return pBuf;
}
int32_t tHistogramAdd(SHistogramInfo** pHisto, double val) {
if (*pHisto == NULL) {
*pHisto = tHistogramCreate(MAX_HISTOGRAM_BIN);
}
#if defined(USE_ARRAYLIST)
int32_t idx = histoBinarySearch((*pHisto)->elems, (*pHisto)->numOfEntries, val);
assert(idx >= 0 && idx <= (*pHisto)->maxEntries && (*pHisto)->elems != NULL);
if ((*pHisto)->elems[idx].val == val && idx >= 0) {
(*pHisto)->elems[idx].num += 1;
if ((*pHisto)->numOfEntries == 0) {
(*pHisto)->numOfEntries += 1;
}
} else { /* insert a new slot */
if ((*pHisto)->numOfElems >= 1 && idx < (*pHisto)->numOfEntries) {
if (idx > 0) {
assert((*pHisto)->elems[idx - 1].val <= val);
} else {
assert((*pHisto)->elems[idx].val > val);
}
} else if ((*pHisto)->numOfElems > 0) {
assert((*pHisto)->elems[(*pHisto)->numOfEntries].val <= val);
}
histogramCreateBin(*pHisto, idx, val);
}
#else
tSkipListKey key = tSkipListCreateKey(TSDB_DATA_TYPE_DOUBLE, &val, tDataTypes[TSDB_DATA_TYPE_DOUBLE].nSize);
SHistBin* entry = calloc(1, sizeof(SHistBin));
entry->val = val;
tSkipListNode* pResNode = SSkipListPut((*pHisto)->pList, entry, &key, 0);
SHistBin* pEntry1 = (SHistBin*)pResNode->pData;
pEntry1->index = -1;
tSkipListNode* pLast = NULL;
if (pEntry1->num == 0) { /* it is a new node */
(*pHisto)->numOfEntries += 1;
pEntry1->num += 1;
/* number of entries reaches the upper limitation */
if (pResNode->pForward[0] != NULL) {
/* we need to update the last updated slot in loser tree*/
pEntry1->delta = ((SHistBin*)pResNode->pForward[0]->pData)->val - val;
if ((*pHisto)->ordered) {
int32_t lastIndex = (*pHisto)->maxIndex;
SLoserTreeInfo* pTree = (*pHisto)->pLoserTree;
(*pHisto)->pLoserTree->pNode[lastIndex + pTree->numOfEntries].pData = pResNode;
pEntry1->index = (*pHisto)->pLoserTree->pNode[lastIndex + pTree->numOfEntries].index;
// update the loser tree
if ((*pHisto)->ordered) {
tLoserTreeAdjust(pTree, pEntry1->index + pTree->numOfEntries);
}
tSkipListKey kx =
tSkipListCreateKey(TSDB_DATA_TYPE_DOUBLE, &(*pHisto)->max, tDataTypes[TSDB_DATA_TYPE_DOUBLE].nSize);
pLast = tSkipListGetOne((*pHisto)->pList, &kx);
}
} else {
/* this node located at the last position of the skiplist, we do not
* update the loser-tree */
pEntry1->delta = DBL_MAX;
pLast = pResNode;
}
if (pResNode->pBackward[0] != &(*pHisto)->pList->pHead) {
SHistBin* pPrevEntry = (SHistBin*)pResNode->pBackward[0]->pData;
pPrevEntry->delta = val - pPrevEntry->val;
SLoserTreeInfo* pTree = (*pHisto)->pLoserTree;
if ((*pHisto)->ordered) {
tLoserTreeAdjust(pTree, pPrevEntry->index + pTree->numOfEntries);
tLoserTreeDisplay(pTree);
}
}
if ((*pHisto)->numOfEntries >= (*pHisto)->maxEntries + 1) {
// set the right value for loser-tree
assert((*pHisto)->pLoserTree != NULL);
if (!(*pHisto)->ordered) {
SSkipListPrint((*pHisto)->pList, 1);
SLoserTreeInfo* pTree = (*pHisto)->pLoserTree;
tSkipListNode* pHead = (*pHisto)->pList->pHead.pForward[0];
tSkipListNode* p1 = pHead;
printf("\n");
while (p1 != NULL) {
printf("%f\t", ((SHistBin*)(p1->pData))->delta);
p1 = p1->pForward[0];
}
printf("\n");
/* last one in skiplist is ignored */
for (int32_t i = pTree->numOfEntries; i < pTree->totalEntries; ++i) {
pTree->pNode[i].pData = pHead;
pTree->pNode[i].index = i - pTree->numOfEntries;
SHistBin* pBin = (SHistBin*)pHead->pData;
pBin->index = pTree->pNode[i].index;
pHead = pHead->pForward[0];
}
pLast = pHead;
for (int32_t i = 0; i < pTree->numOfEntries; ++i) {
pTree->pNode[i].index = -1;
}
tLoserTreeDisplay(pTree);
for (int32_t i = pTree->totalEntries - 1; i >= pTree->numOfEntries; i--) {
tLoserTreeAdjust(pTree, i);
}
tLoserTreeDisplay(pTree);
(*pHisto)->ordered = true;
}
printf("delta is:%lf\n", pEntry1->delta);
SSkipListPrint((*pHisto)->pList, 1);
/* the chosen node */
tSkipListNode* pNode = (*pHisto)->pLoserTree->pNode[0].pData;
SHistBin* pEntry = (SHistBin*)pNode->pData;
tSkipListNode* pNext = pNode->pForward[0];
SHistBin* pNextEntry = (SHistBin*)pNext->pData;
assert(pNextEntry->val - pEntry->val == pEntry->delta);
double newVal = (pEntry->val * pEntry->num + pNextEntry->val * pNextEntry->num) / (pEntry->num + pNextEntry->num);
pEntry->val = newVal;
pNode->key.dKey = newVal;
pEntry->num = pEntry->num + pNextEntry->num;
// update delta value in current node
pEntry->delta = (pNextEntry->delta + pNextEntry->val) - pEntry->val;
// reset delta value in the previous node
SHistBin* pPrevEntry = (SHistBin*)pNode->pBackward[0]->pData;
if (pPrevEntry) {
pPrevEntry->delta = pEntry->val - pPrevEntry->val;
}
SLoserTreeInfo* pTree = (*pHisto)->pLoserTree;
if (pNextEntry->index != -1) {
(*pHisto)->maxIndex = pNextEntry->index;
// set the last element in skiplist, of which delta is FLT_MAX;
pTree->pNode[pNextEntry->index + pTree->numOfEntries].pData = pLast;
((SHistBin*)pLast->pData)->index = pNextEntry->index;
int32_t f = pTree->pNode[pNextEntry->index + pTree->numOfEntries].index;
printf("disappear index is:%d\n", f);
}
tLoserTreeAdjust(pTree, pEntry->index + pTree->numOfEntries);
// remove the next node in skiplist
tSkipListRemoveNode((*pHisto)->pList, pNext);
SSkipListPrint((*pHisto)->pList, 1);
tLoserTreeDisplay((*pHisto)->pLoserTree);
} else { // add to heap
if (pResNode->pForward[0] != NULL) {
pEntry1->delta = ((SHistBin*)pResNode->pForward[0]->pData)->val - val;
} else {
pEntry1->delta = DBL_MAX;
}
if (pResNode->pBackward[0] != &(*pHisto)->pList->pHead) {
SHistBin* pPrevEntry = (SHistBin*)pResNode->pBackward[0]->pData;
pEntry1->delta = val - pPrevEntry->val;
}
printf("delta is:%9lf\n", pEntry1->delta);
}
} else {
SHistBin* pEntry = (SHistBin*)pResNode->pData;
assert(pEntry->val == val);
pEntry->num += 1;
}
#endif
if (val > (*pHisto)->max) {
(*pHisto)->max = val;
}
if (val < (*pHisto)->min) {
(*pHisto)->min = val;
}
(*pHisto)->numOfElems += 1;
return 0;
}
int32_t histoBinarySearch(SHistBin* pEntry, int32_t len, double val) {
int32_t end = len - 1;
int32_t start = 0;
while (start <= end) {
int32_t mid = (end - start) / 2 + start;
if (pEntry[mid].val == val) {
return mid;
}
if (pEntry[mid].val < val) {
start = mid + 1;
} else {
end = mid - 1;
}
}
int32_t ret = start > end ? start : end;
if (ret < 0) {
return 0;
} else {
return ret;
}
}
static void histogramMergeImpl(SHistBin* pHistBin, int32_t* size) {
#if defined(USE_ARRAYLIST)
int32_t oldSize = *size;
double delta = DBL_MAX;
int32_t index = -1;
for (int32_t i = 1; i < oldSize; ++i) {
double d = pHistBin[i].val - pHistBin[i - 1].val;
if (d < delta) {
delta = d;
index = i - 1;
}
}
SHistBin* s1 = &pHistBin[index];
SHistBin* s2 = &pHistBin[index + 1];
double newVal = (s1->val * s1->num + s2->val * s2->num) / (s1->num + s2->num);
s1->val = newVal;
s1->num = s1->num + s2->num;
memmove(&pHistBin[index + 1], &pHistBin[index + 2], (oldSize - index - 2) * sizeof(SHistBin));
(*size) -= 1;
#endif
}
/* optimize this procedure */
int32_t histogramCreateBin(SHistogramInfo* pHisto, int32_t index, double val) {
#if defined(USE_ARRAYLIST)
int32_t remain = pHisto->numOfEntries - index;
if (remain > 0) {
memmove(&pHisto->elems[index + 1], &pHisto->elems[index], sizeof(SHistBin) * remain);
}
assert(index >= 0 && index <= pHisto->maxEntries);
pHisto->elems[index].num = 1;
pHisto->elems[index].val = val;
pHisto->numOfEntries += 1;
/* we need to merge the slot */
if (pHisto->numOfEntries == pHisto->maxEntries + 1) {
histogramMergeImpl(pHisto->elems, &pHisto->numOfEntries);
pHisto->elems[pHisto->maxEntries].val = 0;
pHisto->elems[pHisto->maxEntries].num = 0;
}
#endif
assert(pHisto->numOfEntries <= pHisto->maxEntries);
return 0;
}
void tHistogramDestroy(SHistogramInfo** pHisto) {
if (*pHisto == NULL) {
return;
}
free(*pHisto);
*pHisto = NULL;
}
void tHistogramPrint(SHistogramInfo* pHisto) {
printf("total entries: %d, elements: %"PRId64 "\n", pHisto->numOfEntries, pHisto->numOfElems);
#if defined(USE_ARRAYLIST)
for (int32_t i = 0; i < pHisto->numOfEntries; ++i) {
printf("%d: (%f, %" PRId64 ")\n", i + 1, pHisto->elems[i].val, pHisto->elems[i].num);
}
#else
tSkipListNode* pNode = pHisto->pList->pHead.pForward[0];
for (int32_t i = 0; i < pHisto->numOfEntries; ++i) {
SHistBin* pEntry = (SHistBin*)pNode->pData;
printf("%d: (%f, %" PRId64 ")\n", i + 1, pEntry->val, pEntry->num);
pNode = pNode->pForward[0];
}
#endif
}
/**
* Estimated number of points in the interval (−inf,b].
* @param pHisto
* @param v
*/
int64_t tHistogramSum(SHistogramInfo* pHisto, double v) {
#if defined(USE_ARRAYLIST)
int32_t slotIdx = histoBinarySearch(pHisto->elems, pHisto->numOfEntries, v);
if (pHisto->elems[slotIdx].val != v) {
slotIdx -= 1;
if (slotIdx < 0) {
slotIdx = 0;
assert(v <= pHisto->elems[slotIdx].val);
} else {
assert(v >= pHisto->elems[slotIdx].val);
if (slotIdx + 1 < pHisto->numOfEntries) {
assert(v < pHisto->elems[slotIdx + 1].val);
}
}
}
double m1 = (double)pHisto->elems[slotIdx].num;
double v1 = pHisto->elems[slotIdx].val;
double m2 = (double)pHisto->elems[slotIdx + 1].num;
double v2 = pHisto->elems[slotIdx + 1].val;
double estNum = m1 + (m2 - m1) * (v - v1) / (v2 - v1);
double s1 = (m1 + estNum) * (v - v1) / (2 * (v2 - v1));
for (int32_t i = 0; i < slotIdx; ++i) {
s1 += pHisto->elems[i].num;
}
s1 = s1 + m1 / 2;
return (int64_t)s1;
#endif
}
double* tHistogramUniform(SHistogramInfo* pHisto, double* ratio, int32_t num) {
#if defined(USE_ARRAYLIST)
double* pVal = malloc(num * sizeof(double));
for (int32_t i = 0; i < num; ++i) {
double numOfElem = (ratio[i] / 100) * pHisto->numOfElems;
if (numOfElem == 0) {
pVal[i] = pHisto->min;
continue;
} else if (numOfElem <= pHisto->elems[0].num) {
pVal[i] = pHisto->elems[0].val;
continue;
} else if (numOfElem == pHisto->numOfElems) {
pVal[i] = pHisto->max;
continue;
}
int32_t j = 0;
int64_t total = 0;
while (j < pHisto->numOfEntries) {
total += pHisto->elems[j].num;
if (total <= numOfElem && total + pHisto->elems[j + 1].num > numOfElem) {
break;
}
j += 1;
}
assert(total <= numOfElem && total + pHisto->elems[j + 1].num > numOfElem);
double delta = numOfElem - total;
if (fabs(delta) < FLT_EPSILON) {
pVal[i] = pHisto->elems[j].val;
}
double start = (double)pHisto->elems[j].num;
double range = pHisto->elems[j + 1].num - start;
if (range == 0) {
pVal[i] = (pHisto->elems[j + 1].val - pHisto->elems[j].val) * delta / start + pHisto->elems[j].val;
} else {
double factor = (-2 * start + sqrt(4 * start * start - 4 * range * (-2 * delta))) / (2 * range);
pVal[i] = pHisto->elems[j].val + (pHisto->elems[j + 1].val - pHisto->elems[j].val) * factor;
}
}
#else
double* pVal = malloc(num * sizeof(double));
for (int32_t i = 0; i < num; ++i) {
double numOfElem = ratio[i] * pHisto->numOfElems;
tSkipListNode* pFirst = pHisto->pList->pHead.pForward[0];
SHistBin* pEntry = (SHistBin*)pFirst->pData;
if (numOfElem == 0) {
pVal[i] = pHisto->min;
printf("i/numofSlot: %f, v:%f, %f\n", ratio[i], numOfElem, pVal[i]);
continue;
} else if (numOfElem <= pEntry->num) {
pVal[i] = pEntry->val;
printf("i/numofSlot: %f, v:%f, %f\n", ratio[i], numOfElem, pVal[i]);
continue;
} else if (numOfElem == pHisto->numOfElems) {
pVal[i] = pHisto->max;
printf("i/numofSlot: %f, v:%f, %f\n", ratio[i], numOfElem, pVal[i]);
continue;
}
int32_t j = 0;
int64_t total = 0;
SHistBin* pPrev = pEntry;
while (j < pHisto->numOfEntries) {
if (total <= numOfElem && total + pEntry->num > numOfElem) {
break;
}
total += pEntry->num;
pPrev = pEntry;
pFirst = pFirst->pForward[0];
pEntry = (SHistBin*)pFirst->pData;
j += 1;
}
assert(total <= numOfElem && total + pEntry->num > numOfElem);
double delta = numOfElem - total;
if (fabs(delta) < FLT_EPSILON) {
// printf("i/numofSlot: %f, v:%f, %f\n",
// (double)i/numOfSlots, numOfElem, pHisto->elems[j].val);
pVal[i] = pPrev->val;
}
double start = pPrev->num;
double range = pEntry->num - start;
if (range == 0) {
pVal[i] = (pEntry->val - pPrev->val) * delta / start + pPrev->val;
} else {
double factor = (-2 * start + sqrt(4 * start * start - 4 * range * (-2 * delta))) / (2 * range);
pVal[i] = pPrev->val + (pEntry->val - pPrev->val) * factor;
}
// printf("i/numofSlot: %f, v:%f, %f\n", (double)i/numOfSlots,
// numOfElem, val);
}
#endif
return pVal;
}
SHistogramInfo* tHistogramMerge(SHistogramInfo* pHisto1, SHistogramInfo* pHisto2, int32_t numOfEntries) {
SHistogramInfo* pResHistogram = tHistogramCreate(numOfEntries);
// error in histogram info
if (pHisto1->numOfEntries > MAX_HISTOGRAM_BIN || pHisto2->numOfEntries > MAX_HISTOGRAM_BIN) {
return pResHistogram;
}
SHistBin* pHistoBins = calloc(1, sizeof(SHistBin) * (pHisto1->numOfEntries + pHisto2->numOfEntries));
int32_t i = 0, j = 0, k = 0;
while (i < pHisto1->numOfEntries && j < pHisto2->numOfEntries) {
if (pHisto1->elems[i].val < pHisto2->elems[j].val) {
pHistoBins[k++] = pHisto1->elems[i++];
} else if (pHisto1->elems[i].val > pHisto2->elems[j].val) {
pHistoBins[k++] = pHisto2->elems[j++];
} else {
pHistoBins[k] = pHisto1->elems[i++];
pHistoBins[k++].num += pHisto2->elems[j++].num;
}
}
if (i < pHisto1->numOfEntries) {
int32_t remain = pHisto1->numOfEntries - i;
memcpy(&pHistoBins[k], &pHisto1->elems[i], sizeof(SHistBin) * remain);
k += remain;
}
if (j < pHisto2->numOfEntries) {
int32_t remain = pHisto2->numOfEntries - j;
memcpy(&pHistoBins[k], &pHisto2->elems[j], sizeof(SHistBin) * remain);
k += remain;
}
/* update other information */
pResHistogram->numOfElems = pHisto1->numOfElems + pHisto2->numOfElems;
pResHistogram->min = (pHisto1->min < pHisto2->min) ? pHisto1->min : pHisto2->min;
pResHistogram->max = (pHisto1->max > pHisto2->max) ? pHisto1->max : pHisto2->max;
while (k > numOfEntries) {
histogramMergeImpl(pHistoBins, &k);
}
pResHistogram->numOfEntries = k;
memcpy(pResHistogram->elems, pHistoBins, sizeof(SHistBin) * k);
free(pHistoBins);
return pResHistogram;
}
/*
* Copyright (c) 2019 TAOS Data, Inc. <jhtao@taosdata.com>
*
* This program is free software: you can use, redistribute, and/or modify
* it under the terms of the GNU Affero General Public License, version 3
* or later ("AGPL"), as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "os.h"
#include "tpercentile.h"
#include "tpagedfile.h"
#include "taosdef.h"
#include "tcompare.h"
#include "ttypes.h"
#define DEFAULT_NUM_OF_SLOT 1024
int32_t getGroupId(int32_t numOfSlots, int32_t slotIndex, int32_t times) {
return (times * numOfSlots) + slotIndex;
}
static SFilePage *loadDataFromFilePage(tMemBucket *pMemBucket, int32_t slotIdx) {
SFilePage *buffer = (SFilePage *)calloc(1, pMemBucket->bytes * pMemBucket->pSlots[slotIdx].info.size + sizeof(SFilePage));
int32_t groupId = getGroupId(pMemBucket->numOfSlots, slotIdx, pMemBucket->times);
SIDList list = getDataBufPagesIdList(pMemBucket->pBuffer, groupId);
int32_t offset = 0;
for(int32_t i = 0; i < list->size; ++i) {
SPageInfo* pgInfo = *(SPageInfo**) taosArrayGet(list, i);
SFilePage* pg = getResBufPage(pMemBucket->pBuffer, pgInfo->pageId);
memcpy(buffer->data + offset, pg->data, (size_t)(pg->num * pMemBucket->bytes));
offset += (int32_t)(pg->num * pMemBucket->bytes);
}
qsort(buffer->data, pMemBucket->pSlots[slotIdx].info.size, pMemBucket->bytes, pMemBucket->comparFn);
return buffer;
}
static void resetBoundingBox(MinMaxEntry* range, int32_t type) {
if (IS_SIGNED_NUMERIC_TYPE(type)) {
range->i64MaxVal = INT64_MIN;
range->i64MinVal = INT64_MAX;
} else if (IS_UNSIGNED_NUMERIC_TYPE(type)) {
range->u64MaxVal = 0;
range->u64MinVal = UINT64_MAX;
} else {
range->dMaxVal = -DBL_MAX;
range->dMinVal = DBL_MAX;
}
}
static int32_t setBoundingBox(MinMaxEntry* range, int16_t type, double minval, double maxval) {
if (minval > maxval) {
return -1;
}
if (IS_SIGNED_NUMERIC_TYPE(type)) {
range->i64MinVal = (int64_t) minval;
range->i64MaxVal = (int64_t) maxval;
} else if (IS_UNSIGNED_NUMERIC_TYPE(type)){
range->u64MinVal = (uint64_t) minval;
range->u64MaxVal = (uint64_t) maxval;
} else {
range->dMinVal = minval;
range->dMaxVal = maxval;
}
return 0;
}
static void resetPosInfo(SSlotInfo* pInfo) {
pInfo->size = 0;
pInfo->pageId = -1;
pInfo->data = NULL;
}
double findOnlyResult(tMemBucket *pMemBucket) {
assert(pMemBucket->total == 1);
for (int32_t i = 0; i < pMemBucket->numOfSlots; ++i) {
tMemBucketSlot *pSlot = &pMemBucket->pSlots[i];
if (pSlot->info.size == 0) {
continue;
}
int32_t groupId = getGroupId(pMemBucket->numOfSlots, i, pMemBucket->times);
SIDList list = getDataBufPagesIdList(pMemBucket->pBuffer, groupId);
assert(list->size == 1);
SPageInfo* pgInfo = (SPageInfo*) taosArrayGetP(list, 0);
SFilePage* pPage = getResBufPage(pMemBucket->pBuffer, pgInfo->pageId);
assert(pPage->num == 1);
double v = 0;
GET_TYPED_DATA(v, double, pMemBucket->type, pPage->data);
return v;
}
return 0;
}
int32_t tBucketIntHash(tMemBucket *pBucket, const void *value) {
int64_t v = 0;
GET_TYPED_DATA(v, int64_t, pBucket->type, value);
int32_t index = -1;
if (v > pBucket->range.i64MaxVal || v < pBucket->range.i64MinVal) {
return index;
}
// divide the value range into 1024 buckets
uint64_t span = pBucket->range.i64MaxVal - pBucket->range.i64MinVal;
if (span < pBucket->numOfSlots) {
int64_t delta = v - pBucket->range.i64MinVal;
index = (delta % pBucket->numOfSlots);
} else {
double slotSpan = (double)span / pBucket->numOfSlots;
index = (int32_t)((v - pBucket->range.i64MinVal) / slotSpan);
if (v == pBucket->range.i64MaxVal) {
index -= 1;
}
}
assert(index >= 0 && index < pBucket->numOfSlots);
return index;
}
int32_t tBucketUintHash(tMemBucket *pBucket, const void *value) {
int64_t v = 0;
GET_TYPED_DATA(v, uint64_t, pBucket->type, value);
int32_t index = -1;
if (v > pBucket->range.u64MaxVal || v < pBucket->range.u64MinVal) {
return index;
}
// divide the value range into 1024 buckets
uint64_t span = pBucket->range.u64MaxVal - pBucket->range.u64MinVal;
if (span < pBucket->numOfSlots) {
int64_t delta = v - pBucket->range.u64MinVal;
index = (int32_t) (delta % pBucket->numOfSlots);
} else {
double slotSpan = (double)span / pBucket->numOfSlots;
index = (int32_t)((v - pBucket->range.u64MinVal) / slotSpan);
if (v == pBucket->range.u64MaxVal) {
index -= 1;
}
}
assert(index >= 0 && index < pBucket->numOfSlots);
return index;
}
int32_t tBucketDoubleHash(tMemBucket *pBucket, const void *value) {
double v = 0;
if (pBucket->type == TSDB_DATA_TYPE_FLOAT) {
v = GET_FLOAT_VAL(value);
} else {
v = GET_DOUBLE_VAL(value);
}
int32_t index = -1;
if (v > pBucket->range.dMaxVal || v < pBucket->range.dMinVal) {
return index;
}
// divide a range of [dMinVal, dMaxVal] into 1024 buckets
double span = pBucket->range.dMaxVal - pBucket->range.dMinVal;
if (span < pBucket->numOfSlots) {
int32_t delta = (int32_t)(v - pBucket->range.dMinVal);
index = (delta % pBucket->numOfSlots);
} else {
double slotSpan = span / pBucket->numOfSlots;
index = (int32_t)((v - pBucket->range.dMinVal) / slotSpan);
if (v == pBucket->range.dMaxVal) {
index -= 1;
}
}
assert(index >= 0 && index < pBucket->numOfSlots);
return index;
}
static __perc_hash_func_t getHashFunc(int32_t type) {
if (IS_SIGNED_NUMERIC_TYPE(type)) {
return tBucketIntHash;
} else if (IS_UNSIGNED_NUMERIC_TYPE(type)) {
return tBucketUintHash;
} else {
return tBucketDoubleHash;
}
}
static void resetSlotInfo(tMemBucket* pBucket) {
for (int32_t i = 0; i < pBucket->numOfSlots; ++i) {
tMemBucketSlot* pSlot = &pBucket->pSlots[i];
resetBoundingBox(&pSlot->range, pBucket->type);
resetPosInfo(&pSlot->info);
}
}
tMemBucket *tMemBucketCreate(int16_t nElemSize, int16_t dataType, double minval, double maxval) {
tMemBucket *pBucket = (tMemBucket *)calloc(1, sizeof(tMemBucket));
if (pBucket == NULL) {
return NULL;
}
pBucket->numOfSlots = DEFAULT_NUM_OF_SLOT;
pBucket->bufPageSize = DEFAULT_PAGE_SIZE * 4; // 4k per page
pBucket->type = dataType;
pBucket->bytes = nElemSize;
pBucket->total = 0;
pBucket->times = 1;
pBucket->maxCapacity = 200000;
if (setBoundingBox(&pBucket->range, pBucket->type, minval, maxval) != 0) {
// qError("MemBucket:%p, invalid value range: %f-%f", pBucket, minval, maxval);
free(pBucket);
return NULL;
}
pBucket->elemPerPage = (pBucket->bufPageSize - sizeof(SFilePage))/pBucket->bytes;
pBucket->comparFn = getKeyComparFunc(pBucket->type, TSDB_ORDER_ASC);
pBucket->hashFunc = getHashFunc(pBucket->type);
if (pBucket->hashFunc == NULL) {
// qError("MemBucket:%p, not support data type %d, failed", pBucket, pBucket->type);
free(pBucket);
return NULL;
}
pBucket->pSlots = (tMemBucketSlot *)calloc(pBucket->numOfSlots, sizeof(tMemBucketSlot));
if (pBucket->pSlots == NULL) {
free(pBucket);
return NULL;
}
resetSlotInfo(pBucket);
int32_t ret = createDiskbasedResultBuffer(&pBucket->pBuffer, pBucket->bufPageSize, pBucket->bufPageSize * 512, 1);
if (ret != 0) {
tMemBucketDestroy(pBucket);
return NULL;
}
// qDebug("MemBucket:%p, elem size:%d", pBucket, pBucket->bytes);
return pBucket;
}
void tMemBucketDestroy(tMemBucket *pBucket) {
if (pBucket == NULL) {
return;
}
destroyResultBuf(pBucket->pBuffer);
tfree(pBucket->pSlots);
tfree(pBucket);
}
void tMemBucketUpdateBoundingBox(MinMaxEntry *r, const char *data, int32_t dataType) {
if (IS_SIGNED_NUMERIC_TYPE(dataType)) {
int64_t v = 0;
GET_TYPED_DATA(v, int64_t, dataType, data);
if (r->i64MinVal > v) {
r->i64MinVal = v;
}
if (r->i64MaxVal < v) {
r->i64MaxVal = v;
}
} else if (IS_UNSIGNED_NUMERIC_TYPE(dataType)) {
uint64_t v = 0;
GET_TYPED_DATA(v, uint64_t, dataType, data);
if (r->i64MinVal > v) {
r->i64MinVal = v;
}
if (r->i64MaxVal < v) {
r->i64MaxVal = v;
}
} else if (IS_FLOAT_TYPE(dataType)) {
double v = 0;
GET_TYPED_DATA(v, double, dataType, data);
if (r->dMinVal > v) {
r->dMinVal = v;
}
if (r->dMaxVal < v) {
r->dMaxVal = v;
}
} else {
assert(0);
}
}
/*
* in memory bucket, we only accept data array list
*/
int32_t tMemBucketPut(tMemBucket *pBucket, const void *data, size_t size) {
assert(pBucket != NULL && data != NULL && size > 0);
int32_t count = 0;
int32_t bytes = pBucket->bytes;
for (int32_t i = 0; i < size; ++i) {
char *d = (char *) data + i * bytes;
int32_t index = (pBucket->hashFunc)(pBucket, d);
if (index < 0) {
continue;
}
count += 1;
tMemBucketSlot *pSlot = &pBucket->pSlots[index];
tMemBucketUpdateBoundingBox(&pSlot->range, d, pBucket->type);
// ensure available memory pages to allocate
int32_t groupId = getGroupId(pBucket->numOfSlots, index, pBucket->times);
int32_t pageId = -1;
if (pSlot->info.data == NULL || pSlot->info.data->num >= pBucket->elemPerPage) {
if (pSlot->info.data != NULL) {
assert(pSlot->info.data->num >= pBucket->elemPerPage && pSlot->info.size > 0);
// keep the pointer in memory
releaseResBufPage(pBucket->pBuffer, pSlot->info.data);
pSlot->info.data = NULL;
}
pSlot->info.data = getNewDataBuf(pBucket->pBuffer, groupId, &pageId);
pSlot->info.pageId = pageId;
}
memcpy(pSlot->info.data->data + pSlot->info.data->num * pBucket->bytes, d, pBucket->bytes);
pSlot->info.data->num += 1;
pSlot->info.size += 1;
}
pBucket->total += count;
return 0;
}
////////////////////////////////////////////////////////////////////////////////////////////
/*
*
* now, we need to find the minimum value of the next slot for
* interpolating the percentile value
* j is the last slot of current segment, we need to get the first
* slot of the next segment.
*/
static MinMaxEntry getMinMaxEntryOfNextSlotWithData(tMemBucket *pMemBucket, int32_t slotIdx) {
int32_t j = slotIdx + 1;
while (j < pMemBucket->numOfSlots && (pMemBucket->pSlots[j].info.size == 0)) {
++j;
}
assert(j < pMemBucket->numOfSlots);
return pMemBucket->pSlots[j].range;
}
static bool isIdenticalData(tMemBucket *pMemBucket, int32_t index);
static double getIdenticalDataVal(tMemBucket* pMemBucket, int32_t slotIndex) {
assert(isIdenticalData(pMemBucket, slotIndex));
tMemBucketSlot *pSlot = &pMemBucket->pSlots[slotIndex];
double finalResult = 0.0;
if (IS_SIGNED_NUMERIC_TYPE(pMemBucket->type)) {
finalResult = (double) pSlot->range.i64MinVal;
} else if (IS_UNSIGNED_NUMERIC_TYPE(pMemBucket->type)) {
finalResult = (double) pSlot->range.u64MinVal;
} else {
finalResult = (double) pSlot->range.dMinVal;
}
return finalResult;
}
double getPercentileImpl(tMemBucket *pMemBucket, int32_t count, double fraction) {
int32_t num = 0;
for (int32_t i = 0; i < pMemBucket->numOfSlots; ++i) {
tMemBucketSlot *pSlot = &pMemBucket->pSlots[i];
if (pSlot->info.size == 0) {
continue;
}
// required value in current slot
if (num < (count + 1) && num + pSlot->info.size >= (count + 1)) {
if (pSlot->info.size + num == (count + 1)) {
/*
* now, we need to find the minimum value of the next slot for interpolating the percentile value
* j is the last slot of current segment, we need to get the first slot of the next segment.
*/
MinMaxEntry next = getMinMaxEntryOfNextSlotWithData(pMemBucket, i);
double maxOfThisSlot = 0;
double minOfNextSlot = 0;
if (IS_SIGNED_NUMERIC_TYPE(pMemBucket->type)) {
maxOfThisSlot = (double) pSlot->range.i64MaxVal;
minOfNextSlot = (double) next.i64MinVal;
} else if (IS_UNSIGNED_NUMERIC_TYPE(pMemBucket->type)) {
maxOfThisSlot = (double) pSlot->range.u64MaxVal;
minOfNextSlot = (double) next.u64MinVal;
} else {
maxOfThisSlot = (double) pSlot->range.dMaxVal;
minOfNextSlot = (double) next.dMinVal;
}
assert(minOfNextSlot > maxOfThisSlot);
double val = (1 - fraction) * maxOfThisSlot + fraction * minOfNextSlot;
return val;
}
if (pSlot->info.size <= pMemBucket->maxCapacity) {
// data in buffer and file are merged together to be processed.
SFilePage *buffer = loadDataFromFilePage(pMemBucket, i);
int32_t currentIdx = count - num;
char *thisVal = buffer->data + pMemBucket->bytes * currentIdx;
char *nextVal = thisVal + pMemBucket->bytes;
double td = 1.0, nd = 1.0;
GET_TYPED_DATA(td, double, pMemBucket->type, thisVal);
GET_TYPED_DATA(nd, double, pMemBucket->type, nextVal);
double val = (1 - fraction) * td + fraction * nd;
tfree(buffer);
return val;
} else { // incur a second round bucket split
if (isIdenticalData(pMemBucket, i)) {
return getIdenticalDataVal(pMemBucket, i);
}
// try next round
pMemBucket->times += 1;
// qDebug("MemBucket:%p, start next round data bucketing, time:%d", pMemBucket, pMemBucket->times);
pMemBucket->range = pSlot->range;
pMemBucket->total = 0;
resetSlotInfo(pMemBucket);
int32_t groupId = getGroupId(pMemBucket->numOfSlots, i, pMemBucket->times - 1);
SIDList list = getDataBufPagesIdList(pMemBucket->pBuffer, groupId);
assert(list->size > 0);
for (int32_t f = 0; f < list->size; ++f) {
SPageInfo *pgInfo = *(SPageInfo **)taosArrayGet(list, f);
SFilePage *pg = getResBufPage(pMemBucket->pBuffer, pgInfo->pageId);
tMemBucketPut(pMemBucket, pg->data, (int32_t)pg->num);
releaseResBufPageInfo(pMemBucket->pBuffer, pgInfo);
}
return getPercentileImpl(pMemBucket, count - num, fraction);
}
} else {
num += pSlot->info.size;
}
}
return 0;
}
double getPercentile(tMemBucket *pMemBucket, double percent) {
if (pMemBucket->total == 0) {
return 0.0;
}
// if only one elements exists, return it
if (pMemBucket->total == 1) {
return findOnlyResult(pMemBucket);
}
percent = fabs(percent);
// find the min/max value, no need to scan all data in bucket
if (fabs(percent - 100.0) < DBL_EPSILON || (percent < DBL_EPSILON)) {
MinMaxEntry* pRange = &pMemBucket->range;
if (IS_SIGNED_NUMERIC_TYPE(pMemBucket->type)) {
double v = (double)(fabs(percent - 100) < DBL_EPSILON ? pRange->i64MaxVal : pRange->i64MinVal);
return v;
} else if (IS_UNSIGNED_NUMERIC_TYPE(pMemBucket->type)) {
double v = (double)(fabs(percent - 100) < DBL_EPSILON ? pRange->u64MaxVal : pRange->u64MinVal);
return v;
} else {
return fabs(percent - 100) < DBL_EPSILON? pRange->dMaxVal:pRange->dMinVal;
}
}
double percentVal = (percent * (pMemBucket->total - 1)) / ((double)100.0);
// do put data by using buckets
int32_t orderIdx = (int32_t)percentVal;
return getPercentileImpl(pMemBucket, orderIdx, percentVal - orderIdx);
}
/*
* check if data in one slot are all identical only need to compare with the bounding box
*/
bool isIdenticalData(tMemBucket *pMemBucket, int32_t index) {
tMemBucketSlot *pSeg = &pMemBucket->pSlots[index];
if (IS_FLOAT_TYPE(pMemBucket->type)) {
return fabs(pSeg->range.dMaxVal - pSeg->range.dMinVal) < DBL_EPSILON;
} else {
return pSeg->range.i64MinVal == pSeg->range.i64MaxVal;
}
}
#include "tscalarfunction.h"
SScalarFunctionInfo scalarFunc[1] = {
{
},
};
#include "ttszip.h"
#include <tglobal.h>
#include "taoserror.h"
#include "tcompression.h"
#include "tutil.h"
static int32_t getDataStartOffset();
static void TSBufUpdateGroupInfo(STSBuf* pTSBuf, int32_t index, STSGroupBlockInfo* pBlockInfo);
static STSBuf* allocResForTSBuf(STSBuf* pTSBuf);
static int32_t STSBufUpdateHeader(STSBuf* pTSBuf, STSBufFileHeader* pHeader);
/**
* todo error handling
* support auto closeable tmp file
* @param path
* @return
*/
STSBuf* tsBufCreate(bool autoDelete, int32_t order) {
STSBuf* pTSBuf = calloc(1, sizeof(STSBuf));
if (pTSBuf == NULL) {
return NULL;
}
pTSBuf->autoDelete = autoDelete;
taosGetTmpfilePath(tsTempDir, "join", pTSBuf->path);
pTSBuf->f = fopen(pTSBuf->path, "wb+");
if (pTSBuf->f == NULL) {
free(pTSBuf);
return NULL;
}
if (!autoDelete) {
remove(pTSBuf->path);
}
if (NULL == allocResForTSBuf(pTSBuf)) {
return NULL;
}
// update the header info
STSBufFileHeader header = {.magic = TS_COMP_FILE_MAGIC, .numOfGroup = pTSBuf->numOfGroups, .tsOrder = TSDB_ORDER_ASC};
STSBufUpdateHeader(pTSBuf, &header);
tsBufResetPos(pTSBuf);
pTSBuf->cur.order = TSDB_ORDER_ASC;
pTSBuf->tsOrder = order;
return pTSBuf;
}
STSBuf* tsBufCreateFromFile(const char* path, bool autoDelete) {
STSBuf* pTSBuf = calloc(1, sizeof(STSBuf));
if (pTSBuf == NULL) {
return NULL;
}
pTSBuf->autoDelete = autoDelete;
tstrncpy(pTSBuf->path, path, sizeof(pTSBuf->path));
pTSBuf->f = fopen(pTSBuf->path, "rb+");
if (pTSBuf->f == NULL) {
free(pTSBuf);
return NULL;
}
if (allocResForTSBuf(pTSBuf) == NULL) {
return NULL;
}
// validate the file magic number
STSBufFileHeader header = {0};
int32_t ret = fseek(pTSBuf->f, 0, SEEK_SET);
UNUSED(ret);
size_t sz = fread(&header, 1, sizeof(STSBufFileHeader), pTSBuf->f);
UNUSED(sz);
// invalid file
if (header.magic != TS_COMP_FILE_MAGIC) {
tsBufDestroy(pTSBuf);
return NULL;
}
if (header.numOfGroup > pTSBuf->numOfAlloc) {
pTSBuf->numOfAlloc = header.numOfGroup;
STSGroupBlockInfoEx* tmp = realloc(pTSBuf->pData, sizeof(STSGroupBlockInfoEx) * pTSBuf->numOfAlloc);
if (tmp == NULL) {
tsBufDestroy(pTSBuf);
return NULL;
}
pTSBuf->pData = tmp;
}
pTSBuf->numOfGroups = header.numOfGroup;
// check the ts order
pTSBuf->tsOrder = header.tsOrder;
if (pTSBuf->tsOrder != TSDB_ORDER_ASC && pTSBuf->tsOrder != TSDB_ORDER_DESC) {
// tscError("invalid order info in buf:%d", pTSBuf->tsOrder);
tsBufDestroy(pTSBuf);
return NULL;
}
size_t infoSize = sizeof(STSGroupBlockInfo) * pTSBuf->numOfGroups;
STSGroupBlockInfo* buf = (STSGroupBlockInfo*)calloc(1, infoSize);
if (buf == NULL) {
tsBufDestroy(pTSBuf);
return NULL;
}
//int64_t pos = ftell(pTSBuf->f); //pos not used
sz = fread(buf, infoSize, 1, pTSBuf->f);
UNUSED(sz);
// the length value for each vnode is not kept in file, so does not set the length value
for (int32_t i = 0; i < pTSBuf->numOfGroups; ++i) {
STSGroupBlockInfoEx* pBlockList = &pTSBuf->pData[i];
memcpy(&pBlockList->info, &buf[i], sizeof(STSGroupBlockInfo));
}
free(buf);
ret = fseek(pTSBuf->f, 0, SEEK_END);
UNUSED(ret);
struct stat fileStat;
if (fstat(fileno(pTSBuf->f), &fileStat) != 0) {
tsBufDestroy(pTSBuf);
return NULL;
}
pTSBuf->fileSize = (uint32_t)fileStat.st_size;
tsBufResetPos(pTSBuf);
// ascending by default
pTSBuf->cur.order = TSDB_ORDER_ASC;
// tscDebug("create tsBuf from file:%s, fd:%d, size:%d, numOfGroups:%d, autoDelete:%d", pTSBuf->path, fileno(pTSBuf->f),
// pTSBuf->fileSize, pTSBuf->numOfGroups, pTSBuf->autoDelete);
return pTSBuf;
}
void* tsBufDestroy(STSBuf* pTSBuf) {
if (pTSBuf == NULL) {
return NULL;
}
tfree(pTSBuf->assistBuf);
tfree(pTSBuf->tsData.rawBuf);
tfree(pTSBuf->pData);
tfree(pTSBuf->block.payload);
if (!pTSBuf->remainOpen) {
fclose(pTSBuf->f);
}
if (pTSBuf->autoDelete) {
// ("tsBuf %p destroyed, delete tmp file:%s", pTSBuf, pTSBuf->path);
remove(pTSBuf->path);
} else {
// tscDebug("tsBuf %p destroyed, tmp file:%s, remains", pTSBuf, pTSBuf->path);
}
taosVariantDestroy(&pTSBuf->block.tag);
free(pTSBuf);
return NULL;
}
static STSGroupBlockInfoEx* tsBufGetLastGroupInfo(STSBuf* pTSBuf) {
int32_t last = pTSBuf->numOfGroups - 1;
assert(last >= 0);
return &pTSBuf->pData[last];
}
static STSGroupBlockInfoEx* addOneGroupInfo(STSBuf* pTSBuf, int32_t id) {
if (pTSBuf->numOfAlloc <= pTSBuf->numOfGroups) {
uint32_t newSize = (uint32_t)(pTSBuf->numOfAlloc * 1.5);
assert((int32_t)newSize > pTSBuf->numOfAlloc);
STSGroupBlockInfoEx* tmp = (STSGroupBlockInfoEx*)realloc(pTSBuf->pData, sizeof(STSGroupBlockInfoEx) * newSize);
if (tmp == NULL) {
return NULL;
}
pTSBuf->pData = tmp;
pTSBuf->numOfAlloc = newSize;
memset(&pTSBuf->pData[pTSBuf->numOfGroups], 0, sizeof(STSGroupBlockInfoEx) * (newSize - pTSBuf->numOfGroups));
}
if (pTSBuf->numOfGroups > 0) {
STSGroupBlockInfoEx* pPrevBlockInfoEx = tsBufGetLastGroupInfo(pTSBuf);
// update prev vnode length info in file
TSBufUpdateGroupInfo(pTSBuf, pTSBuf->numOfGroups - 1, &pPrevBlockInfoEx->info);
}
// set initial value for vnode block
STSGroupBlockInfo* pBlockInfo = &pTSBuf->pData[pTSBuf->numOfGroups].info;
pBlockInfo->id = id;
pBlockInfo->offset = pTSBuf->fileSize;
assert(pBlockInfo->offset >= getDataStartOffset());
// update vnode info in file
TSBufUpdateGroupInfo(pTSBuf, pTSBuf->numOfGroups, pBlockInfo);
// add one vnode info
pTSBuf->numOfGroups += 1;
// update the header info
STSBufFileHeader header = {
.magic = TS_COMP_FILE_MAGIC, .numOfGroup = pTSBuf->numOfGroups, .tsOrder = pTSBuf->tsOrder};
STSBufUpdateHeader(pTSBuf, &header);
return tsBufGetLastGroupInfo(pTSBuf);
}
static void shrinkBuffer(STSList* ptsData) {
// shrink tmp buffer size if it consumes too many memory compared to the pre-defined size
if (ptsData->allocSize >= ptsData->threshold * 2) {
char* rawBuf = realloc(ptsData->rawBuf, MEM_BUF_SIZE);
if(rawBuf) {
ptsData->rawBuf = rawBuf;
ptsData->allocSize = MEM_BUF_SIZE;
}
}
}
static int32_t getTagAreaLength(SVariant* pa) {
int32_t t = sizeof(pa->nLen) * 2 + sizeof(pa->nType);
if (pa->nType != TSDB_DATA_TYPE_NULL) {
t += pa->nLen;
}
return t;
}
static void writeDataToDisk(STSBuf* pTSBuf) {
if (pTSBuf->tsData.len == 0) {
return;
}
STSBlock* pBlock = &pTSBuf->block;
STSList* pTsData = &pTSBuf->tsData;
pBlock->numOfElem = pTsData->len / TSDB_KEYSIZE;
pBlock->compLen =
tsCompressTimestamp(pTsData->rawBuf, pTsData->len, pTsData->len/TSDB_KEYSIZE, pBlock->payload, pTsData->allocSize,
TWO_STAGE_COMP, pTSBuf->assistBuf, pTSBuf->bufSize);
int64_t r = fseek(pTSBuf->f, pTSBuf->fileSize, SEEK_SET);
assert(r == 0);
/*
* format for output data:
* 1. tags, number of ts, size after compressed, payload, size after compressed
* 2. tags, number of ts, size after compressed, payload, size after compressed
*
* both side has the compressed length is used to support load data forwards/backwords.
*/
int32_t metaLen = 0;
metaLen += (int32_t)fwrite(&pBlock->tag.nType, 1, sizeof(pBlock->tag.nType), pTSBuf->f);
int32_t trueLen = pBlock->tag.nLen;
if (pBlock->tag.nType == TSDB_DATA_TYPE_BINARY || pBlock->tag.nType == TSDB_DATA_TYPE_NCHAR) {
metaLen += (int32_t)fwrite(&pBlock->tag.nLen, 1, sizeof(pBlock->tag.nLen), pTSBuf->f);
metaLen += (int32_t)fwrite(pBlock->tag.pz, 1, (size_t)pBlock->tag.nLen, pTSBuf->f);
} else if (pBlock->tag.nType == TSDB_DATA_TYPE_FLOAT) {
metaLen += (int32_t)fwrite(&pBlock->tag.nLen, 1, sizeof(pBlock->tag.nLen), pTSBuf->f);
float tfloat = (float)pBlock->tag.d;
metaLen += (int32_t)fwrite(&tfloat, 1, (size_t) pBlock->tag.nLen, pTSBuf->f);
} else if (pBlock->tag.nType != TSDB_DATA_TYPE_NULL) {
metaLen += (int32_t)fwrite(&pBlock->tag.nLen, 1, sizeof(pBlock->tag.nLen), pTSBuf->f);
metaLen += (int32_t)fwrite(&pBlock->tag.i64, 1, (size_t) pBlock->tag.nLen, pTSBuf->f);
} else {
trueLen = 0;
metaLen += (int32_t)fwrite(&trueLen, 1, sizeof(pBlock->tag.nLen), pTSBuf->f);
}
fwrite(&pBlock->numOfElem, sizeof(pBlock->numOfElem), 1, pTSBuf->f);
fwrite(&pBlock->compLen, sizeof(pBlock->compLen), 1, pTSBuf->f);
fwrite(pBlock->payload, (size_t)pBlock->compLen, 1, pTSBuf->f);
fwrite(&pBlock->compLen, sizeof(pBlock->compLen), 1, pTSBuf->f);
metaLen += (int32_t) fwrite(&trueLen, 1, sizeof(pBlock->tag.nLen), pTSBuf->f);
assert(metaLen == getTagAreaLength(&pBlock->tag));
int32_t blockSize = metaLen + sizeof(pBlock->numOfElem) + sizeof(pBlock->compLen) * 2 + pBlock->compLen;
pTSBuf->fileSize += blockSize;
pTSBuf->tsData.len = 0;
STSGroupBlockInfoEx* pGroupBlockInfoEx = tsBufGetLastGroupInfo(pTSBuf);
pGroupBlockInfoEx->info.compLen += blockSize;
pGroupBlockInfoEx->info.numOfBlocks += 1;
shrinkBuffer(&pTSBuf->tsData);
}
static void expandBuffer(STSList* ptsData, int32_t inputSize) {
if (ptsData->allocSize - ptsData->len < inputSize) {
int32_t newSize = inputSize + ptsData->len;
char* tmp = realloc(ptsData->rawBuf, (size_t)newSize);
if (tmp == NULL) {
// todo
}
ptsData->rawBuf = tmp;
ptsData->allocSize = newSize;
}
}
STSBlock* readDataFromDisk(STSBuf* pTSBuf, int32_t order, bool decomp) {
STSBlock* pBlock = &pTSBuf->block;
// clear the memory buffer
pBlock->compLen = 0;
pBlock->padding = 0;
pBlock->numOfElem = 0;
int32_t offset = -1;
if (order == TSDB_ORDER_DESC) {
/*
* set the right position for the reversed traverse, the reversed traverse is started from
* the end of each comp data block
*/
int32_t prev = -(int32_t) (sizeof(pBlock->padding) + sizeof(pBlock->tag.nLen));
int32_t ret = fseek(pTSBuf->f, prev, SEEK_CUR);
size_t sz = fread(&pBlock->padding, 1, sizeof(pBlock->padding), pTSBuf->f);
sz = fread(&pBlock->tag.nLen, 1, sizeof(pBlock->tag.nLen), pTSBuf->f);
UNUSED(sz);
pBlock->compLen = pBlock->padding;
offset = pBlock->compLen + sizeof(pBlock->compLen) * 2 + sizeof(pBlock->numOfElem) + getTagAreaLength(&pBlock->tag);
ret = fseek(pTSBuf->f, -offset, SEEK_CUR);
UNUSED(ret);
}
fread(&pBlock->tag.nType, sizeof(pBlock->tag.nType), 1, pTSBuf->f);
fread(&pBlock->tag.nLen, sizeof(pBlock->tag.nLen), 1, pTSBuf->f);
// NOTE: mix types tags are not supported
size_t sz = 0;
if (pBlock->tag.nType == TSDB_DATA_TYPE_BINARY || pBlock->tag.nType == TSDB_DATA_TYPE_NCHAR) {
char* tp = realloc(pBlock->tag.pz, pBlock->tag.nLen + 1);
assert(tp != NULL);
memset(tp, 0, pBlock->tag.nLen + 1);
pBlock->tag.pz = tp;
sz = fread(pBlock->tag.pz, (size_t)pBlock->tag.nLen, 1, pTSBuf->f);
UNUSED(sz);
} else if (pBlock->tag.nType == TSDB_DATA_TYPE_FLOAT) {
float tfloat = 0;
sz = fread(&tfloat, (size_t) pBlock->tag.nLen, 1, pTSBuf->f);
pBlock->tag.d = (double)tfloat;
UNUSED(sz);
} else if (pBlock->tag.nType != TSDB_DATA_TYPE_NULL) { //TODO check the return value
sz = fread(&pBlock->tag.i64, (size_t) pBlock->tag.nLen, 1, pTSBuf->f);
UNUSED(sz);
}
sz = fread(&pBlock->numOfElem, sizeof(pBlock->numOfElem), 1, pTSBuf->f);
UNUSED(sz);
sz = fread(&pBlock->compLen, sizeof(pBlock->compLen), 1, pTSBuf->f);
UNUSED(sz);
sz = fread(pBlock->payload, (size_t)pBlock->compLen, 1, pTSBuf->f);
if (decomp) {
pTSBuf->tsData.len =
tsDecompressTimestamp(pBlock->payload, pBlock->compLen, pBlock->numOfElem, pTSBuf->tsData.rawBuf,
pTSBuf->tsData.allocSize, TWO_STAGE_COMP, pTSBuf->assistBuf, pTSBuf->bufSize);
}
// read the comp length at the length of comp block
sz = fread(&pBlock->padding, sizeof(pBlock->padding), 1, pTSBuf->f);
assert(pBlock->padding == pBlock->compLen);
int32_t n = 0;
sz = fread(&n, sizeof(pBlock->tag.nLen), 1, pTSBuf->f);
if (pBlock->tag.nType == TSDB_DATA_TYPE_NULL) {
assert(n == 0);
} else {
assert(n == pBlock->tag.nLen);
}
UNUSED(sz);
// for backwards traverse, set the start position at the end of previous block
if (order == TSDB_ORDER_DESC) {
int32_t r = fseek(pTSBuf->f, -offset, SEEK_CUR);
UNUSED(r);
}
return pBlock;
}
// set the order of ts buffer if the ts order has not been set yet
static int32_t setCheckTSOrder(STSBuf* pTSBuf, const char* pData, int32_t len) {
STSList* ptsData = &pTSBuf->tsData;
if (pTSBuf->tsOrder == -1) {
if (ptsData->len > 0) {
TSKEY lastKey = *(TSKEY*)(ptsData->rawBuf + ptsData->len - TSDB_KEYSIZE);
if (lastKey > *(TSKEY*)pData) {
pTSBuf->tsOrder = TSDB_ORDER_DESC;
} else {
pTSBuf->tsOrder = TSDB_ORDER_ASC;
}
} else if (len > TSDB_KEYSIZE) {
// no data in current vnode, more than one ts is added, check the orders
TSKEY k1 = *(TSKEY*)(pData);
TSKEY k2 = *(TSKEY*)(pData + TSDB_KEYSIZE);
if (k1 < k2) {
pTSBuf->tsOrder = TSDB_ORDER_ASC;
} else if (k1 > k2) {
pTSBuf->tsOrder = TSDB_ORDER_DESC;
} else {
// todo handle error
}
}
} else {
// todo the timestamp order is set, check the asc/desc order of appended data
}
return TSDB_CODE_SUCCESS;
}
void tsBufAppend(STSBuf* pTSBuf, int32_t id, SVariant* tag, const char* pData, int32_t len) {
STSGroupBlockInfoEx* pBlockInfo = NULL;
STSList* ptsData = &pTSBuf->tsData;
if (pTSBuf->numOfGroups == 0 || tsBufGetLastGroupInfo(pTSBuf)->info.id != id) {
writeDataToDisk(pTSBuf);
shrinkBuffer(ptsData);
pBlockInfo = addOneGroupInfo(pTSBuf, id);
} else {
pBlockInfo = tsBufGetLastGroupInfo(pTSBuf);
}
assert(pBlockInfo->info.id == id);
if ((taosVariantCompare(&pTSBuf->block.tag, tag) != 0) && ptsData->len > 0) {
// new arrived data with different tags value, save current value into disk first
writeDataToDisk(pTSBuf);
} else {
expandBuffer(ptsData, len);
}
taosVariantAssign(&pTSBuf->block.tag, tag);
memcpy(ptsData->rawBuf + ptsData->len, pData, (size_t)len);
// todo check return value
setCheckTSOrder(pTSBuf, pData, len);
ptsData->len += len;
pBlockInfo->len += len;
pTSBuf->numOfTotal += len / TSDB_KEYSIZE;
// the size of raw data exceeds the size of the default prepared buffer, so
// during getBufBlock, the output buffer needs to be large enough.
if (ptsData->len >= ptsData->threshold) {
writeDataToDisk(pTSBuf);
shrinkBuffer(ptsData);
}
tsBufResetPos(pTSBuf);
}
void tsBufFlush(STSBuf* pTSBuf) {
if (pTSBuf->tsData.len <= 0) {
return;
}
writeDataToDisk(pTSBuf);
shrinkBuffer(&pTSBuf->tsData);
STSGroupBlockInfoEx* pBlockInfoEx = tsBufGetLastGroupInfo(pTSBuf);
// update prev vnode length info in file
TSBufUpdateGroupInfo(pTSBuf, pTSBuf->numOfGroups - 1, &pBlockInfoEx->info);
// save the ts order into header
STSBufFileHeader header = {
.magic = TS_COMP_FILE_MAGIC, .numOfGroup = pTSBuf->numOfGroups, .tsOrder = pTSBuf->tsOrder};
STSBufUpdateHeader(pTSBuf, &header);
}
static int32_t tsBufFindGroupById(STSGroupBlockInfoEx* pGroupInfoEx, int32_t numOfGroups, int32_t id) {
int32_t j = -1;
for (int32_t i = 0; i < numOfGroups; ++i) {
if (pGroupInfoEx[i].info.id == id) {
j = i;
break;
}
}
return j;
}
// todo opt performance by cache blocks info
static int32_t tsBufFindBlock(STSBuf* pTSBuf, STSGroupBlockInfo* pBlockInfo, int32_t blockIndex) {
if (fseek(pTSBuf->f, pBlockInfo->offset, SEEK_SET) != 0) {
return -1;
}
// sequentially read the compressed data blocks, start from the beginning of the comp data block of this vnode
int32_t i = 0;
bool decomp = false;
while ((i++) <= blockIndex) {
if (readDataFromDisk(pTSBuf, TSDB_ORDER_ASC, decomp) == NULL) {
return -1;
}
}
// set the file position to be the end of previous comp block
if (pTSBuf->cur.order == TSDB_ORDER_DESC) {
STSBlock* pBlock = &pTSBuf->block;
int32_t compBlockSize =
pBlock->compLen + sizeof(pBlock->compLen) * 2 + sizeof(pBlock->numOfElem) + getTagAreaLength(&pBlock->tag);
int32_t ret = fseek(pTSBuf->f, -compBlockSize, SEEK_CUR);
UNUSED(ret);
}
return 0;
}
static int32_t tsBufFindBlockByTag(STSBuf* pTSBuf, STSGroupBlockInfo* pBlockInfo, SVariant* tag) {
bool decomp = false;
int64_t offset = 0;
if (pTSBuf->cur.order == TSDB_ORDER_ASC) {
offset = pBlockInfo->offset;
} else { // reversed traverse starts from the end of block
offset = pBlockInfo->offset + pBlockInfo->compLen;
}
if (fseek(pTSBuf->f, (int32_t)offset, SEEK_SET) != 0) {
return -1;
}
for (int32_t i = 0; i < pBlockInfo->numOfBlocks; ++i) {
if (readDataFromDisk(pTSBuf, pTSBuf->cur.order, decomp) == NULL) {
return -1;
}
if (taosVariantCompare(&pTSBuf->block.tag, tag) == 0) {
return (pTSBuf->cur.order == TSDB_ORDER_ASC)? i: (pBlockInfo->numOfBlocks - (i + 1));
}
}
return -1;
}
static void tsBufGetBlock(STSBuf* pTSBuf, int32_t groupIndex, int32_t blockIndex) {
STSGroupBlockInfo* pBlockInfo = &pTSBuf->pData[groupIndex].info;
if (pBlockInfo->numOfBlocks <= blockIndex) {
assert(false);
}
STSCursor* pCur = &pTSBuf->cur;
if (pCur->vgroupIndex == groupIndex && ((pCur->blockIndex <= blockIndex && pCur->order == TSDB_ORDER_ASC) ||
(pCur->blockIndex >= blockIndex && pCur->order == TSDB_ORDER_DESC))) {
int32_t i = 0;
bool decomp = false;
int32_t step = abs(blockIndex - pCur->blockIndex);
while ((++i) <= step) {
if (readDataFromDisk(pTSBuf, pCur->order, decomp) == NULL) {
return;
}
}
} else {
if (tsBufFindBlock(pTSBuf, pBlockInfo, blockIndex) == -1) {
assert(false);
}
}
STSBlock* pBlock = &pTSBuf->block;
size_t s = pBlock->numOfElem * TSDB_KEYSIZE;
/*
* In order to accommodate all the qualified data, the actual buffer size for one block with identical tags value
* may exceed the maximum allowed size during *tsBufAppend* function by invoking expandBuffer function
*/
if (s > pTSBuf->tsData.allocSize) {
expandBuffer(&pTSBuf->tsData, (int32_t)s);
}
pTSBuf->tsData.len =
tsDecompressTimestamp(pBlock->payload, pBlock->compLen, pBlock->numOfElem, pTSBuf->tsData.rawBuf,
pTSBuf->tsData.allocSize, TWO_STAGE_COMP, pTSBuf->assistBuf, pTSBuf->bufSize);
assert((pTSBuf->tsData.len / TSDB_KEYSIZE == pBlock->numOfElem) && (pTSBuf->tsData.allocSize >= pTSBuf->tsData.len));
pCur->vgroupIndex = groupIndex;
pCur->blockIndex = blockIndex;
pCur->tsIndex = (pCur->order == TSDB_ORDER_ASC) ? 0 : pBlock->numOfElem - 1;
}
static int32_t doUpdateGroupInfo(STSBuf* pTSBuf, int64_t offset, STSGroupBlockInfo* pVInfo) {
if (offset < 0 || offset >= getDataStartOffset()) {
return -1;
}
if (fseek(pTSBuf->f, (int32_t)offset, SEEK_SET) != 0) {
return -1;
}
fwrite(pVInfo, sizeof(STSGroupBlockInfo), 1, pTSBuf->f);
return 0;
}
STSGroupBlockInfo* tsBufGetGroupBlockInfo(STSBuf* pTSBuf, int32_t id) {
int32_t j = tsBufFindGroupById(pTSBuf->pData, pTSBuf->numOfGroups, id);
if (j == -1) {
return NULL;
}
return &pTSBuf->pData[j].info;
}
int32_t STSBufUpdateHeader(STSBuf* pTSBuf, STSBufFileHeader* pHeader) {
if ((pTSBuf->f == NULL) || pHeader == NULL || pHeader->numOfGroup == 0 || pHeader->magic != TS_COMP_FILE_MAGIC) {
return -1;
}
assert(pHeader->tsOrder == TSDB_ORDER_ASC || pHeader->tsOrder == TSDB_ORDER_DESC);
int32_t r = fseek(pTSBuf->f, 0, SEEK_SET);
if (r != 0) {
// qError("fseek failed, errno:%d", errno);
return -1;
}
size_t ws = fwrite(pHeader, sizeof(STSBufFileHeader), 1, pTSBuf->f);
if (ws != 1) {
// qError("ts update header fwrite failed, size:%d, expected size:%d", (int32_t)ws, (int32_t)sizeof(STSBufFileHeader));
return -1;
}
return 0;
}
bool tsBufNextPos(STSBuf* pTSBuf) {
if (pTSBuf == NULL || pTSBuf->numOfGroups == 0) {
return false;
}
STSCursor* pCur = &pTSBuf->cur;
// get the first/last position according to traverse order
if (pCur->vgroupIndex == -1) {
if (pCur->order == TSDB_ORDER_ASC) {
tsBufGetBlock(pTSBuf, 0, 0);
if (pTSBuf->block.numOfElem == 0) { // the whole list is empty, return
tsBufResetPos(pTSBuf);
return false;
} else {
return true;
}
} else { // get the last timestamp record in the last block of the last vnode
assert(pTSBuf->numOfGroups > 0);
int32_t groupIndex = pTSBuf->numOfGroups - 1;
pCur->vgroupIndex = groupIndex;
int32_t id = pTSBuf->pData[pCur->vgroupIndex].info.id;
STSGroupBlockInfo* pBlockInfo = tsBufGetGroupBlockInfo(pTSBuf, id);
int32_t blockIndex = pBlockInfo->numOfBlocks - 1;
tsBufGetBlock(pTSBuf, groupIndex, blockIndex);
pCur->tsIndex = pTSBuf->block.numOfElem - 1;
if (pTSBuf->block.numOfElem == 0) {
tsBufResetPos(pTSBuf);
return false;
} else {
return true;
}
}
}
int32_t step = pCur->order == TSDB_ORDER_ASC ? 1 : -1;
while (1) {
assert(pTSBuf->tsData.len == pTSBuf->block.numOfElem * TSDB_KEYSIZE);
if ((pCur->order == TSDB_ORDER_ASC && pCur->tsIndex >= pTSBuf->block.numOfElem - 1) ||
(pCur->order == TSDB_ORDER_DESC && pCur->tsIndex <= 0)) {
int32_t id = pTSBuf->pData[pCur->vgroupIndex].info.id;
STSGroupBlockInfo* pBlockInfo = tsBufGetGroupBlockInfo(pTSBuf, id);
if (pBlockInfo == NULL || (pCur->blockIndex >= pBlockInfo->numOfBlocks - 1 && pCur->order == TSDB_ORDER_ASC) ||
(pCur->blockIndex <= 0 && pCur->order == TSDB_ORDER_DESC)) {
if ((pCur->vgroupIndex >= pTSBuf->numOfGroups - 1 && pCur->order == TSDB_ORDER_ASC) ||
(pCur->vgroupIndex <= 0 && pCur->order == TSDB_ORDER_DESC)) {
pCur->vgroupIndex = -1;
return false;
}
if (pBlockInfo == NULL) {
return false;
}
int32_t blockIndex = (pCur->order == TSDB_ORDER_ASC) ? 0 : (pBlockInfo->numOfBlocks - 1);
tsBufGetBlock(pTSBuf, pCur->vgroupIndex + step, blockIndex);
break;
} else {
tsBufGetBlock(pTSBuf, pCur->vgroupIndex, pCur->blockIndex + step);
break;
}
} else {
pCur->tsIndex += step;
break;
}
}
return true;
}
void tsBufResetPos(STSBuf* pTSBuf) {
if (pTSBuf == NULL) {
return;
}
pTSBuf->cur = (STSCursor){.tsIndex = -1, .blockIndex = -1, .vgroupIndex = -1, .order = pTSBuf->cur.order};
}
STSElem tsBufGetElem(STSBuf* pTSBuf) {
STSElem elem1 = {.id = -1};
if (pTSBuf == NULL) {
return elem1;
}
STSCursor* pCur = &pTSBuf->cur;
if (pCur != NULL && pCur->vgroupIndex < 0) {
return elem1;
}
STSBlock* pBlock = &pTSBuf->block;
elem1.id = pTSBuf->pData[pCur->vgroupIndex].info.id;
elem1.ts = *(TSKEY*)(pTSBuf->tsData.rawBuf + pCur->tsIndex * TSDB_KEYSIZE);
elem1.tag = &pBlock->tag;
return elem1;
}
/**
* current only support ts comp data from two vnode merge
* @param pDestBuf
* @param pSrcBuf
* @param id
* @return
*/
int32_t tsBufMerge(STSBuf* pDestBuf, const STSBuf* pSrcBuf) {
if (pDestBuf == NULL || pSrcBuf == NULL || pSrcBuf->numOfGroups <= 0) {
return 0;
}
if (pDestBuf->numOfGroups + pSrcBuf->numOfGroups > TS_COMP_FILE_GROUP_MAX) {
return -1;
}
// src can only have one vnode index
assert(pSrcBuf->numOfGroups == 1);
// there are data in buffer, flush to disk first
tsBufFlush(pDestBuf);
// compared with the last vnode id
int32_t id = tsBufGetLastGroupInfo((STSBuf*) pSrcBuf)->info.id;
if (id != tsBufGetLastGroupInfo(pDestBuf)->info.id) {
int32_t oldSize = pDestBuf->numOfGroups;
int32_t newSize = oldSize + pSrcBuf->numOfGroups;
if (pDestBuf->numOfAlloc < newSize) {
pDestBuf->numOfAlloc = newSize;
STSGroupBlockInfoEx* tmp = realloc(pDestBuf->pData, sizeof(STSGroupBlockInfoEx) * newSize);
if (tmp == NULL) {
return -1;
}
pDestBuf->pData = tmp;
}
// directly copy the vnode index information
memcpy(&pDestBuf->pData[oldSize], pSrcBuf->pData, (size_t)pSrcBuf->numOfGroups * sizeof(STSGroupBlockInfoEx));
// set the new offset value
for (int32_t i = 0; i < pSrcBuf->numOfGroups; ++i) {
STSGroupBlockInfoEx* pBlockInfoEx = &pDestBuf->pData[i + oldSize];
pBlockInfoEx->info.offset = (pSrcBuf->pData[i].info.offset - getDataStartOffset()) + pDestBuf->fileSize;
pBlockInfoEx->info.id = id;
}
pDestBuf->numOfGroups = newSize;
} else {
STSGroupBlockInfoEx* pBlockInfoEx = tsBufGetLastGroupInfo(pDestBuf);
pBlockInfoEx->len += pSrcBuf->pData[0].len;
pBlockInfoEx->info.numOfBlocks += pSrcBuf->pData[0].info.numOfBlocks;
pBlockInfoEx->info.compLen += pSrcBuf->pData[0].info.compLen;
pBlockInfoEx->info.id = id;
}
int32_t r = fseek(pDestBuf->f, 0, SEEK_END);
assert(r == 0);
int64_t offset = getDataStartOffset();
int32_t size = (int32_t)pSrcBuf->fileSize - (int32_t)offset;
int64_t written = taosFSendFile(pDestBuf->f, pSrcBuf->f, &offset, size);
if (written == -1 || written != size) {
return -1;
}
pDestBuf->numOfTotal += pSrcBuf->numOfTotal;
int32_t oldSize = pDestBuf->fileSize;
// file meta data may be cached, close and reopen the file for accurate file size.
fclose(pDestBuf->f);
pDestBuf->f = fopen(pDestBuf->path, "rb+");
if (pDestBuf->f == NULL) {
return -1;
}
struct stat fileStat;
if (fstat(fileno(pDestBuf->f), &fileStat) != 0) {
return -1;
}
pDestBuf->fileSize = (uint32_t)fileStat.st_size;
assert(pDestBuf->fileSize == oldSize + size);
return 0;
}
STSBuf* tsBufCreateFromCompBlocks(const char* pData, int32_t numOfBlocks, int32_t len, int32_t order, int32_t id) {
STSBuf* pTSBuf = tsBufCreate(true, order);
STSGroupBlockInfo* pBlockInfo = &(addOneGroupInfo(pTSBuf, 0)->info);
pBlockInfo->numOfBlocks = numOfBlocks;
pBlockInfo->compLen = len;
pBlockInfo->offset = getDataStartOffset();
pBlockInfo->id = id;
// update prev vnode length info in file
TSBufUpdateGroupInfo(pTSBuf, pTSBuf->numOfGroups - 1, pBlockInfo);
int32_t ret = fseek(pTSBuf->f, pBlockInfo->offset, SEEK_SET);
if (ret == -1) {
// qError("fseek failed, errno:%d", errno);
tsBufDestroy(pTSBuf);
return NULL;
}
size_t sz = fwrite((void*)pData, 1, len, pTSBuf->f);
if (sz != len) {
// qError("ts data fwrite failed, write size:%d, expected size:%d", (int32_t)sz, len);
tsBufDestroy(pTSBuf);
return NULL;
}
pTSBuf->fileSize += len;
pTSBuf->tsOrder = order;
assert(order == TSDB_ORDER_ASC || order == TSDB_ORDER_DESC);
STSBufFileHeader header = {
.magic = TS_COMP_FILE_MAGIC, .numOfGroup = pTSBuf->numOfGroups, .tsOrder = pTSBuf->tsOrder};
if (STSBufUpdateHeader(pTSBuf, &header) < 0) {
tsBufDestroy(pTSBuf);
return NULL;
}
// TODO taosFsync??
// if (taosFsync(fileno(pTSBuf->f)) == -1) {
//// qError("fsync failed, errno:%d", errno);
// tsBufDestroy(pTSBuf);
// return NULL;
// }
return pTSBuf;
}
STSElem tsBufGetElemStartPos(STSBuf* pTSBuf, int32_t id, SVariant* tag) {
STSElem elem = {.id = -1};
if (pTSBuf == NULL) {
return elem;
}
int32_t j = tsBufFindGroupById(pTSBuf->pData, pTSBuf->numOfGroups, id);
if (j == -1) {
return elem;
}
// for debug purpose
// tsBufDisplay(pTSBuf);
STSCursor* pCur = &pTSBuf->cur;
STSGroupBlockInfo* pBlockInfo = &pTSBuf->pData[j].info;
int32_t blockIndex = tsBufFindBlockByTag(pTSBuf, pBlockInfo, tag);
if (blockIndex < 0) {
return elem;
}
pCur->vgroupIndex = j;
pCur->blockIndex = blockIndex;
tsBufGetBlock(pTSBuf, j, blockIndex);
return tsBufGetElem(pTSBuf);
}
STSCursor tsBufGetCursor(STSBuf* pTSBuf) {
STSCursor c = {.vgroupIndex = -1};
if (pTSBuf == NULL) {
return c;
}
return pTSBuf->cur;
}
void tsBufSetCursor(STSBuf* pTSBuf, STSCursor* pCur) {
if (pTSBuf == NULL || pCur == NULL) {
return;
}
// assert(pCur->vgroupIndex != -1 && pCur->tsIndex >= 0 && pCur->blockIndex >= 0);
if (pCur->vgroupIndex != -1) {
tsBufGetBlock(pTSBuf, pCur->vgroupIndex, pCur->blockIndex);
}
pTSBuf->cur = *pCur;
}
void tsBufSetTraverseOrder(STSBuf* pTSBuf, int32_t order) {
if (pTSBuf == NULL) {
return;
}
pTSBuf->cur.order = order;
}
STSBuf* tsBufClone(STSBuf* pTSBuf) {
if (pTSBuf == NULL) {
return NULL;
}
tsBufFlush(pTSBuf);
return tsBufCreateFromFile(pTSBuf->path, false);
}
void tsBufDisplay(STSBuf* pTSBuf) {
printf("-------start of ts comp file-------\n");
printf("number of vnode:%d\n", pTSBuf->numOfGroups);
int32_t old = pTSBuf->cur.order;
pTSBuf->cur.order = TSDB_ORDER_ASC;
tsBufResetPos(pTSBuf);
while (tsBufNextPos(pTSBuf)) {
STSElem elem = tsBufGetElem(pTSBuf);
if (elem.tag->nType == TSDB_DATA_TYPE_BIGINT) {
printf("%d-%" PRId64 "-%" PRId64 "\n", elem.id, elem.tag->i64, elem.ts);
}
}
pTSBuf->cur.order = old;
printf("-------end of ts comp file-------\n");
}
static int32_t getDataStartOffset() {
return sizeof(STSBufFileHeader) + TS_COMP_FILE_GROUP_MAX * sizeof(STSGroupBlockInfo);
}
// update prev vnode length info in file
static void TSBufUpdateGroupInfo(STSBuf* pTSBuf, int32_t index, STSGroupBlockInfo* pBlockInfo) {
int32_t offset = sizeof(STSBufFileHeader) + index * sizeof(STSGroupBlockInfo);
doUpdateGroupInfo(pTSBuf, offset, pBlockInfo);
}
static STSBuf* allocResForTSBuf(STSBuf* pTSBuf) {
const int32_t INITIAL_GROUPINFO_SIZE = 4;
pTSBuf->numOfAlloc = INITIAL_GROUPINFO_SIZE;
pTSBuf->pData = calloc(pTSBuf->numOfAlloc, sizeof(STSGroupBlockInfoEx));
if (pTSBuf->pData == NULL) {
tsBufDestroy(pTSBuf);
return NULL;
}
pTSBuf->tsData.rawBuf = malloc(MEM_BUF_SIZE);
if (pTSBuf->tsData.rawBuf == NULL) {
tsBufDestroy(pTSBuf);
return NULL;
}
pTSBuf->bufSize = MEM_BUF_SIZE;
pTSBuf->tsData.threshold = MEM_BUF_SIZE;
pTSBuf->tsData.allocSize = MEM_BUF_SIZE;
pTSBuf->assistBuf = malloc(MEM_BUF_SIZE);
if (pTSBuf->assistBuf == NULL) {
tsBufDestroy(pTSBuf);
return NULL;
}
pTSBuf->block.payload = malloc(MEM_BUF_SIZE);
if (pTSBuf->block.payload == NULL) {
tsBufDestroy(pTSBuf);
return NULL;
}
pTSBuf->fileSize += getDataStartOffset();
return pTSBuf;
}
int32_t tsBufGetNumOfGroup(STSBuf* pTSBuf) {
if (pTSBuf == NULL) {
return 0;
}
return pTSBuf->numOfGroups;
}
void tsBufGetGroupIdList(STSBuf* pTSBuf, int32_t* num, int32_t** id) {
int32_t size = tsBufGetNumOfGroup(pTSBuf);
if (num != NULL) {
*num = size;
}
*id = NULL;
if (size == 0) {
return;
}
(*id) = malloc(tsBufGetNumOfGroup(pTSBuf) * sizeof(int32_t));
for(int32_t i = 0; i < size; ++i) {
(*id)[i] = pTSBuf->pData[i].info.id;
}
}
int32_t dumpFileBlockByGroupId(STSBuf* pTSBuf, int32_t groupIndex, void* buf, int32_t* len, int32_t* numOfBlocks) {
assert(groupIndex >= 0 && groupIndex < pTSBuf->numOfGroups);
STSGroupBlockInfo *pBlockInfo = &pTSBuf->pData[groupIndex].info;
*len = 0;
*numOfBlocks = 0;
if (fseek(pTSBuf->f, pBlockInfo->offset, SEEK_SET) != 0) {
int code = TAOS_SYSTEM_ERROR(ferror(pTSBuf->f));
// qError("%p: fseek failed: %s", pSql, tstrerror(code));
return code;
}
size_t s = fread(buf, 1, pBlockInfo->compLen, pTSBuf->f);
if (s != pBlockInfo->compLen) {
int code = TAOS_SYSTEM_ERROR(ferror(pTSBuf->f));
// tscError("%p: fread didn't return expected data: %s", pSql, tstrerror(code));
return code;
}
*len = pBlockInfo->compLen;
*numOfBlocks = pBlockInfo->numOfBlocks;
return TSDB_CODE_SUCCESS;
}
STSElem tsBufFindElemStartPosByTag(STSBuf* pTSBuf, SVariant* pTag) {
STSElem el = {.id = -1};
for (int32_t i = 0; i < pTSBuf->numOfGroups; ++i) {
el = tsBufGetElemStartPos(pTSBuf, pTSBuf->pData[i].info.id, pTag);
if (el.id == pTSBuf->pData[i].info.id) {
return el;
}
}
return el;
}
bool tsBufIsValidElem(STSElem* pElem) {
return pElem->id >= 0;
}
...@@ -8,7 +8,7 @@ target_include_directories( ...@@ -8,7 +8,7 @@ target_include_directories(
target_link_libraries( target_link_libraries(
parser parser
PRIVATE os util common catalog executor transport PRIVATE os util common catalog function transport
) )
ADD_SUBDIRECTORY(test) ADD_SUBDIRECTORY(test)
\ No newline at end of file
...@@ -246,6 +246,7 @@ typedef struct tSqlExpr { ...@@ -246,6 +246,7 @@ typedef struct tSqlExpr {
// used in select clause. select <SArray> from xxx // used in select clause. select <SArray> from xxx
typedef struct tSqlExprItem { typedef struct tSqlExprItem {
tSqlExpr *pNode; // The list of expressions tSqlExpr *pNode; // The list of expressions
int32_t functionId;
char *aliasName; // alias name, null-terminated string char *aliasName; // alias name, null-terminated string
bool distinct; bool distinct;
} tSqlExprItem; } tSqlExprItem;
......
...@@ -26,6 +26,11 @@ extern "C" { ...@@ -26,6 +26,11 @@ extern "C" {
struct SSqlNode; struct SSqlNode;
typedef struct SColumnIndex {
int16_t tableIndex;
int16_t columnIndex;
} SColumnIndex;
typedef struct SInsertStmtInfo { typedef struct SInsertStmtInfo {
SHashObj *pTableBlockHashList; // data block for each table SHashObj *pTableBlockHashList; // data block for each table
SArray *pDataBlocks; // SArray<STableDataBlocks*>. Merged submit block for each vgroup SArray *pDataBlocks; // SArray<STableDataBlocks*>. Merged submit block for each vgroup
...@@ -35,6 +40,51 @@ typedef struct SInsertStmtInfo { ...@@ -35,6 +40,51 @@ typedef struct SInsertStmtInfo {
char *sql; // current sql statement position char *sql; // current sql statement position
} SInsertStmtInfo; } SInsertStmtInfo;
// the structure for sql function in select clause
typedef struct SSqlExpr {
char aliasName[TSDB_COL_NAME_LEN]; // as aliasName
char token[TSDB_COL_NAME_LEN]; // original token
SColIndex colInfo;
uint64_t uid; // table uid, todo refactor use the pointer
int16_t functionId; // function id in aAgg array
int16_t resType; // return value type
int16_t resBytes; // length of return value
int32_t interBytes; // inter result buffer size
int16_t colType; // table column type
int16_t colBytes; // table column bytes
int16_t numOfParams; // argument value of each function
SVariant param[3]; // parameters are not more than 3
int32_t offset; // sub result column value of arithmetic expression.
int16_t resColId; // result column id
SColumnFilterList flist;
} SSqlExpr;
typedef struct SExprInfo {
SSqlExpr base;
struct tExprNode *pExpr;
} SExprInfo;
typedef struct SColumn {
uint64_t tableUid;
int32_t columnIndex;
SColumnInfo info;
} SColumn;
typedef struct SInternalField {
TAOS_FIELD field;
bool visible;
SExprInfo *pExpr;
} SInternalField;
void clearTableMetaInfo(STableMetaInfo* pTableMetaInfo);
void clearAllTableMetaInfo(SQueryStmtInfo* pQueryInfo, bool removeMeta, uint64_t id);
/** /**
* Validate the sql info, according to the corresponding metadata info from catalog. * Validate the sql info, according to the corresponding metadata info from catalog.
* @param pCatalog * @param pCatalog
......
...@@ -23,10 +23,31 @@ extern "C" { ...@@ -23,10 +23,31 @@ extern "C" {
#include "os.h" #include "os.h"
#include "ttoken.h" #include "ttoken.h"
#define UTIL_TABLE_IS_SUPER_TABLE(metaInfo) \
(((metaInfo)->pTableMeta != NULL) && ((metaInfo)->pTableMeta->tableType == TSDB_SUPER_TABLE))
#define UTIL_TABLE_IS_CHILD_TABLE(metaInfo) \
(((metaInfo)->pTableMeta != NULL) && ((metaInfo)->pTableMeta->tableType == TSDB_CHILD_TABLE))
#define UTIL_TABLE_IS_NORMAL_TABLE(metaInfo) \
(!(UTIL_TABLE_IS_SUPER_TABLE(metaInfo) || UTIL_TABLE_IS_CHILD_TABLE(metaInfo)))
#define UTIL_TABLE_IS_TMP_TABLE(metaInfo) \
(((metaInfo)->pTableMeta != NULL) && ((metaInfo)->pTableMeta->tableType == TSDB_TEMP_TABLE))
int32_t parserValidateIdToken(SToken* pToken); int32_t parserValidateIdToken(SToken* pToken);
int32_t parserSetInvalidOperatorMsg(char* dst, int32_t dstBufLen, const char* msg); int32_t buildInvalidOperationMsg(char* dst, int32_t dstBufLen, const char* msg);
int32_t parserSetSyntaxErrMsg(char* dst, int32_t dstBufLen, const char* additionalInfo, const char* sourceStr); int32_t parserSetSyntaxErrMsg(char* dst, int32_t dstBufLen, const char* additionalInfo, const char* sourceStr);
void columnListCopy(SArray* dst, const SArray* src, uint64_t tableUid);
void columnListCopyAll(SArray* dst, const SArray* src);
void columnListDestroy(SArray* pColumnList);
void cleanupTagCond(STagCond* pTagCond);
void cleanupColumnCond(SArray** pCond);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif
......
/*
* Copyright (c) 2019 TAOS Data, Inc. <jhtao@taosdata.com>
*
* This program is free software: you can use, redistribute, and/or modify
* it under the terms of the GNU Affero General Public License, version 3
* or later ("AGPL"), as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TDENGINE_QUERYINFOUTIL_H
#define TDENGINE_QUERYINFOUTIL_H
#ifdef __cplusplus
extern "C" {
#endif
#include "parserInt.h"
SSchema* getTbnameColumnSchema();
int32_t getNumOfColumns(const STableMeta* pTableMeta);
int32_t getNumOfTags(const STableMeta* pTableMeta);
SSchema *getTableColumnSchema(const STableMeta *pTableMeta);
SSchema *getTableTagSchema(const STableMeta* pTableMeta);
SSchema *getOneColumnSchema(const STableMeta* pTableMeta, int32_t colIndex);
size_t getNumOfExprs(SQueryStmtInfo* pQueryInfo);
SExprInfo* createExprInfo(STableMetaInfo* pTableMetaInfo, int16_t functionId, SColumnIndex* pColIndex, int16_t type,
int16_t size, int16_t resColId, int16_t interSize, int32_t colType);
void addExprInfo(SQueryStmtInfo* pQueryInfo, int32_t index, SExprInfo* pExprInfo);
void updateExprInfo(SExprInfo* pExprInfo, int16_t functionId, int32_t colId, int16_t srcColumnIndex, int16_t resType, int16_t resSize);
void assignExprInfo(SExprInfo* dst, const SExprInfo* src);
SExprInfo* getExprInfo(SQueryStmtInfo* pQueryInfo, int32_t index);
int32_t copyAllExprInfo(SArray* dst, const SArray* src, bool deepcopy);
void cleanupFieldInfo(SFieldInfo* pFieldInfo);
STableComInfo getTableInfo(const STableMeta* pTableMeta);
#ifdef __cplusplus
}
#endif
#endif // TDENGINE_QUERYINFOUTIL_H
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
#include "ttime.h" #include "ttime.h"
#include "parserInt.h" #include "parserInt.h"
#include "parserUtil.h" #include "parserUtil.h"
#include "queryInfoUtil.h"
#define TSQL_TBNAME_L "tbname" #define TSQL_TBNAME_L "tbname"
#define DEFAULT_PRIMARY_TIMESTAMP_COL_NAME "_c0" #define DEFAULT_PRIMARY_TIMESTAMP_COL_NAME "_c0"
...@@ -25,18 +26,13 @@ ...@@ -25,18 +26,13 @@
#define COLUMN_INDEX_INITIAL_VAL (-2) #define COLUMN_INDEX_INITIAL_VAL (-2)
#define COLUMN_INDEX_INITIALIZER { COLUMN_INDEX_INITIAL_VAL, COLUMN_INDEX_INITIAL_VAL } #define COLUMN_INDEX_INITIALIZER { COLUMN_INDEX_INITIAL_VAL, COLUMN_INDEX_INITIAL_VAL }
typedef struct SColumn { static int32_t validateSelectNodeList(SQueryStmtInfo* pQueryInfo, SArray* pSelNodeList, bool joinQuery, bool timeWindowQuery, bool outerQuery, char* msg, int32_t msgBufLen);
uint64_t tableUid;
int32_t columnIndex;
SColumnInfo info;
} SColumn;
typedef struct SColumnIndex { size_t tscNumOfExprs(SQueryStmtInfo* pQueryInfo) {
int16_t tableIndex; return taosArrayGetSize(pQueryInfo->exprList);
int16_t columnIndex; }
} SColumnIndex;
static int32_t evaluateImpl(tSqlExpr* pExpr, int32_t tsPrecision) { static int32_t evaluateImpl(tSqlExpr* pExpr, int32_t tsPrecision) {
int32_t code = 0; int32_t code = 0;
if (pExpr->type == SQL_NODE_EXPR) { if (pExpr->type == SQL_NODE_EXPR) {
code = evaluateImpl(pExpr->pLeft, tsPrecision); code = evaluateImpl(pExpr->pLeft, tsPrecision);
...@@ -147,7 +143,7 @@ void columnDestroy(SColumn* pCol) { ...@@ -147,7 +143,7 @@ void columnDestroy(SColumn* pCol) {
free(pCol); free(pCol);
} }
void tscColumnListDestroy(SArray* pColumnList) { void destroyColumnList(SArray* pColumnList) {
if (pColumnList == NULL) { if (pColumnList == NULL) {
return; return;
} }
...@@ -169,7 +165,7 @@ void clearTableMetaInfo(STableMetaInfo* pTableMetaInfo) { ...@@ -169,7 +165,7 @@ void clearTableMetaInfo(STableMetaInfo* pTableMetaInfo) {
tfree(pTableMetaInfo->pTableMeta); tfree(pTableMetaInfo->pTableMeta);
tfree(pTableMetaInfo->vgroupList); tfree(pTableMetaInfo->vgroupList);
tscColumnListDestroy(pTableMetaInfo->tagColList); destroyColumnList(pTableMetaInfo->tagColList);
pTableMetaInfo->tagColList = NULL; pTableMetaInfo->tagColList = NULL;
free(pTableMetaInfo); free(pTableMetaInfo);
...@@ -183,7 +179,6 @@ void clearAllTableMetaInfo(SQueryStmtInfo* pQueryInfo, bool removeMeta, uint64_t ...@@ -183,7 +179,6 @@ void clearAllTableMetaInfo(SQueryStmtInfo* pQueryInfo, bool removeMeta, uint64_t
// removeCachedTableMeta(pTableMetaInfo, id); // removeCachedTableMeta(pTableMetaInfo, id);
} }
freeVgroupTableInfo(pTableMetaInfo->pVgroupTables);
clearTableMetaInfo(pTableMetaInfo); clearTableMetaInfo(pTableMetaInfo);
} }
...@@ -224,7 +219,7 @@ static STableMeta* extractTempTableMetaFromSubquery(SQueryStmtInfo* pUpstream) { ...@@ -224,7 +219,7 @@ static STableMeta* extractTempTableMetaFromSubquery(SQueryStmtInfo* pUpstream) {
return meta; return meta;
} }
void tscInitQueryInfo(SQueryStmtInfo* pQueryInfo) { void initQueryInfo(SQueryStmtInfo* pQueryInfo) {
assert(pQueryInfo->fieldsInfo.internalField == NULL); assert(pQueryInfo->fieldsInfo.internalField == NULL);
//assert(0); //assert(0);
// pQueryInfo->fieldsInfo.internalField = taosArrayInit(4, sizeof(SInternalField)); // pQueryInfo->fieldsInfo.internalField = taosArrayInit(4, sizeof(SInternalField));
...@@ -241,7 +236,7 @@ void tscInitQueryInfo(SQueryStmtInfo* pQueryInfo) { ...@@ -241,7 +236,7 @@ void tscInitQueryInfo(SQueryStmtInfo* pQueryInfo) {
pQueryInfo->slimit.offset = 0; pQueryInfo->slimit.offset = 0;
pQueryInfo->pUpstream = taosArrayInit(4, POINTER_BYTES); pQueryInfo->pUpstream = taosArrayInit(4, POINTER_BYTES);
pQueryInfo->window = TSWINDOW_INITIALIZER; pQueryInfo->window = TSWINDOW_INITIALIZER;
pQueryInfo->multigroupResult = true; // pQueryInfo->multigroupResult = true;
} }
int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* msg, int32_t msgBufLen); int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* msg, int32_t msgBufLen);
...@@ -307,11 +302,11 @@ static int32_t doValidateSubquery(SSqlNode* pSqlNode, int32_t index, SQueryStmtI ...@@ -307,11 +302,11 @@ static int32_t doValidateSubquery(SSqlNode* pSqlNode, int32_t index, SQueryStmtI
// union all is not support currently // union all is not support currently
SSqlNode* p = taosArrayGetP(subInfo->pSubquery, 0); SSqlNode* p = taosArrayGetP(subInfo->pSubquery, 0);
if (taosArrayGetSize(subInfo->pSubquery) >= 2) { if (taosArrayGetSize(subInfo->pSubquery) >= 2) {
return parserSetInvalidOperatorMsg(msgBuf, msgBufLen, "not support union in subquery"); return buildInvalidOperationMsg(msgBuf, msgBufLen, "not support union in subquery");
} }
SQueryStmtInfo* pSub = calloc(1, sizeof(SQueryStmtInfo)); SQueryStmtInfo* pSub = calloc(1, sizeof(SQueryStmtInfo));
tscInitQueryInfo(pSub); initQueryInfo(pSub);
SArray *pUdfInfo = NULL; SArray *pUdfInfo = NULL;
if (pQueryInfo->pUdfInfo) { if (pQueryInfo->pUdfInfo) {
...@@ -336,7 +331,7 @@ static int32_t doValidateSubquery(SSqlNode* pSqlNode, int32_t index, SQueryStmtI ...@@ -336,7 +331,7 @@ static int32_t doValidateSubquery(SSqlNode* pSqlNode, int32_t index, SQueryStmtI
if (subInfo->aliasName.n > 0) { if (subInfo->aliasName.n > 0) {
if (subInfo->aliasName.n >= TSDB_TABLE_FNAME_LEN) { if (subInfo->aliasName.n >= TSDB_TABLE_FNAME_LEN) {
tfree(pTableMetaInfo1); tfree(pTableMetaInfo1);
return parserSetInvalidOperatorMsg(msgBuf, msgBufLen, "subquery alias name too long"); return buildInvalidOperationMsg(msgBuf, msgBufLen, "subquery alias name too long");
} }
tstrncpy(pTableMetaInfo1->aliasName, subInfo->aliasName.z, subInfo->aliasName.n + 1); tstrncpy(pTableMetaInfo1->aliasName, subInfo->aliasName.z, subInfo->aliasName.n + 1);
...@@ -528,8 +523,6 @@ STableMetaInfo* tscAddTableMetaInfo(SQueryStmtInfo* pQueryInfo, char* name, STab ...@@ -528,8 +523,6 @@ STableMetaInfo* tscAddTableMetaInfo(SQueryStmtInfo* pQueryInfo, char* name, STab
tscColumnListCopy(pTableMetaInfo->tagColList, pTagCols, pTableMetaInfo->pTableMeta->uid); tscColumnListCopy(pTableMetaInfo->tagColList, pTagCols, pTableMetaInfo->pTableMeta->uid);
} }
pTableMetaInfo->pVgroupTables = tscVgroupTableInfoDup(pVgroupTables);
pQueryInfo->numOfTables += 1; pQueryInfo->numOfTables += 1;
return pTableMetaInfo; return pTableMetaInfo;
} }
...@@ -600,36 +593,15 @@ int32_t getTableIndexByName(SToken* pToken, SQueryStmtInfo* pQueryInfo, SColumnI ...@@ -600,36 +593,15 @@ int32_t getTableIndexByName(SToken* pToken, SQueryStmtInfo* pQueryInfo, SColumnI
return TSDB_CODE_SUCCESS; return TSDB_CODE_SUCCESS;
} }
STableComInfo getTableInfo(const STableMeta* pTableMeta) {
assert(pTableMeta != NULL);
return pTableMeta->tableInfo;
}
int32_t getNumOfColumns(const STableMeta* pTableMeta) {
assert(pTableMeta != NULL);
// table created according to super table, use data from super table
return getTableInfo(pTableMeta).numOfColumns;
}
int32_t getNumOfTags(const STableMeta* pTableMeta) {
assert(pTableMeta != NULL);
return getTableInfo(pTableMeta).numOfTags;
}
SSchema *getTableSchema(const STableMeta *pTableMeta) {
assert(pTableMeta != NULL);
return (SSchema*) pTableMeta->schema;
}
static int16_t doGetColumnIndex(SQueryStmtInfo* pQueryInfo, int32_t index, SToken* pToken) { static int16_t doGetColumnIndex(SQueryStmtInfo* pQueryInfo, int32_t index, SToken* pToken) {
STableMeta* pTableMeta = getMetaInfo(pQueryInfo, index)->pTableMeta; STableMeta* pTableMeta = getMetaInfo(pQueryInfo, index)->pTableMeta;
int32_t numOfCols = getNumOfColumns(pTableMeta) + getNumOfTags(pTableMeta); int32_t numOfCols = getNumOfColumns(pTableMeta) + getNumOfTags(pTableMeta);
SSchema* pSchema = getTableSchema(pTableMeta); SSchema* pSchema = getTableColumnSchema(pTableMeta);
int16_t columnIndex = COLUMN_INDEX_INITIAL_VAL; int16_t columnIndex = COLUMN_INDEX_INITIAL_VAL;
for (int16_t i = 0; i < numOfCols; ++i) { for (int32_t i = 0; i < numOfCols; ++i) {
if (pToken->n != strlen(pSchema[i].name)) { if (pToken->n != strlen(pSchema[i].name)) {
continue; continue;
} }
...@@ -670,7 +642,7 @@ int32_t doGetColumnIndexByName(SToken* pToken, SQueryStmtInfo* pQueryInfo, SColu ...@@ -670,7 +642,7 @@ int32_t doGetColumnIndexByName(SToken* pToken, SQueryStmtInfo* pQueryInfo, SColu
if (colIndex != COLUMN_INDEX_INITIAL_VAL) { if (colIndex != COLUMN_INDEX_INITIAL_VAL) {
if (pIndex->columnIndex != COLUMN_INDEX_INITIAL_VAL) { if (pIndex->columnIndex != COLUMN_INDEX_INITIAL_VAL) {
return parserSetInvalidOperatorMsg(msg, msgBufLen, msg0); return buildInvalidOperationMsg(msg, msgBufLen, msg0);
} else { } else {
pIndex->tableIndex = i; pIndex->tableIndex = i;
pIndex->columnIndex = colIndex; pIndex->columnIndex = colIndex;
...@@ -685,7 +657,7 @@ int32_t doGetColumnIndexByName(SToken* pToken, SQueryStmtInfo* pQueryInfo, SColu ...@@ -685,7 +657,7 @@ int32_t doGetColumnIndexByName(SToken* pToken, SQueryStmtInfo* pQueryInfo, SColu
} }
if (pIndex->columnIndex == COLUMN_INDEX_INITIAL_VAL) { if (pIndex->columnIndex == COLUMN_INDEX_INITIAL_VAL) {
return parserSetInvalidOperatorMsg(msg, msgBufLen, msg1); return buildInvalidOperationMsg(msg, msgBufLen, msg1);
} }
} }
...@@ -696,7 +668,7 @@ int32_t doGetColumnIndexByName(SToken* pToken, SQueryStmtInfo* pQueryInfo, SColu ...@@ -696,7 +668,7 @@ int32_t doGetColumnIndexByName(SToken* pToken, SQueryStmtInfo* pQueryInfo, SColu
} }
} }
int32_t getColumnIndexByName(const SToken* pToken, SQueryStmtInfo* pQueryInfo, SColumnIndex* pIndex, char* msg) { int32_t getColumnIndexByName(const SToken* pToken, SQueryStmtInfo* pQueryInfo, SColumnIndex* pIndex, char* msg, int32_t msgBufLen) {
if (pQueryInfo->pTableMetaInfo == NULL || pQueryInfo->numOfTables == 0) { if (pQueryInfo->pTableMetaInfo == NULL || pQueryInfo->numOfTables == 0) {
return TSDB_CODE_TSC_INVALID_OPERATION; return TSDB_CODE_TSC_INVALID_OPERATION;
} }
...@@ -707,7 +679,7 @@ int32_t getColumnIndexByName(const SToken* pToken, SQueryStmtInfo* pQueryInfo, S ...@@ -707,7 +679,7 @@ int32_t getColumnIndexByName(const SToken* pToken, SQueryStmtInfo* pQueryInfo, S
return TSDB_CODE_TSC_INVALID_OPERATION; return TSDB_CODE_TSC_INVALID_OPERATION;
} }
return doGetColumnIndexByName(&tmpToken, pQueryInfo, pIndex, msg); return doGetColumnIndexByName(&tmpToken, pQueryInfo, pIndex, msg, msgBufLen);
} }
int32_t validateGroupbyNode(SQueryStmtInfo* pQueryInfo, SArray* pList, char* msg, int32_t msgBufLen) { int32_t validateGroupbyNode(SQueryStmtInfo* pQueryInfo, SArray* pList, char* msg, int32_t msgBufLen) {
...@@ -727,7 +699,7 @@ int32_t validateGroupbyNode(SQueryStmtInfo* pQueryInfo, SArray* pList, char* msg ...@@ -727,7 +699,7 @@ int32_t validateGroupbyNode(SQueryStmtInfo* pQueryInfo, SArray* pList, char* msg
} }
if (pQueryInfo->numOfTables > 1) { if (pQueryInfo->numOfTables > 1) {
return parserSetInvalidOperatorMsg(msg, msgBufLen, msg4); return buildInvalidOperationMsg(msg, msgBufLen, msg4);
} }
SGroupbyExpr* pGroupExpr = &pQueryInfo->groupbyExpr; SGroupbyExpr* pGroupExpr = &pQueryInfo->groupbyExpr;
...@@ -745,7 +717,7 @@ int32_t validateGroupbyNode(SQueryStmtInfo* pQueryInfo, SArray* pList, char* msg ...@@ -745,7 +717,7 @@ int32_t validateGroupbyNode(SQueryStmtInfo* pQueryInfo, SArray* pList, char* msg
int32_t numOfGroupCols = (int16_t) taosArrayGetSize(pList); int32_t numOfGroupCols = (int16_t) taosArrayGetSize(pList);
if (numOfGroupCols > TSDB_MAX_TAGS) { if (numOfGroupCols > TSDB_MAX_TAGS) {
return parserSetInvalidOperatorMsg(msg, msgBufLen, msg1); return buildInvalidOperationMsg(msg, msgBufLen, msg1);
} }
SSchema *pSchema = NULL; SSchema *pSchema = NULL;
...@@ -753,20 +725,20 @@ int32_t validateGroupbyNode(SQueryStmtInfo* pQueryInfo, SArray* pList, char* msg ...@@ -753,20 +725,20 @@ int32_t validateGroupbyNode(SQueryStmtInfo* pQueryInfo, SArray* pList, char* msg
size_t num = taosArrayGetSize(pList); size_t num = taosArrayGetSize(pList);
for (int32_t i = 0; i < num; ++i) { for (int32_t i = 0; i < num; ++i) {
tVariantListItem * pItem = taosArrayGet(pList, i); SListItem * pItem = taosArrayGet(pList, i);
tVariant* pVar = &pItem->pVar; SVariant* pVar = &pItem->pVar;
SToken token = {pVar->nLen, pVar->nType, pVar->pz}; SToken token = {pVar->nLen, pVar->nType, pVar->pz};
SColumnIndex index = COLUMN_INDEX_INITIALIZER; SColumnIndex index = COLUMN_INDEX_INITIALIZER;
if (getColumnIndexByName(&token, pQueryInfo, &index, tscGetErrorMsgPayload(pCmd)) != TSDB_CODE_SUCCESS) { if (getColumnIndexByName(&token, pQueryInfo, &index, msg, msgBufLen) != TSDB_CODE_SUCCESS) {
return parserSetInvalidOperatorMsg(msg, msgBufLen, msg2); return buildInvalidOperationMsg(msg, msgBufLen, msg2);
} }
if (tableIndex == COLUMN_INDEX_INITIAL_VAL) { if (tableIndex == COLUMN_INDEX_INITIAL_VAL) {
tableIndex = index.tableIndex; tableIndex = index.tableIndex;
} else if (tableIndex != index.tableIndex) { } else if (tableIndex != index.tableIndex) {
return parserSetInvalidOperatorMsg(msg, msgBufLen, msg3); return buildInvalidOperationMsg(msg, msgBufLen, msg3);
} }
pTableMetaInfo = getMetaInfo(pQueryInfo, index.tableIndex); pTableMetaInfo = getMetaInfo(pQueryInfo, index.tableIndex);
...@@ -775,7 +747,7 @@ int32_t validateGroupbyNode(SQueryStmtInfo* pQueryInfo, SArray* pList, char* msg ...@@ -775,7 +747,7 @@ int32_t validateGroupbyNode(SQueryStmtInfo* pQueryInfo, SArray* pList, char* msg
if (index.columnIndex == TSDB_TBNAME_COLUMN_INDEX) { if (index.columnIndex == TSDB_TBNAME_COLUMN_INDEX) {
pSchema = getTbnameColumnSchema(); pSchema = getTbnameColumnSchema();
} else { } else {
pSchema = getTableColumnSchema(pTableMeta, index.columnIndex); pSchema = getOneColumnSchema(pTableMeta, index.columnIndex);
} }
int32_t numOfCols = getNumOfColumns(pTableMeta); int32_t numOfCols = getNumOfColumns(pTableMeta);
...@@ -783,7 +755,7 @@ int32_t validateGroupbyNode(SQueryStmtInfo* pQueryInfo, SArray* pList, char* msg ...@@ -783,7 +755,7 @@ int32_t validateGroupbyNode(SQueryStmtInfo* pQueryInfo, SArray* pList, char* msg
if (groupTag) { if (groupTag) {
if (!UTIL_TABLE_IS_SUPER_TABLE(pTableMetaInfo)) { if (!UTIL_TABLE_IS_SUPER_TABLE(pTableMetaInfo)) {
return parserSetInvalidOperatorMsg(msg, msgBufLen, msg6); return buildInvalidOperationMsg(msg, msgBufLen, msg6);
} }
int32_t relIndex = index.columnIndex; int32_t relIndex = index.columnIndex;
...@@ -796,14 +768,14 @@ int32_t validateGroupbyNode(SQueryStmtInfo* pQueryInfo, SArray* pList, char* msg ...@@ -796,14 +768,14 @@ int32_t validateGroupbyNode(SQueryStmtInfo* pQueryInfo, SArray* pList, char* msg
taosArrayPush(pGroupExpr->columnInfo, &colIndex); taosArrayPush(pGroupExpr->columnInfo, &colIndex);
index.columnIndex = relIndex; index.columnIndex = relIndex;
tscColumnListInsert(pTableMetaInfo->tagColList, index.columnIndex, pTableMeta->id.uid, pSchema); tscColumnListInsert(pTableMetaInfo->tagColList, index.columnIndex, pTableMeta->uid, pSchema);
} else { } else {
// check if the column type is valid, here only support the bool/tinyint/smallint/bigint group by // check if the column type is valid, here only support the bool/tinyint/smallint/bigint group by
if (pSchema->type == TSDB_DATA_TYPE_TIMESTAMP || pSchema->type == TSDB_DATA_TYPE_FLOAT || pSchema->type == TSDB_DATA_TYPE_DOUBLE) { if (pSchema->type == TSDB_DATA_TYPE_TIMESTAMP || pSchema->type == TSDB_DATA_TYPE_FLOAT || pSchema->type == TSDB_DATA_TYPE_DOUBLE) {
return parserSetInvalidOperatorMsg(msg, msgBufLen, msg5); return buildInvalidOperationMsg(msg, msgBufLen, msg5);
} }
tscColumnListInsert(pQueryInfo->colList, index.columnIndex, pTableMeta->id.uid, pSchema); tscColumnListInsert(pQueryInfo->colList, index.columnIndex, pTableMeta->uid, pSchema);
SColIndex colIndex = { .colIndex = index.columnIndex, .flag = TSDB_COL_NORMAL, .colId = pSchema->colId }; SColIndex colIndex = { .colIndex = index.columnIndex, .flag = TSDB_COL_NORMAL, .colId = pSchema->colId };
strncpy(colIndex.name, pSchema->name, tListLen(colIndex.name)); strncpy(colIndex.name, pSchema->name, tListLen(colIndex.name));
...@@ -817,13 +789,13 @@ int32_t validateGroupbyNode(SQueryStmtInfo* pQueryInfo, SArray* pList, char* msg ...@@ -817,13 +789,13 @@ int32_t validateGroupbyNode(SQueryStmtInfo* pQueryInfo, SArray* pList, char* msg
// 1. only one normal column allowed in the group by clause // 1. only one normal column allowed in the group by clause
// 2. the normal column in the group by clause can only located in the end position // 2. the normal column in the group by clause can only located in the end position
if (numOfGroupCols > 1) { if (numOfGroupCols > 1) {
return parserSetInvalidOperatorMsg(msg, msgBufLen, msg7); return buildInvalidOperationMsg(msg, msgBufLen, msg7);
} }
for(int32_t i = 0; i < num; ++i) { for(int32_t i = 0; i < num; ++i) {
SColIndex* pIndex = taosArrayGet(pGroupExpr->columnInfo, i); SColIndex* pIndex = taosArrayGet(pGroupExpr->columnInfo, i);
if (TSDB_COL_IS_NORMAL_COL(pIndex->flag) && i != num - 1) { if (TSDB_COL_IS_NORMAL_COL(pIndex->flag) && i != num - 1) {
return parserSetInvalidOperatorMsg(msg, msgBufLen, msg8); return buildInvalidOperationMsg(msg, msgBufLen, msg8);
} }
} }
...@@ -863,7 +835,6 @@ int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* ms ...@@ -863,7 +835,6 @@ int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* ms
} }
if (pSqlNode->from->type == SQL_NODE_FROM_SUBQUERY) { if (pSqlNode->from->type == SQL_NODE_FROM_SUBQUERY) {
// clearAllTableMetaInfo(pQueryInfo, false, pSql->self);
pQueryInfo->numOfTables = 0; pQueryInfo->numOfTables = 0;
// parse the subquery in the first place // parse the subquery in the first place
...@@ -873,7 +844,7 @@ int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* ms ...@@ -873,7 +844,7 @@ int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* ms
SRelElementPair* subInfo = taosArrayGet(pSqlNode->from->list, i); SRelElementPair* subInfo = taosArrayGet(pSqlNode->from->list, i);
SSqlNode* p = taosArrayGetP(subInfo->pSubquery, 0); SSqlNode* p = taosArrayGetP(subInfo->pSubquery, 0);
if (p->from->type == SQL_NODE_FROM_SUBQUERY) { if (p->from->type == SQL_NODE_FROM_SUBQUERY) {
return parserSetInvalidOperatorMsg(msg, msgBufLen, msg9); return buildInvalidOperationMsg(msg, msgBufLen, msg9);
} }
code = doValidateSubquery(pSqlNode, i, pQueryInfo, msg, msgBufLen); code = doValidateSubquery(pSqlNode, i, pQueryInfo, msg, msgBufLen);
...@@ -884,25 +855,25 @@ int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* ms ...@@ -884,25 +855,25 @@ int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* ms
int32_t timeWindowQuery = int32_t timeWindowQuery =
(TPARSER_HAS_TOKEN(pSqlNode->interval.interval) || TPARSER_HAS_TOKEN(pSqlNode->sessionVal.gap)); (TPARSER_HAS_TOKEN(pSqlNode->interval.interval) || TPARSER_HAS_TOKEN(pSqlNode->sessionVal.gap));
TSDB_QUERY_SET_TYPE(pQueryInfo->type, TSDB_QUERY_TYPE_TABLE_QUERY); // TSDB_QUERY_SET_TYPE(pQueryInfo->type, TSDB_QUERY_TYPE_TABLE_QUERY);
// parse the group by clause in the first place // parse the group by clause in the first place
if (validateGroupbyNode(pQueryInfo, pSqlNode->pGroupby, pCmd) != TSDB_CODE_SUCCESS) { if (validateGroupbyNode(pQueryInfo, pSqlNode->pGroupby, msg, msgBufLen) != TSDB_CODE_SUCCESS) {
return TSDB_CODE_TSC_INVALID_OPERATION; return TSDB_CODE_TSC_INVALID_OPERATION;
} }
if (validateSelectNodeList(pCmd, pQueryInfo, pSqlNode->pSelNodeList, false, timeWindowQuery, true) != if (validateSelectNodeList(pQueryInfo, pSqlNode->pSelNodeList, false, timeWindowQuery, true, msg, msgBufLen) !=
TSDB_CODE_SUCCESS) { TSDB_CODE_SUCCESS) {
return TSDB_CODE_TSC_INVALID_OPERATION; return TSDB_CODE_TSC_INVALID_OPERATION;
} }
// todo NOT support yet // todo NOT support yet
for (int32_t i = 0; i < tscNumOfExprs(pQueryInfo); ++i) { for (int32_t i = 0; i < tscNumOfExprs(pQueryInfo); ++i) {
SExprInfo* pExpr = tscExprGet(pQueryInfo, i); SExprInfo* pExpr = getExprInfo(pQueryInfo, i);
int32_t f = pExpr->base.functionId; int32_t f = pExpr->base.functionId;
if (f == TSDB_FUNC_STDDEV || f == TSDB_FUNC_PERCT || f == TSDB_FUNC_INTERP) { if (f == TSDB_FUNC_STDDEV || f == TSDB_FUNC_PERCT || f == TSDB_FUNC_INTERP) {
return parserSetInvalidOperatorMsg(msg, msgBufLen, msg6); return buildInvalidOperationMsg(msg, msgBufLen, msg6);
} }
if ((timeWindowQuery || pQueryInfo->stateWindow) && f == TSDB_FUNC_LAST) { if ((timeWindowQuery || pQueryInfo->stateWindow) && f == TSDB_FUNC_LAST) {
...@@ -913,17 +884,17 @@ int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* ms ...@@ -913,17 +884,17 @@ int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* ms
} }
STableMeta* pTableMeta = getMetaInfo(pQueryInfo, 0)->pTableMeta; STableMeta* pTableMeta = getMetaInfo(pQueryInfo, 0)->pTableMeta;
SSchema* pSchema = tscGetTableColumnSchema(pTableMeta, 0); SSchema* pSchema = getOneColumnSchema(pTableMeta, 0);
if (pSchema->type != TSDB_DATA_TYPE_TIMESTAMP) { if (pSchema->type != TSDB_DATA_TYPE_TIMESTAMP) {
int32_t numOfExprs = (int32_t)tscNumOfExprs(pQueryInfo); int32_t numOfExprs = (int32_t)tscNumOfExprs(pQueryInfo);
for (int32_t i = 0; i < numOfExprs; ++i) { for (int32_t i = 0; i < numOfExprs; ++i) {
SExprInfo* pExpr = tscExprGet(pQueryInfo, i); SExprInfo* pExpr = getExprInfo(pQueryInfo, i);
int32_t f = pExpr->base.functionId; int32_t f = pExpr->base.functionId;
if (f == TSDB_FUNC_DERIVATIVE || f == TSDB_FUNC_TWA || f == TSDB_FUNC_IRATE) { if (f == TSDB_FUNC_DERIVATIVE || f == TSDB_FUNC_TWA || f == TSDB_FUNC_IRATE) {
return parserSetInvalidOperatorMsg(msg, msgBufLen, msg7); return buildInvalidOperationMsg(msg, msgBufLen, msg7);
} }
} }
} }
...@@ -935,7 +906,7 @@ int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* ms ...@@ -935,7 +906,7 @@ int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* ms
} }
} else { } else {
if (pQueryInfo->numOfTables > 1) { if (pQueryInfo->numOfTables > 1) {
return parserSetInvalidOperatorMsg(msg, msgBufLen, msg8); return buildInvalidOperationMsg(msg, msgBufLen, msg8);
} }
} }
...@@ -956,7 +927,7 @@ int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* ms ...@@ -956,7 +927,7 @@ int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* ms
// check if the first column of the nest query result is timestamp column // check if the first column of the nest query result is timestamp column
SColumn* pCol = taosArrayGetP(pQueryInfo->colList, 0); SColumn* pCol = taosArrayGetP(pQueryInfo->colList, 0);
if (pCol->info.type != TSDB_DATA_TYPE_TIMESTAMP) { if (pCol->info.type != TSDB_DATA_TYPE_TIMESTAMP) {
return parserSetInvalidOperatorMsg(msg, msgBufLen, msg4); return buildInvalidOperationMsg(msg, msgBufLen, msg4);
} }
if (validateFunctionsInIntervalOrGroupbyQuery(pCmd, pQueryInfo) != TSDB_CODE_SUCCESS) { if (validateFunctionsInIntervalOrGroupbyQuery(pCmd, pQueryInfo) != TSDB_CODE_SUCCESS) {
...@@ -1005,7 +976,7 @@ int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* ms ...@@ -1005,7 +976,7 @@ int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* ms
size_t numOfTables = taosArrayGetSize(pSqlNode->from->list); size_t numOfTables = taosArrayGetSize(pSqlNode->from->list);
if (numOfTables > TSDB_MAX_JOIN_TABLE_NUM) { if (numOfTables > TSDB_MAX_JOIN_TABLE_NUM) {
return parserSetInvalidOperatorMsg(msg, msgBufLen, msg2); return buildInvalidOperationMsg(msg, msgBufLen, msg2);
} }
// set all query tables, which are maybe more than one. // set all query tables, which are maybe more than one.
...@@ -1033,7 +1004,7 @@ int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* ms ...@@ -1033,7 +1004,7 @@ int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* ms
pSqlNode->pWhere = NULL; pSqlNode->pWhere = NULL;
} else { } else {
if (taosArrayGetSize(pSqlNode->from->list) > 1) { // Cross join not allowed yet if (taosArrayGetSize(pSqlNode->from->list) > 1) { // Cross join not allowed yet
return parserSetInvalidOperatorMsg(msg, msgBufLen, "cross join not supported yet"); return buildInvalidOperationMsg(msg, msgBufLen, "cross join not supported yet");
} }
} }
...@@ -1041,7 +1012,7 @@ int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* ms ...@@ -1041,7 +1012,7 @@ int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* ms
int32_t timeWindowQuery = int32_t timeWindowQuery =
(TPARSER_HAS_TOKEN(pSqlNode->interval.interval) || TPARSER_HAS_TOKEN(pSqlNode->sessionVal.gap)); (TPARSER_HAS_TOKEN(pSqlNode->interval.interval) || TPARSER_HAS_TOKEN(pSqlNode->sessionVal.gap));
if (validateSelectNodeList(pCmd, pQueryInfo, pSqlNode->pSelNodeList, joinQuery, timeWindowQuery, false) != if (validateSelectNodeList(pQueryInfo, pSqlNode->pSelNodeList, joinQuery, timeWindowQuery, false, msg, msgBufLen) !=
TSDB_CODE_SUCCESS) { TSDB_CODE_SUCCESS) {
return TSDB_CODE_TSC_INVALID_OPERATION; return TSDB_CODE_TSC_INVALID_OPERATION;
} }
...@@ -1067,11 +1038,11 @@ int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* ms ...@@ -1067,11 +1038,11 @@ int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* ms
} }
if (tscQueryTags(pQueryInfo)) { if (tscQueryTags(pQueryInfo)) {
SExprInfo* pExpr1 = tscExprGet(pQueryInfo, 0); SExprInfo* pExpr1 = getExprInfo(pQueryInfo, 0);
if (pExpr1->base.functionId != TSDB_FUNC_TID_TAG) { if (pExpr1->base.functionId != TSDB_FUNC_TID_TAG) {
if ((pQueryInfo->colCond && taosArrayGetSize(pQueryInfo->colCond) > 0) || IS_TSWINDOW_SPECIFIED(pQueryInfo->window)) { if ((pQueryInfo->colCond && taosArrayGetSize(pQueryInfo->colCond) > 0) || IS_TSWINDOW_SPECIFIED(pQueryInfo->window)) {
return parserSetInvalidOperatorMsg(msg, msgBufLen, msg5); return buildInvalidOperationMsg(msg, msgBufLen, msg5);
} }
} }
} }
...@@ -1108,14 +1079,14 @@ int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* ms ...@@ -1108,14 +1079,14 @@ int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* ms
} }
if (!hasTimestampForPointInterpQuery(pQueryInfo)) { if (!hasTimestampForPointInterpQuery(pQueryInfo)) {
return parserSetInvalidOperatorMsg(msg, msgBufLen, msg1); return buildInvalidOperationMsg(msg, msgBufLen, msg1);
} }
// in case of join query, time range is required. // in case of join query, time range is required.
if (QUERY_IS_JOIN_QUERY(pQueryInfo->type)) { if (QUERY_IS_JOIN_QUERY(pQueryInfo->type)) {
uint64_t timeRange = (uint64_t)pQueryInfo->window.ekey - pQueryInfo->window.skey; uint64_t timeRange = (uint64_t)pQueryInfo->window.ekey - pQueryInfo->window.skey;
if (timeRange == 0 && pQueryInfo->window.skey == 0) { if (timeRange == 0 && pQueryInfo->window.skey == 0) {
return parserSetInvalidOperatorMsg(msg, msgBufLen, msg3); return buildInvalidOperationMsg(msg, msgBufLen, msg3);
} }
} }
...@@ -1160,6 +1131,119 @@ int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* ms ...@@ -1160,6 +1131,119 @@ int32_t validateSqlNode(SSqlNode* pSqlNode, SQueryStmtInfo* pQueryInfo, char* ms
return TSDB_CODE_SUCCESS; // Does not build query message here return TSDB_CODE_SUCCESS; // Does not build query message here
} }
int32_t validateSelectNodeList(SQueryStmtInfo* pQueryInfo, SArray* pSelNodeList, bool joinQuery, bool timeWindowQuery, bool outerQuery, char* msg, int32_t msgBufLen) {
assert(pSelNodeList != NULL);
const char* msg1 = "too many items in selection clause";
const char* msg2 = "functions or others can not be mixed up";
const char* msg3 = "not support query expression";
const char* msg4 = "not support distinct mixed with proj/agg func";
const char* msg5 = "invalid function name";
const char* msg6 = "not support distinct mixed with join";
const char* msg7 = "not support distinct mixed with groupby";
const char* msg8 = "not support distinct in nest query";
const char* msg9 = "_block_dist not support subquery, only support stable/table";
// too many result columns not support order by in query
if (taosArrayGetSize(pSelNodeList) > TSDB_MAX_COLUMNS) {
return buildInvalidOperationMsg(msg, msgBufLen, msg1);
}
if (pQueryInfo->colList == NULL) {
pQueryInfo->colList = taosArrayInit(4, POINTER_BYTES);
}
bool hasDistinct = false;
bool hasAgg = false;
size_t numOfExpr = taosArrayGetSize(pSelNodeList);
int32_t distIdx = -1;
for (int32_t i = 0; i < numOfExpr; ++i) {
int32_t outputIndex = (int32_t)tscNumOfExprs(pQueryInfo);
tSqlExprItem* pItem = taosArrayGet(pSelNodeList, i);
if (hasDistinct == false) {
hasDistinct = (pItem->distinct == true);
distIdx = hasDistinct ? i : -1;
}
int32_t type = pItem->pNode->type;
if (type == SQL_NODE_SQLFUNCTION) {
hasAgg = true;
if (hasDistinct) break;
pItem->functionId = qIsBuiltinFunction(pItem->pNode->Expr.operand.z, pItem->pNode->Expr.operand.n);
if (pItem->pNode->functionId == TSDB_FUNC_BLKINFO && taosArrayGetSize(pQueryInfo->pUpstream) > 0) {
return buildInvalidOperationMsg(msg, msgBufLen, msg9);
}
SUdfInfo* pUdfInfo = NULL;
if (pItem->pNode->functionId < 0) {
pUdfInfo = isValidUdf(pQueryInfo->pUdfInfo, pItem->pNode->Expr.operand.z, pItem->pNode->Expr.operand.n);
if (pUdfInfo == NULL) {
return buildInvalidOperationMsg(msg, msgBufLen, msg5);
}
pItem->pNode->functionId = pUdfInfo->functionId;
}
// sql function in selection clause, append sql function info in pSqlCmd structure sequentially
if (addExprAndResultField(pCmd, pQueryInfo, outputIndex, pItem, true, pUdfInfo) != TSDB_CODE_SUCCESS) {
return TSDB_CODE_TSC_INVALID_OPERATION;
}
} else if (type == SQL_NODE_TABLE_COLUMN || type == SQL_NODE_VALUE) {
// use the dynamic array list to decide if the function is valid or not
// select table_name1.field_name1, table_name2.field_name2 from table_name1, table_name2
if (addProjectionExprAndResultField(pCmd, pQueryInfo, pItem, outerQuery) != TSDB_CODE_SUCCESS) {
return TSDB_CODE_TSC_INVALID_OPERATION;
}
} else if (type == SQL_NODE_EXPR) {
int32_t code = handleArithmeticExpr(pCmd, pQueryInfo, i, pItem);
if (code != TSDB_CODE_SUCCESS) {
return code;
}
} else {
return buildInvalidOperationMsg(msg, msgBufLen, msg3);
}
if (pQueryInfo->fieldsInfo.numOfOutput > TSDB_MAX_COLUMNS) {
return buildInvalidOperationMsg(msg, msgBufLen, msg1);
}
}
//TODO(dengyihao), refactor as function
//handle distinct func mixed with other func
if (hasDistinct == true) {
if (distIdx != 0 || hasAgg) {
return buildInvalidOperationMsg(msg, msgBufLen, msg4);
}
if (joinQuery) {
return buildInvalidOperationMsg(msg, msgBufLen, msg6);
}
if (pQueryInfo->groupbyExpr.numOfGroupCols != 0) {
return buildInvalidOperationMsg(msg, msgBufLen, msg7);
}
if (pQueryInfo->pDownstream != NULL) {
return buildInvalidOperationMsg(msg, msgBufLen, msg8);
}
pQueryInfo->distinct = true;
}
// there is only one user-defined column in the final result field, add the timestamp column.
size_t numOfSrcCols = taosArrayGetSize(pQueryInfo->colList);
if ((numOfSrcCols <= 0 || !hasNoneUserDefineExpr(pQueryInfo)) && !tscQueryTags(pQueryInfo) && !tscQueryBlockInfo(pQueryInfo)) {
addPrimaryTsColIntoResult(pQueryInfo, pCmd);
}
if (!functionCompatibleCheck(pQueryInfo, joinQuery, timeWindowQuery)) {
return buildInvalidOperationMsg(msg, msgBufLen, msg2);
}
return TSDB_CODE_SUCCESS;
}
int32_t evaluateSqlNode(SSqlNode* pNode, int32_t tsPrecision, char* msg, int32_t msgBufLen) { int32_t evaluateSqlNode(SSqlNode* pNode, int32_t tsPrecision, char* msg, int32_t msgBufLen) {
assert(pNode != NULL && msg != NULL && msgBufLen > 0); assert(pNode != NULL && msg != NULL && msgBufLen > 0);
if (pNode->pWhere == NULL) { if (pNode->pWhere == NULL) {
......
...@@ -17,10 +17,17 @@ ...@@ -17,10 +17,17 @@
#include "parserInt.h" #include "parserInt.h"
#include "parserUtil.h" #include "parserUtil.h"
#include "ttoken.h" #include "ttoken.h"
#include "executor.h" #include "function.h"
bool qIsInsertSql(const char* pStr, size_t length) { bool qIsInsertSql(const char* pStr, size_t length) {
return false; int32_t index = 0;
do {
SToken t0 = tStrGetToken(pStr, &index, false);
if (t0.type != TK_LP) {
return t0.type == TK_INSERT || t0.type == TK_IMPORT;
}
} while (1);
} }
int32_t qParseQuerySql(const char* pStr, size_t length, struct SQueryStmtInfo** pQueryInfo, int64_t id, char* msg, int32_t msgLen) { int32_t qParseQuerySql(const char* pStr, size_t length, struct SQueryStmtInfo** pQueryInfo, int64_t id, char* msg, int32_t msgLen) {
...@@ -110,12 +117,12 @@ int32_t getTableNameFromSqlNode(SSqlNode* pSqlNode, SArray* tableNameList, char* ...@@ -110,12 +117,12 @@ int32_t getTableNameFromSqlNode(SSqlNode* pSqlNode, SArray* tableNameList, char*
SToken* t = &item->tableName; SToken* t = &item->tableName;
if (t->type == TK_INTEGER || t->type == TK_FLOAT || t->type == TK_STRING) { if (t->type == TK_INTEGER || t->type == TK_FLOAT || t->type == TK_STRING) {
return parserSetInvalidOperatorMsg(msg, msgBufLen, msg1); return buildInvalidOperationMsg(msg, msgBufLen, msg1);
} }
// tscDequoteAndTrimToken(t); // tscDequoteAndTrimToken(t);
if (parserValidateIdToken(t) != TSDB_CODE_SUCCESS) { if (parserValidateIdToken(t) != TSDB_CODE_SUCCESS) {
return parserSetInvalidOperatorMsg(msg, msgBufLen, msg1); return buildInvalidOperationMsg(msg, msgBufLen, msg1);
} }
SName name = {0}; SName name = {0};
...@@ -144,7 +151,7 @@ int32_t qParserExtractRequestedMetaInfo(const SSqlInfo* pSqlInfo, SMetaReq* pMet ...@@ -144,7 +151,7 @@ int32_t qParserExtractRequestedMetaInfo(const SSqlInfo* pSqlInfo, SMetaReq* pMet
for (int32_t i = 0; i < size; ++i) { for (int32_t i = 0; i < size; ++i) {
SSqlNode* pSqlNode = taosArrayGetP(pSqlInfo->list, i); SSqlNode* pSqlNode = taosArrayGetP(pSqlInfo->list, i);
if (pSqlNode->from == NULL) { if (pSqlNode->from == NULL) {
return parserSetInvalidOperatorMsg(msg, msgBufLen, "invalid from clause"); return buildInvalidOperationMsg(msg, msgBufLen, "invalid from clause");
} }
// load the table meta in the FROM clause // load the table meta in the FROM clause
...@@ -179,7 +186,7 @@ int32_t qParserExtractRequestedMetaInfo(const SSqlInfo* pSqlInfo, SMetaReq* pMet ...@@ -179,7 +186,7 @@ int32_t qParserExtractRequestedMetaInfo(const SSqlInfo* pSqlInfo, SMetaReq* pMet
} }
// Let's assume that it is an UDF/UDAF, if it is not a built-in function. // Let's assume that it is an UDF/UDAF, if it is not a built-in function.
if (!isBuiltinFunction(t->z, t->n)) { if (!qIsBuiltinFunction(t->z, t->n)) {
char* fname = strndup(t->z, t->n); char* fname = strndup(t->z, t->n);
taosArrayPush(pMetaInfo->pUdf, &fname); taosArrayPush(pMetaInfo->pUdf, &fname);
} }
......
#include "taosmsg.h"
#include "parser.h"
#include "parserUtil.h" #include "parserUtil.h"
#include "taoserror.h" #include "taoserror.h"
#include "tutil.h" #include "tutil.h"
#include "ttypes.h"
#include "thash.h"
#include "tbuffer.h"
#include "parserInt.h"
#include "queryInfoUtil.h"
#include "function.h"
typedef struct STableFilterCond {
uint64_t uid;
int16_t idx; //table index
int32_t len; // length of tag query condition data
char * cond;
} STableFilterCond;
static STableMetaInfo* addTableMetaInfo(SQueryStmtInfo* pQueryInfo, SName* name, STableMeta* pTableMeta,
SVgroupsInfo* vgroupList, SArray* pTagCols, SArray* pVgroupTables);
STableMeta* tableMetaDup(STableMeta* pTableMeta);
int32_t parserValidateIdToken(SToken* pToken) { int32_t parserValidateIdToken(SToken* pToken) {
if (pToken == NULL || pToken->z == NULL || pToken->type != TK_ID) { if (pToken == NULL || pToken->z == NULL || pToken->type != TK_ID) {
...@@ -59,7 +78,7 @@ int32_t parserValidateIdToken(SToken* pToken) { ...@@ -59,7 +78,7 @@ int32_t parserValidateIdToken(SToken* pToken) {
return TSDB_CODE_SUCCESS; return TSDB_CODE_SUCCESS;
} }
int32_t parserSetInvalidOperatorMsg(char* dst, int32_t dstBufLen, const char* msg) { int32_t buildInvalidOperationMsg(char* dst, int32_t dstBufLen, const char* msg) {
strncpy(dst, msg, dstBufLen); strncpy(dst, msg, dstBufLen);
return TSDB_CODE_TSC_INVALID_OPERATION; return TSDB_CODE_TSC_INVALID_OPERATION;
} }
...@@ -88,3 +107,1762 @@ int32_t parserSetSyntaxErrMsg(char* dst, int32_t dstBufLen, const char* addition ...@@ -88,3 +107,1762 @@ int32_t parserSetSyntaxErrMsg(char* dst, int32_t dstBufLen, const char* addition
return TSDB_CODE_TSC_SQL_SYNTAX_ERROR; return TSDB_CODE_TSC_SQL_SYNTAX_ERROR;
} }
SCond* getSTableQueryCond(STagCond* pTagCond, uint64_t uid) {
if (pTagCond->pCond == NULL) {
return NULL;
}
size_t size = taosArrayGetSize(pTagCond->pCond);
for (int32_t i = 0; i < size; ++i) {
SCond* pCond = taosArrayGet(pTagCond->pCond, i);
if (uid == pCond->uid) {
return pCond;
}
}
return NULL;
}
STableFilterCond* tsGetTableFilter(SArray* filters, uint64_t uid, int16_t idx) {
if (filters == NULL) {
return NULL;
}
size_t size = taosArrayGetSize(filters);
for (int32_t i = 0; i < size; ++i) {
STableFilterCond* cond = taosArrayGet(filters, i);
if (uid == cond->uid && (idx >= 0 && cond->idx == idx)) {
return cond;
}
}
return NULL;
}
void setSTableQueryCond(STagCond* pTagCond, uint64_t uid, SBufferWriter* bw) {
if (tbufTell(bw) == 0) {
return;
}
SCond cond = {
.uid = uid,
.len = (int32_t)(tbufTell(bw)),
.cond = NULL,
};
cond.cond = tbufGetData(bw, true);
if (pTagCond->pCond == NULL) {
pTagCond->pCond = taosArrayInit(3, sizeof(SCond));
}
taosArrayPush(pTagCond->pCond, &cond);
}
//typedef struct SJoinStatus {
// SSDataBlock* pBlock; // point to the upstream block
// int32_t index;
// bool completed;// current upstream is completed or not
//} SJoinStatus;
/*
static void createInputDataFilterInfo(SQueryStmtInfo* px, int32_t numOfCol1, int32_t* numOfFilterCols, SSingleColumnFilterInfo** pFilterInfo) {
SColumnInfo* tableCols = calloc(numOfCol1, sizeof(SColumnInfo));
for(int32_t i = 0; i < numOfCol1; ++i) {
SColumn* pCol = taosArrayGetP(px->colList, i);
if (pCol->info.flist.numOfFilters > 0) {
(*numOfFilterCols) += 1;
}
tableCols[i] = pCol->info;
}
if ((*numOfFilterCols) > 0) {
doCreateFilterInfo(tableCols, numOfCol1, (*numOfFilterCols), pFilterInfo, 0);
}
tfree(tableCols);
}
*/
//void destroyTableNameList(SInsertStatementParam* pInsertParam) {
// if (pInsertParam->numOfTables == 0) {
// assert(pInsertParam->pTableNameList == NULL);
// return;
// }
//
// for(int32_t i = 0; i < pInsertParam->numOfTables; ++i) {
// tfree(pInsertParam->pTableNameList[i]);
// }
//
// pInsertParam->numOfTables = 0;
// tfree(pInsertParam->pTableNameList);
//}
//void tscDestroyBoundColumnInfo(SParsedDataColInfo* pColInfo) {
// tfree(pColInfo->boundedColumns);
// tfree(pColInfo->cols);
// tfree(pColInfo->colIdxInfo);
//}
//
//void tscDestroyDataBlock(STableDataBlocks* pDataBlock, bool removeMeta) {
// if (pDataBlock == NULL) {
// return;
// }
//
// tfree(pDataBlock->pData);
//
// if (removeMeta) {
// char name[TSDB_TABLE_FNAME_LEN] = {0};
// tNameExtractFullName(&pDataBlock->tableName, name);
//
// taosHashRemove(tscTableMetaMap, name, strnlen(name, TSDB_TABLE_FNAME_LEN));
// }
//
// if (!pDataBlock->cloned) {
// tfree(pDataBlock->params);
//
// // free the refcount for metermeta
// if (pDataBlock->pTableMeta != NULL) {
// tfree(pDataBlock->pTableMeta);
// }
//
// tscDestroyBoundColumnInfo(&pDataBlock->boundColumnInfo);
// }
//
// tfree(pDataBlock);
//}
//SParamInfo* tscAddParamToDataBlock(STableDataBlocks* pDataBlock, char type, uint8_t timePrec, int16_t bytes,
// uint32_t offset) {
// uint32_t needed = pDataBlock->numOfParams + 1;
// if (needed > pDataBlock->numOfAllocedParams) {
// needed *= 2;
// void* tmp = realloc(pDataBlock->params, needed * sizeof(SParamInfo));
// if (tmp == NULL) {
// return NULL;
// }
// pDataBlock->params = (SParamInfo*)tmp;
// pDataBlock->numOfAllocedParams = needed;
// }
//
// SParamInfo* param = pDataBlock->params + pDataBlock->numOfParams;
// param->idx = -1;
// param->type = type;
// param->timePrec = timePrec;
// param->bytes = bytes;
// param->offset = offset;
//
// ++pDataBlock->numOfParams;
// return param;
//}
//void* tscDestroyBlockArrayList(SArray* pDataBlockList) {
// if (pDataBlockList == NULL) {
// return NULL;
// }
//
// size_t size = taosArrayGetSize(pDataBlockList);
// for (int32_t i = 0; i < size; i++) {
// void* d = taosArrayGetP(pDataBlockList, i);
// tscDestroyDataBlock(d, false);
// }
//
// taosArrayDestroy(pDataBlockList);
// return NULL;
//}
//void freeUdfInfo(SUdfInfo* pUdfInfo) {
// if (pUdfInfo == NULL) {
// return;
// }
//
// if (pUdfInfo->funcs[TSDB_UDF_FUNC_DESTROY]) {
// (*(udfDestroyFunc)pUdfInfo->funcs[TSDB_UDF_FUNC_DESTROY])(&pUdfInfo->init);
// }
//
// tfree(pUdfInfo->name);
//
// if (pUdfInfo->path) {
// unlink(pUdfInfo->path);
// }
//
// tfree(pUdfInfo->path);
//
// tfree(pUdfInfo->content);
//
// taosCloseDll(pUdfInfo->handle);
//}
//void* tscDestroyUdfArrayList(SArray* pUdfList) {
// if (pUdfList == NULL) {
// return NULL;
// }
//
// size_t size = taosArrayGetSize(pUdfList);
// for (int32_t i = 0; i < size; i++) {
// SUdfInfo* udf = taosArrayGet(pUdfList, i);
// freeUdfInfo(udf);
// }
//
// taosArrayDestroy(pUdfList);
// return NULL;
//}
//void* tscDestroyBlockHashTable(SHashObj* pBlockHashTable, bool removeMeta) {
// if (pBlockHashTable == NULL) {
// return NULL;
// }
//
// STableDataBlocks** p = taosHashIterate(pBlockHashTable, NULL);
// while(p) {
// tscDestroyDataBlock(*p, removeMeta);
// p = taosHashIterate(pBlockHashTable, p);
// }
//
// taosHashCleanup(pBlockHashTable);
// return NULL;
//}
/**
* create the in-memory buffer for each table to keep the submitted data block
* @param initialSize
* @param rowSize
* @param startOffset
* @param name
* @param dataBlocks
* @return
*/
//int32_t tscCreateDataBlock(size_t defaultSize, int32_t rowSize, int32_t startOffset, SName* name,
// STableMeta* pTableMeta, STableDataBlocks** dataBlocks) {
// STableDataBlocks* dataBuf = (STableDataBlocks*)calloc(1, sizeof(STableDataBlocks));
// if (dataBuf == NULL) {
// tscError("failed to allocated memory, reason:%s", strerror(errno));
// return TSDB_CODE_TSC_OUT_OF_MEMORY;
// }
//
// dataBuf->nAllocSize = (uint32_t)defaultSize;
// dataBuf->headerSize = startOffset;
//
// // the header size will always be the startOffset value, reserved for the subumit block header
// if (dataBuf->nAllocSize <= dataBuf->headerSize) {
// dataBuf->nAllocSize = dataBuf->headerSize * 2;
// }
//
// //dataBuf->pData = calloc(1, dataBuf->nAllocSize);
// dataBuf->pData = malloc(dataBuf->nAllocSize);
// if (dataBuf->pData == NULL) {
// tscError("failed to allocated memory, reason:%s", strerror(errno));
// tfree(dataBuf);
// return TSDB_CODE_TSC_OUT_OF_MEMORY;
// }
// memset(dataBuf->pData, 0, sizeof(SSubmitBlk));
//
// //Here we keep the tableMeta to avoid it to be remove by other threads.
// dataBuf->pTableMeta = tscTableMetaDup(pTableMeta);
//
// SParsedDataColInfo* pColInfo = &dataBuf->boundColumnInfo;
// SSchema* pSchema = getTableColumnSchema(dataBuf->pTableMeta);
// tscSetBoundColumnInfo(pColInfo, pSchema, dataBuf->pTableMeta->tableInfo.numOfColumns);
//
// dataBuf->ordered = true;
// dataBuf->prevTS = INT64_MIN;
// dataBuf->rowSize = rowSize;
// dataBuf->size = startOffset;
// dataBuf->tsSource = -1;
// dataBuf->vgId = dataBuf->pTableMeta->vgId;
//
// tNameAssign(&dataBuf->tableName, name);
//
// assert(defaultSize > 0 && pTableMeta != NULL && dataBuf->pTableMeta != NULL);
//
// *dataBlocks = dataBuf;
// return TSDB_CODE_SUCCESS;
//}
//
//int32_t tscGetDataBlockFromList(SHashObj* pHashList, int64_t id, int32_t size, int32_t startOffset, int32_t rowSize,
// SName* name, STableMeta* pTableMeta, STableDataBlocks** dataBlocks,
// SArray* pBlockList) {
// *dataBlocks = NULL;
// STableDataBlocks** t1 = (STableDataBlocks**)taosHashGet(pHashList, (const char*)&id, sizeof(id));
// if (t1 != NULL) {
// *dataBlocks = *t1;
// }
//
// if (*dataBlocks == NULL) {
// int32_t ret = tscCreateDataBlock((size_t)size, rowSize, startOffset, name, pTableMeta, dataBlocks);
// if (ret != TSDB_CODE_SUCCESS) {
// return ret;
// }
//
// taosHashPut(pHashList, (const char*)&id, sizeof(int64_t), (char*)dataBlocks, POINTER_BYTES);
// if (pBlockList) {
// taosArrayPush(pBlockList, dataBlocks);
// }
// }
//
// return TSDB_CODE_SUCCESS;
//}
//
//// Erase the empty space reserved for binary data
//static int trimDataBlock(void* pDataBlock, STableDataBlocks* pTableDataBlock, SInsertStatementParam* insertParam,
// SBlockKeyTuple* blkKeyTuple) {
// // TODO: optimize this function, handle the case while binary is not presented
// STableMeta* pTableMeta = pTableDataBlock->pTableMeta;
// STableComInfo tinfo = tscGetTableInfo(pTableMeta);
// SSchema* pSchema = getTableColumnSchema(pTableMeta);
//
// SSubmitBlk* pBlock = pDataBlock;
// memcpy(pDataBlock, pTableDataBlock->pData, sizeof(SSubmitBlk));
// pDataBlock = (char*)pDataBlock + sizeof(SSubmitBlk);
//
// int32_t flen = 0; // original total length of row
//
// // schema needs to be included into the submit data block
// if (insertParam->schemaAttached) {
// int32_t numOfCols = tscGetNumOfColumns(pTableDataBlock->pTableMeta);
// for(int32_t j = 0; j < numOfCols; ++j) {
// STColumn* pCol = (STColumn*) pDataBlock;
// pCol->colId = htons(pSchema[j].colId);
// pCol->type = pSchema[j].type;
// pCol->bytes = htons(pSchema[j].bytes);
// pCol->offset = 0;
//
// pDataBlock = (char*)pDataBlock + sizeof(STColumn);
// flen += TYPE_BYTES[pSchema[j].type];
// }
//
// int32_t schemaSize = sizeof(STColumn) * numOfCols;
// pBlock->schemaLen = schemaSize;
// } else {
// if (IS_RAW_PAYLOAD(insertParam->payloadType)) {
// for (int32_t j = 0; j < tinfo.numOfColumns; ++j) {
// flen += TYPE_BYTES[pSchema[j].type];
// }
// }
// pBlock->schemaLen = 0;
// }
//
// char* p = pTableDataBlock->pData + sizeof(SSubmitBlk);
// pBlock->dataLen = 0;
// int32_t numOfRows = htons(pBlock->numOfRows);
//
// if (IS_RAW_PAYLOAD(insertParam->payloadType)) {
// for (int32_t i = 0; i < numOfRows; ++i) {
// SMemRow memRow = (SMemRow)pDataBlock;
// memRowSetType(memRow, SMEM_ROW_DATA);
// SDataRow trow = memRowDataBody(memRow);
// dataRowSetLen(trow, (uint16_t)(TD_DATA_ROW_HEAD_SIZE + flen));
// dataRowSetVersion(trow, pTableMeta->sversion);
//
// int toffset = 0;
// for (int32_t j = 0; j < tinfo.numOfColumns; j++) {
// tdAppendColVal(trow, p, pSchema[j].type, toffset);
// toffset += TYPE_BYTES[pSchema[j].type];
// p += pSchema[j].bytes;
// }
//
// pDataBlock = (char*)pDataBlock + memRowTLen(memRow);
// pBlock->dataLen += memRowTLen(memRow);
// }
// } else {
// for (int32_t i = 0; i < numOfRows; ++i) {
// char* payload = (blkKeyTuple + i)->payloadAddr;
// if (isNeedConvertRow(payload)) {
// convertSMemRow(pDataBlock, payload, pTableDataBlock);
// TDRowTLenT rowTLen = memRowTLen(pDataBlock);
// pDataBlock = POINTER_SHIFT(pDataBlock, rowTLen);
// pBlock->dataLen += rowTLen;
// } else {
// TDRowTLenT rowTLen = memRowTLen(payload);
// memcpy(pDataBlock, payload, rowTLen);
// pDataBlock = POINTER_SHIFT(pDataBlock, rowTLen);
// pBlock->dataLen += rowTLen;
// }
// }
// }
//
// int32_t len = pBlock->dataLen + pBlock->schemaLen;
// pBlock->dataLen = htonl(pBlock->dataLen);
// pBlock->schemaLen = htonl(pBlock->schemaLen);
//
// return len;
//}
TAOS_FIELD createField(int8_t type, const char* name, int16_t bytes) {
TAOS_FIELD f = { .type = type, .bytes = bytes, };
tstrncpy(f.name, name, sizeof(f.name));
return f;
}
int32_t getFirstInvisibleFieldPos(SQueryStmtInfo* pQueryInfo) {
if (pQueryInfo->fieldsInfo.numOfOutput <= 0 || pQueryInfo->fieldsInfo.internalField == NULL) {
return 0;
}
for (int32_t i = 0; i < pQueryInfo->fieldsInfo.numOfOutput; ++i) {
SInternalField* pField = taosArrayGet(pQueryInfo->fieldsInfo.internalField, i);
if (!pField->visible) {
return i;
}
}
return pQueryInfo->fieldsInfo.numOfOutput;
}
SInternalField* appendFieldInfo(SFieldInfo* pFieldInfo, TAOS_FIELD* pField) {
assert(pFieldInfo != NULL);
pFieldInfo->numOfOutput++;
struct SInternalField info = { .pExpr = NULL, .visible = true };
info.field = *pField;
return taosArrayPush(pFieldInfo->internalField, &info);
}
SInternalField* insertFieldInfo(SFieldInfo* pFieldInfo, int32_t index, TAOS_FIELD* field) {
pFieldInfo->numOfOutput++;
struct SInternalField info = { .pExpr = NULL, .visible = true };
info.field = *field;
return taosArrayInsert(pFieldInfo->internalField, index, &info);
}
void fieldInfoUpdateOffset(SQueryStmtInfo* pQueryInfo) {
int32_t offset = 0;
size_t numOfExprs = getNumOfExprs(pQueryInfo);
for (int32_t i = 0; i < numOfExprs; ++i) {
SExprInfo* p = taosArrayGetP(pQueryInfo->exprList, i);
p->base.offset = offset;
offset += p->base.resBytes;
}
}
SInternalField* fieldInfoGetInternalField(SFieldInfo* pFieldInfo, int32_t index) {
assert(index < pFieldInfo->numOfOutput);
return TARRAY_GET_ELEM(pFieldInfo->internalField, index);
}
TAOS_FIELD* getFieldInfo(SFieldInfo* pFieldInfo, int32_t index) {
assert(index < pFieldInfo->numOfOutput);
return &((SInternalField*)TARRAY_GET_ELEM(pFieldInfo->internalField, index))->field;
}
int16_t getFieldInfoOffset(SQueryStmtInfo* pQueryInfo, int32_t index) {
SInternalField* pInfo = fieldInfoGetInternalField(&pQueryInfo->fieldsInfo, index);
assert(pInfo != NULL && pInfo->pExpr->pExpr == NULL);
return pInfo->pExpr->base.offset;
}
int32_t fieldInfoCompare(const SFieldInfo* pFieldInfo1, const SFieldInfo* pFieldInfo2, int32_t *diffSize) {
assert(pFieldInfo1 != NULL && pFieldInfo2 != NULL);
if (pFieldInfo1->numOfOutput != pFieldInfo2->numOfOutput) {
return pFieldInfo1->numOfOutput - pFieldInfo2->numOfOutput;
}
for (int32_t i = 0; i < pFieldInfo1->numOfOutput; ++i) {
TAOS_FIELD* pField1 = getFieldInfo((SFieldInfo*) pFieldInfo1, i);
TAOS_FIELD* pField2 = getFieldInfo((SFieldInfo*) pFieldInfo2, i);
if (pField1->type != pField2->type ||
strcasecmp(pField1->name, pField2->name) != 0) {
return 1;
}
if (pField1->bytes != pField2->bytes) {
*diffSize = 1;
if (pField2->bytes > pField1->bytes) {
assert(IS_VAR_DATA_TYPE(pField1->type));
pField1->bytes = pField2->bytes;
}
}
}
return 0;
}
int32_t getFieldInfoSize(const SFieldInfo* pFieldInfo1, const SFieldInfo* pFieldInfo2) {
assert(pFieldInfo1 != NULL && pFieldInfo2 != NULL);
for (int32_t i = 0; i < pFieldInfo1->numOfOutput; ++i) {
TAOS_FIELD* pField1 = getFieldInfo((SFieldInfo*) pFieldInfo1, i);
TAOS_FIELD* pField2 = getFieldInfo((SFieldInfo*) pFieldInfo2, i);
pField2->bytes = pField1->bytes;
}
return 0;
}
static void destroyFilterInfo(SColumnFilterList* pFilterList) {
if (pFilterList->filterInfo == NULL) {
pFilterList->numOfFilters = 0;
return;
}
for(int32_t i = 0; i < pFilterList->numOfFilters; ++i) {
if (pFilterList->filterInfo[i].filterstr) {
tfree(pFilterList->filterInfo[i].pz);
}
}
tfree(pFilterList->filterInfo);
pFilterList->numOfFilters = 0;
}
void cleanupFieldInfo(SFieldInfo* pFieldInfo) {
if (pFieldInfo == NULL) {
return;
}
if (pFieldInfo->internalField != NULL) {
size_t num = taosArrayGetSize(pFieldInfo->internalField);
for (int32_t i = 0; i < num; ++i) {
// SInternalField* pfield = taosArrayGet(pFieldInfo->internalField, i);
// if (pfield->pExpr != NULL && pfield->pExpr->pExpr != NULL) {
// sqlExprDestroy(pfield->pExpr);
// }
}
}
taosArrayDestroy(pFieldInfo->internalField);
// tfree(pFieldInfo->final);
memset(pFieldInfo, 0, sizeof(SFieldInfo));
}
void copyFieldInfo(SFieldInfo* pFieldInfo, const SFieldInfo* pSrc, const SArray* pExprList) {
assert(pFieldInfo != NULL && pSrc != NULL && pExprList != NULL);
pFieldInfo->numOfOutput = pSrc->numOfOutput;
if (pSrc->final != NULL) {
pFieldInfo->final = calloc(pSrc->numOfOutput, sizeof(TAOS_FIELD));
memcpy(pFieldInfo->final, pSrc->final, sizeof(TAOS_FIELD) * pSrc->numOfOutput);
}
if (pSrc->internalField != NULL) {
size_t num = taosArrayGetSize(pSrc->internalField);
size_t numOfExpr = taosArrayGetSize(pExprList);
for (int32_t i = 0; i < num; ++i) {
SInternalField* pfield = taosArrayGet(pSrc->internalField, i);
SInternalField p = {.visible = pfield->visible, .field = pfield->field};
bool found = false;
int32_t resColId = pfield->pExpr->base.resColId;
for(int32_t j = 0; j < numOfExpr; ++j) {
SExprInfo* pExpr = taosArrayGetP(pExprList, j);
if (pExpr->base.resColId == resColId) {
p.pExpr = pExpr;
found = true;
break;
}
}
if (!found) {
assert(pfield->pExpr->pExpr != NULL);
p.pExpr = calloc(1, sizeof(SExprInfo));
assignExprInfo(p.pExpr, pfield->pExpr);
}
taosArrayPush(pFieldInfo->internalField, &p);
}
}
}
// ignore the tbname columnIndex to be inserted into source list
int32_t columnExists(SArray* pColumnList, int32_t columnId, uint64_t uid) {
size_t numOfCols = taosArrayGetSize(pColumnList);
int32_t i = 0;
while (i < numOfCols) {
SColumn* pCol = taosArrayGetP(pColumnList, i);
if ((pCol->info.colId != columnId) || (pCol->tableUid != uid)) {
++i;
continue;
} else {
break;
}
}
if (i >= numOfCols || numOfCols == 0) {
return -1;
}
return i;
}
SColumn* columnListInsert(SArray* pColumnList, int32_t columnIndex, uint64_t uid, SSchema* pSchema) {
// ignore the tbname columnIndex to be inserted into source list
if (columnIndex < 0) {
return NULL;
}
size_t numOfCols = taosArrayGetSize(pColumnList);
int32_t i = 0;
while (i < numOfCols) {
SColumn* pCol = taosArrayGetP(pColumnList, i);
if (pCol->columnIndex < columnIndex) {
i++;
} else if (pCol->tableUid < uid) {
i++;
} else {
break;
}
}
if (i >= numOfCols || numOfCols == 0) {
SColumn* b = calloc(1, sizeof(SColumn));
if (b == NULL) {
return NULL;
}
b->columnIndex = columnIndex;
b->tableUid = uid;
b->info.colId = pSchema->colId;
b->info.bytes = pSchema->bytes;
b->info.type = pSchema->type;
taosArrayInsert(pColumnList, i, &b);
} else {
SColumn* pCol = taosArrayGetP(pColumnList, i);
if (i < numOfCols && (pCol->columnIndex > columnIndex || pCol->tableUid != uid)) {
SColumn* b = calloc(1, sizeof(SColumn));
if (b == NULL) {
return NULL;
}
b->columnIndex = columnIndex;
b->tableUid = uid;
b->info.colId = pSchema->colId;
b->info.bytes = pSchema->bytes;
b->info.type = pSchema->type;
taosArrayInsert(pColumnList, i, &b);
}
}
return taosArrayGetP(pColumnList, i);
}
void columnCopy(SColumn* pDest, const SColumn* pSrc);
SColumn* columnClone(const SColumn* src) {
assert(src != NULL);
SColumn* dst = calloc(1, sizeof(SColumn));
if (dst == NULL) {
return NULL;
}
columnCopy(dst, src);
return dst;
}
void columnCopy(SColumn* pDest, const SColumn* pSrc) {
destroyFilterInfo(&pDest->info.flist);
pDest->columnIndex = pSrc->columnIndex;
pDest->tableUid = pSrc->tableUid;
pDest->info.flist.numOfFilters = pSrc->info.flist.numOfFilters;
pDest->info.flist.filterInfo = tFilterInfoDup(pSrc->info.flist.filterInfo, pSrc->info.flist.numOfFilters);
pDest->info.type = pSrc->info.type;
pDest->info.colId = pSrc->info.colId;
pDest->info.bytes = pSrc->info.bytes;
}
void columnListCopy(SArray* dst, const SArray* src, uint64_t tableUid) {
assert(src != NULL && dst != NULL);
size_t num = taosArrayGetSize(src);
for (int32_t i = 0; i < num; ++i) {
SColumn* pCol = taosArrayGetP(src, i);
if (pCol->tableUid == tableUid) {
SColumn* p = columnClone(pCol);
taosArrayPush(dst, &p);
}
}
}
void columnListCopyAll(SArray* dst, const SArray* src) {
assert(src != NULL && dst != NULL);
size_t num = taosArrayGetSize(src);
for (int32_t i = 0; i < num; ++i) {
SColumn* pCol = taosArrayGetP(src, i);
SColumn* p = columnClone(pCol);
taosArrayPush(dst, &p);
}
}
static void columnDestroy(SColumn* pCol) {
destroyFilterInfo(&pCol->info.flist);
free(pCol);
}
void columnListDestroy(SArray* pColumnList) {
if (pColumnList == NULL) {
return;
}
size_t num = taosArrayGetSize(pColumnList);
for (int32_t i = 0; i < num; ++i) {
SColumn* pCol = taosArrayGetP(pColumnList, i);
columnDestroy(pCol);
}
taosArrayDestroy(pColumnList);
}
bool validateColumnId(STableMetaInfo* pTableMetaInfo, int32_t colId, int32_t numOfParams) {
if (pTableMetaInfo->pTableMeta == NULL) {
return false;
}
if (colId == TSDB_TBNAME_COLUMN_INDEX || (colId <= TSDB_UD_COLUMN_INDEX && numOfParams == 2)) {
return true;
}
SSchema* pSchema = getTableColumnSchema(pTableMetaInfo->pTableMeta);
STableComInfo tinfo = getTableInfo(pTableMetaInfo->pTableMeta);
int32_t numOfTotal = tinfo.numOfTags + tinfo.numOfColumns;
for (int32_t i = 0; i < numOfTotal; ++i) {
if (pSchema[i].colId == colId) {
return true;
}
}
return false;
}
int32_t tscTagCondCopy(STagCond* dest, const STagCond* src) {
memset(dest, 0, sizeof(STagCond));
if (src->tbnameCond.cond != NULL) {
dest->tbnameCond.cond = strdup(src->tbnameCond.cond);
if (dest->tbnameCond.cond == NULL) {
return -1;
}
}
dest->tbnameCond.uid = src->tbnameCond.uid;
dest->tbnameCond.len = src->tbnameCond.len;
dest->joinInfo.hasJoin = src->joinInfo.hasJoin;
for (int32_t i = 0; i < TSDB_MAX_JOIN_TABLE_NUM; ++i) {
if (src->joinInfo.joinTables[i]) {
dest->joinInfo.joinTables[i] = calloc(1, sizeof(SJoinNode));
memcpy(dest->joinInfo.joinTables[i], src->joinInfo.joinTables[i], sizeof(SJoinNode));
if (src->joinInfo.joinTables[i]->tsJoin) {
dest->joinInfo.joinTables[i]->tsJoin = taosArrayDup(src->joinInfo.joinTables[i]->tsJoin);
}
if (src->joinInfo.joinTables[i]->tagJoin) {
dest->joinInfo.joinTables[i]->tagJoin = taosArrayDup(src->joinInfo.joinTables[i]->tagJoin);
}
}
}
dest->relType = src->relType;
if (src->pCond == NULL) {
return 0;
}
size_t s = taosArrayGetSize(src->pCond);
dest->pCond = taosArrayInit(s, sizeof(SCond));
for (int32_t i = 0; i < s; ++i) {
SCond* pCond = taosArrayGet(src->pCond, i);
SCond c = {0};
c.len = pCond->len;
c.uid = pCond->uid;
if (pCond->len > 0) {
assert(pCond->cond != NULL);
c.cond = malloc(c.len);
if (c.cond == NULL) {
return -1;
}
memcpy(c.cond, pCond->cond, c.len);
}
taosArrayPush(dest->pCond, &c);
}
return 0;
}
int32_t tscColCondCopy(SArray** dest, const SArray* src, uint64_t uid, int16_t tidx) {
if (src == NULL) {
return 0;
}
size_t s = taosArrayGetSize(src);
*dest = taosArrayInit(s, sizeof(SCond));
for (int32_t i = 0; i < s; ++i) {
STableFilterCond* pCond = taosArrayGet(src, i);
STableFilterCond c = {0};
if (tidx > 0) {
if (!(pCond->uid == uid && pCond->idx == tidx)) {
continue;
}
c.idx = 0;
} else {
c.idx = pCond->idx;
}
c.len = pCond->len;
c.uid = pCond->uid;
if (pCond->len > 0) {
assert(pCond->cond != NULL);
c.cond = malloc(c.len);
if (c.cond == NULL) {
return -1;
}
memcpy(c.cond, pCond->cond, c.len);
}
taosArrayPush(*dest, &c);
}
return 0;
}
void cleanupColumnCond(SArray** pCond) {
if (*pCond == NULL) {
return;
}
size_t s = taosArrayGetSize(*pCond);
for (int32_t i = 0; i < s; ++i) {
STableFilterCond* p = taosArrayGet(*pCond, i);
tfree(p->cond);
}
taosArrayDestroy(*pCond);
*pCond = NULL;
}
void cleanupTagCond(STagCond* pTagCond) {
free(pTagCond->tbnameCond.cond);
if (pTagCond->pCond != NULL) {
size_t s = taosArrayGetSize(pTagCond->pCond);
for (int32_t i = 0; i < s; ++i) {
SCond* p = taosArrayGet(pTagCond->pCond, i);
tfree(p->cond);
}
taosArrayDestroy(pTagCond->pCond);
}
for (int32_t i = 0; i < TSDB_MAX_JOIN_TABLE_NUM; ++i) {
SJoinNode *node = pTagCond->joinInfo.joinTables[i];
if (node == NULL) {
continue;
}
if (node->tsJoin != NULL) {
taosArrayDestroy(node->tsJoin);
}
if (node->tagJoin != NULL) {
taosArrayDestroy(node->tagJoin);
}
tfree(node);
}
memset(pTagCond, 0, sizeof(STagCond));
}
//void tscGetSrcColumnInfo(SSrcColumnInfo* pColInfo, SQueryStmtInfo* pQueryInfo) {
// STableMetaInfo* pTableMetaInfo = tscGetMetaInfo(pQueryInfo, 0);
// SSchema* pSchema = getTableColumnSchema(pTableMetaInfo->pTableMeta);
//
// size_t numOfExprs = getNumOfExprs(pQueryInfo);
// for (int32_t i = 0; i < numOfExprs; ++i) {
// SExprInfo* pExpr = getExprInfo(pQueryInfo, i);
// pColInfo[i].functionId = pExpr->base.functionId;
//
// if (TSDB_COL_IS_TAG(pExpr->base.colInfo.flag)) {
// SSchema* pTagSchema = tscGetTableTagSchema(pTableMetaInfo->pTableMeta);
//
// int16_t index = pExpr->base.colInfo.colIndex;
// pColInfo[i].type = (index != -1) ? pTagSchema[index].type : TSDB_DATA_TYPE_BINARY;
// } else {
// pColInfo[i].type = pSchema[pExpr->base.colInfo.colIndex].type;
// }
// }
//}
/**
*
* @param clauseIndex denote the index of the union sub clause, usually are 0, if no union query exists.
* @param tableIndex denote the table index for join query, where more than one table exists
* @return
*/
STableMetaInfo* getMetaInfo(SQueryStmtInfo* pQueryInfo, int32_t tableIndex) {
assert(pQueryInfo != NULL);
if (pQueryInfo->pTableMetaInfo == NULL) {
assert(pQueryInfo->numOfTables == 0);
return NULL;
}
assert(tableIndex >= 0 && tableIndex <= pQueryInfo->numOfTables && pQueryInfo->pTableMetaInfo != NULL);
return pQueryInfo->pTableMetaInfo[tableIndex];
}
STableMetaInfo* getTableMetaInfoByUid(SQueryStmtInfo* pQueryInfo, uint64_t uid, int32_t* index) {
int32_t k = -1;
for (int32_t i = 0; i < pQueryInfo->numOfTables; ++i) {
if (pQueryInfo->pTableMetaInfo[i]->pTableMeta->uid == uid) {
k = i;
break;
}
}
if (index != NULL) {
*index = k;
}
assert(k != -1);
return getMetaInfo(pQueryInfo, k);
}
int32_t queryInfoCopy(SQueryStmtInfo* pQueryInfo, const SQueryStmtInfo* pSrc) {
assert(pQueryInfo != NULL && pSrc != NULL);
int32_t code = TSDB_CODE_SUCCESS;
memcpy(&pQueryInfo->interval, &pSrc->interval, sizeof(pQueryInfo->interval));
pQueryInfo->command = pSrc->command;
pQueryInfo->type = pSrc->type;
pQueryInfo->window = pSrc->window;
pQueryInfo->limit = pSrc->limit;
pQueryInfo->slimit = pSrc->slimit;
pQueryInfo->order = pSrc->order;
pQueryInfo->vgroupLimit = pSrc->vgroupLimit;
pQueryInfo->tsBuf = NULL;
pQueryInfo->fillType = pSrc->fillType;
pQueryInfo->fillVal = NULL;
pQueryInfo->numOfFillVal = 0;;
pQueryInfo->clauseLimit = pSrc->clauseLimit;
pQueryInfo->prjOffset = pSrc->prjOffset;
pQueryInfo->numOfTables = 0;
pQueryInfo->window = pSrc->window;
pQueryInfo->sessionWindow = pSrc->sessionWindow;
pQueryInfo->pTableMetaInfo = NULL;
pQueryInfo->bufLen = pSrc->bufLen;
// pQueryInfo->orderProjectQuery = pSrc->orderProjectQuery;
// pQueryInfo->arithmeticOnAgg = pSrc->arithmeticOnAgg;
pQueryInfo->buf = malloc(pSrc->bufLen);
if (pQueryInfo->buf == NULL) {
code = TSDB_CODE_TSC_OUT_OF_MEMORY;
goto _error;
}
if (pSrc->bufLen > 0) {
memcpy(pQueryInfo->buf, pSrc->buf, pSrc->bufLen);
}
pQueryInfo->groupbyExpr = pSrc->groupbyExpr;
if (pSrc->groupbyExpr.columnInfo != NULL) {
pQueryInfo->groupbyExpr.columnInfo = taosArrayDup(pSrc->groupbyExpr.columnInfo);
if (pQueryInfo->groupbyExpr.columnInfo == NULL) {
code = TSDB_CODE_TSC_OUT_OF_MEMORY;
goto _error;
}
}
if (tscTagCondCopy(&pQueryInfo->tagCond, &pSrc->tagCond) != 0) {
code = TSDB_CODE_TSC_OUT_OF_MEMORY;
goto _error;
}
if (tscColCondCopy(&pQueryInfo->colCond, pSrc->colCond, 0, -1) != 0) {
code = TSDB_CODE_TSC_OUT_OF_MEMORY;
goto _error;
}
if (pSrc->fillType != TSDB_FILL_NONE) {
pQueryInfo->fillVal = calloc(1, pSrc->fieldsInfo.numOfOutput * sizeof(int64_t));
if (pQueryInfo->fillVal == NULL) {
code = TSDB_CODE_TSC_OUT_OF_MEMORY;
goto _error;
}
pQueryInfo->numOfFillVal = pSrc->fieldsInfo.numOfOutput;
memcpy(pQueryInfo->fillVal, pSrc->fillVal, pSrc->fieldsInfo.numOfOutput * sizeof(int64_t));
}
if (copyAllExprInfo(pQueryInfo->exprList, pSrc->exprList, true) != 0) {
code = TSDB_CODE_TSC_OUT_OF_MEMORY;
goto _error;
}
// if (pQueryInfo->arithmeticOnAgg) {
// pQueryInfo->exprList1 = taosArrayInit(4, POINTER_BYTES);
// if (copyAllExprInfo(pQueryInfo->exprList1, pSrc->exprList1, true) != 0) {
// code = TSDB_CODE_TSC_OUT_OF_MEMORY;
// goto _error;
// }
// }
columnListCopyAll(pQueryInfo->colList, pSrc->colList);
copyFieldInfo(&pQueryInfo->fieldsInfo, &pSrc->fieldsInfo, pQueryInfo->exprList);
for(int32_t i = 0; i < pSrc->numOfTables; ++i) {
STableMetaInfo* p1 = getMetaInfo((SQueryStmtInfo*) pSrc, i);
STableMeta* pMeta = tableMetaDup(p1->pTableMeta);
if (pMeta == NULL) {
// todo handle the error
}
addTableMetaInfo(pQueryInfo, &p1->name, pMeta, p1->vgroupList, p1->tagColList, NULL);
}
SArray *pUdfInfo = NULL;
if (pSrc->pUdfInfo) {
pUdfInfo = taosArrayDup(pSrc->pUdfInfo);
}
pQueryInfo->pUdfInfo = pUdfInfo;
_error:
return code;
}
void clearAllTableMetaInfo(SQueryStmtInfo* pQueryInfo, bool removeMeta, uint64_t id) {
for(int32_t i = 0; i < pQueryInfo->numOfTables; ++i) {
STableMetaInfo* pTableMetaInfo = getMetaInfo(pQueryInfo, i);
clearTableMetaInfo(pTableMetaInfo);
}
tfree(pQueryInfo->pTableMetaInfo);
}
STableMetaInfo* addTableMetaInfo(SQueryStmtInfo* pQueryInfo, SName* name, STableMeta* pTableMeta,
SVgroupsInfo* vgroupList, SArray* pTagCols, SArray* pVgroupTables) {
void* tmp = realloc(pQueryInfo->pTableMetaInfo, (pQueryInfo->numOfTables + 1) * POINTER_BYTES);
if (tmp == NULL) {
terrno = TSDB_CODE_TSC_OUT_OF_MEMORY;
return NULL;
}
pQueryInfo->pTableMetaInfo = tmp;
STableMetaInfo* pTableMetaInfo = calloc(1, sizeof(STableMetaInfo));
if (pTableMetaInfo == NULL) {
terrno = TSDB_CODE_TSC_OUT_OF_MEMORY;
return NULL;
}
pQueryInfo->pTableMetaInfo[pQueryInfo->numOfTables] = pTableMetaInfo;
if (name != NULL) {
tNameAssign(&pTableMetaInfo->name, name);
}
pTableMetaInfo->pTableMeta = pTableMeta;
if (vgroupList != NULL) {
// pTableMetaInfo->vgroupList = vgroupInfoClone(vgroupList);
}
// TODO handle malloc failure
pTableMetaInfo->tagColList = taosArrayInit(4, POINTER_BYTES);
if (pTableMetaInfo->tagColList == NULL) {
return NULL;
}
if (pTagCols != NULL && pTableMetaInfo->pTableMeta != NULL) {
columnListCopy(pTableMetaInfo->tagColList, pTagCols, pTableMetaInfo->pTableMeta->uid);
}
pQueryInfo->numOfTables += 1;
return pTableMetaInfo;
}
STableMetaInfo* addEmptyMetaInfo(SQueryStmtInfo* pQueryInfo) {
return addTableMetaInfo(pQueryInfo, NULL, NULL, NULL, NULL, NULL);
}
SInternalField* getInternalFieldInfo(SFieldInfo* pFieldInfo, int32_t index) {
assert(index < pFieldInfo->numOfOutput);
return TARRAY_GET_ELEM(pFieldInfo->internalField, index);
}
int32_t getNumOfInternalField(SFieldInfo* pFieldInfo) {
return (int32_t) taosArrayGetSize(pFieldInfo->internalField);
}
static void doSetSqlExprAndResultFieldInfo(SQueryStmtInfo* pNewQueryInfo, int64_t uid) {
int32_t numOfOutput = (int32_t)getNumOfExprs(pNewQueryInfo);
if (numOfOutput == 0) {
return;
}
// set the field info in pNewQueryInfo object according to sqlExpr information
for (int32_t i = 0; i < numOfOutput; ++i) {
SExprInfo* pExpr = getExprInfo(pNewQueryInfo, i);
TAOS_FIELD f = createField((int8_t) pExpr->base.resType, pExpr->base.aliasName, pExpr->base.resBytes);
SInternalField* pInfo1 = appendFieldInfo(&pNewQueryInfo->fieldsInfo, &f);
pInfo1->pExpr = pExpr;
}
// update the pSqlExpr pointer in SInternalField according the field name
// make sure the pSqlExpr point to the correct SqlExpr in pNewQueryInfo, not SqlExpr in pQueryInfo
for (int32_t f = 0; f < pNewQueryInfo->fieldsInfo.numOfOutput; ++f) {
TAOS_FIELD* field = getFieldInfo(&pNewQueryInfo->fieldsInfo, f);
bool matched = false;
for (int32_t k1 = 0; k1 < numOfOutput; ++k1) {
SExprInfo* pExpr1 = getExprInfo(pNewQueryInfo, k1);
if (strcmp(field->name, pExpr1->base.aliasName) == 0) { // establish link according to the result field name
SInternalField* pInfo = getInternalFieldInfo(&pNewQueryInfo->fieldsInfo, f);
pInfo->pExpr = pExpr1;
matched = true;
break;
}
}
assert(matched);
(void)matched;
}
// updateFieldInfoOffset(pNewQueryInfo);
}
int16_t getJoinTagColIdByUid(STagCond* pTagCond, uint64_t uid) {
int32_t i = 0;
while (i < TSDB_MAX_JOIN_TABLE_NUM) {
SJoinNode* node = pTagCond->joinInfo.joinTables[i];
if (node && node->uid == uid) {
return node->tagColId;
}
i++;
}
assert(0);
return -1;
}
int16_t getTagColIndexById(STableMeta* pTableMeta, int16_t colId) {
int32_t numOfTags = getNumOfTags(pTableMeta);
SSchema* pSchema = getTableTagSchema(pTableMeta);
for(int32_t i = 0; i < numOfTags; ++i) {
if (pSchema[i].colId == colId) {
return i;
}
}
// can not reach here
assert(0);
return INT16_MIN;
}
bool isQueryWithLimit(SQueryStmtInfo* pQueryInfo) {
while(pQueryInfo != NULL) {
if (pQueryInfo->limit.limit > 0) {
return true;
}
pQueryInfo = pQueryInfo->sibling;
}
return false;
}
SVgroupsInfo* vgroupInfoClone(SVgroupsInfo *vgroupList) {
if (vgroupList == NULL) {
return NULL;
}
size_t size = sizeof(SVgroupsInfo) + sizeof(SVgroupMsg) * vgroupList->numOfVgroups;
SVgroupsInfo* pNew = malloc(size);
if (pNew == NULL) {
return NULL;
}
pNew->numOfVgroups = vgroupList->numOfVgroups;
for(int32_t i = 0; i < vgroupList->numOfVgroups; ++i) {
SVgroupMsg* pNewVInfo = &pNew->vgroups[i];
SVgroupMsg* pvInfo = &vgroupList->vgroups[i];
pNewVInfo->vgId = pvInfo->vgId;
pNewVInfo->numOfEps = pvInfo->numOfEps;
for(int32_t j = 0; j < pvInfo->numOfEps; ++j) {
pNewVInfo->epAddr[j].port = pvInfo->epAddr[j].port;
tstrncpy(pNewVInfo->epAddr[j].fqdn, pvInfo->epAddr[j].fqdn, TSDB_FQDN_LEN);
}
}
return pNew;
}
void* vgroupInfoClear(SVgroupsInfo *vgroupList) {
if (vgroupList == NULL) {
return NULL;
}
tfree(vgroupList);
return NULL;
}
char* serializeTagData(STagData* pTagData, char* pMsg) {
int32_t n = (int32_t) strlen(pTagData->name);
*(int32_t*) pMsg = htonl(n);
pMsg += sizeof(n);
memcpy(pMsg, pTagData->name, n);
pMsg += n;
*(int32_t*)pMsg = htonl(pTagData->dataLen);
pMsg += sizeof(int32_t);
memcpy(pMsg, pTagData->data, pTagData->dataLen);
pMsg += pTagData->dataLen;
return pMsg;
}
int32_t copyTagData(STagData* dst, const STagData* src) {
dst->dataLen = src->dataLen;
tstrncpy(dst->name, src->name, tListLen(dst->name));
if (dst->dataLen > 0) {
dst->data = malloc(dst->dataLen);
if (dst->data == NULL) {
return -1;
}
memcpy(dst->data, src->data, dst->dataLen);
}
return 0;
}
STableMeta* createSuperTableMeta(STableMetaMsg* pChild) {
assert(pChild != NULL);
int32_t total = pChild->numOfColumns + pChild->numOfTags;
STableMeta* pTableMeta = calloc(1, sizeof(STableMeta) + sizeof(SSchema) * total);
pTableMeta->tableType = TSDB_SUPER_TABLE;
pTableMeta->tableInfo.numOfTags = pChild->numOfTags;
pTableMeta->tableInfo.numOfColumns = pChild->numOfColumns;
pTableMeta->tableInfo.precision = pChild->precision;
pTableMeta->uid = pChild->suid;
pTableMeta->tversion = pChild->tversion;
pTableMeta->sversion = pChild->sversion;
memcpy(pTableMeta->schema, pChild->schema, sizeof(SSchema) * total);
int32_t num = pTableMeta->tableInfo.numOfColumns;
for(int32_t i = 0; i < num; ++i) {
pTableMeta->tableInfo.rowSize += pTableMeta->schema[i].bytes;
}
return pTableMeta;
}
uint32_t getTableMetaSize(STableMeta* pTableMeta) {
assert(pTableMeta != NULL);
int32_t totalCols = 0;
if (pTableMeta->tableInfo.numOfColumns >= 0) {
totalCols = pTableMeta->tableInfo.numOfColumns + pTableMeta->tableInfo.numOfTags;
}
return sizeof(STableMeta) + totalCols * sizeof(SSchema);
}
uint32_t getTableMetaMaxSize() {
return sizeof(STableMeta) + TSDB_MAX_COLUMNS * sizeof(SSchema);
}
STableMeta* tableMetaDup(STableMeta* pTableMeta) {
assert(pTableMeta != NULL);
size_t size = getTableMetaSize(pTableMeta);
STableMeta* p = malloc(size);
memcpy(p, pTableMeta, size);
return p;
}
SVgroupsInfo* vgroupsInfoDup(SVgroupsInfo* pVgroupsInfo) {
assert(pVgroupsInfo != NULL);
size_t size = sizeof(SVgroupMsg) * pVgroupsInfo->numOfVgroups + sizeof(SVgroupsInfo);
SVgroupsInfo* pInfo = calloc(1, size);
pInfo->numOfVgroups = pVgroupsInfo->numOfVgroups;
for (int32_t m = 0; m < pVgroupsInfo->numOfVgroups; ++m) {
memcpy(&pInfo->vgroups[m], &pVgroupsInfo->vgroups[m], sizeof(SVgroupMsg));
}
return pInfo;
}
int32_t getNumOfOutput(SFieldInfo* pFieldInfo) {
return pFieldInfo->numOfOutput;
}
int32_t createProjectionExpr(SQueryStmtInfo* pQueryInfo, STableMetaInfo* pTableMetaInfo, SExprInfo*** pExpr, int32_t* num) {
// if (!pQueryInfo->arithmeticOnAgg) {
// return TSDB_CODE_SUCCESS;
// }
*num = getNumOfOutput(pQueryInfo);
*pExpr = calloc(*(num), POINTER_BYTES);
if ((*pExpr) == NULL) {
return TSDB_CODE_TSC_OUT_OF_MEMORY;
}
for (int32_t i = 0; i < (*num); ++i) {
SInternalField* pField = getInternalFieldInfo(&pQueryInfo->fieldsInfo, i);
SExprInfo* pSource = pField->pExpr;
SExprInfo* px = calloc(1, sizeof(SExprInfo));
(*pExpr)[i] = px;
SSqlExpr *pse = &px->base;
pse->uid = pTableMetaInfo->pTableMeta->uid;
pse->resColId = pSource->base.resColId;
strncpy(pse->aliasName, pSource->base.aliasName, tListLen(pse->aliasName));
strncpy(pse->token, pSource->base.token, tListLen(pse->token));
if (pSource->base.functionId != FUNCTION_ARITHM) { // this should be switched to projection query
pse->numOfParams = 0; // no params for projection query
pse->functionId = FUNCTION_PRJ;
pse->colInfo.colId = pSource->base.resColId;
int32_t numOfOutput = (int32_t) taosArrayGetSize(pQueryInfo->exprList);
for (int32_t j = 0; j < numOfOutput; ++j) {
SExprInfo* p = taosArrayGetP(pQueryInfo->exprList, j);
if (p->base.resColId == pse->colInfo.colId) {
pse->colInfo.colIndex = j;
break;
}
}
pse->colInfo.flag = TSDB_COL_NORMAL;
pse->resType = pSource->base.resType;
pse->resBytes = pSource->base.resBytes;
strncpy(pse->colInfo.name, pSource->base.aliasName, tListLen(pse->colInfo.name));
// TODO restore refactor
int32_t functionId = pSource->base.functionId;
if (pSource->base.functionId == FUNCTION_FIRST_DST) {
functionId = FUNCTION_FIRST;
} else if (pSource->base.functionId == FUNCTION_LAST_DST) {
functionId = FUNCTION_LAST;
} else if (pSource->base.functionId == FUNCTION_STDDEV_DST) {
functionId = FUNCTION_STDDEV;
}
int32_t inter = 0;
getResultDataInfo(pSource->base.colType, pSource->base.colBytes, functionId, 0, &pse->resType,
&pse->resBytes, &inter, 0, false/*, NULL*/);
pse->colType = pse->resType;
pse->colBytes = pse->resBytes;
} else { // arithmetic expression
pse->colInfo.colId = pSource->base.colInfo.colId;
pse->colType = pSource->base.colType;
pse->colBytes = pSource->base.colBytes;
pse->resBytes = sizeof(double);
pse->resType = TSDB_DATA_TYPE_DOUBLE;
pse->functionId = pSource->base.functionId;
pse->numOfParams = pSource->base.numOfParams;
for (int32_t j = 0; j < pSource->base.numOfParams; ++j) {
taosVariantAssign(&pse->param[j], &pSource->base.param[j]);
// buildArithmeticExprFromMsg(px, NULL);
}
}
}
return TSDB_CODE_SUCCESS;
}
int32_t getColFilterSerializeLen(SQueryStmtInfo* pQueryInfo) {
int16_t numOfCols = (int16_t)taosArrayGetSize(pQueryInfo->colList);
int32_t len = 0;
for(int32_t i = 0; i < numOfCols; ++i) {
SColumn* pCol = taosArrayGetP(pQueryInfo->colList, i);
for (int32_t j = 0; j < pCol->info.flist.numOfFilters; ++j) {
len += sizeof(SColumnFilterInfo);
if (pCol->info.flist.filterInfo[j].filterstr) {
len += (int32_t)pCol->info.flist.filterInfo[j].len + 1 * TSDB_NCHAR_SIZE;
}
}
}
return len;
}
int32_t getTagFilterSerializeLen(SQueryStmtInfo* pQueryInfo) {
// serialize tag column query condition
if (pQueryInfo->tagCond.pCond != NULL && taosArrayGetSize(pQueryInfo->tagCond.pCond) > 0) {
STagCond* pTagCond = &pQueryInfo->tagCond;
STableMetaInfo *pTableMetaInfo = getMetaInfo(pQueryInfo, 0);
STableMeta * pTableMeta = pTableMetaInfo->pTableMeta;
SCond *pCond = getSTableQueryCond(pTagCond, pTableMeta->uid);
if (pCond != NULL && pCond->cond != NULL) {
return pCond->len;
}
}
return 0;
}
#if 0
int32_t tscCreateQueryFromQueryInfo(SQueryStmtInfo* pQueryInfo, SQueryAttr* pQueryAttr, void* addr) {
memset(pQueryAttr, 0, sizeof(SQueryAttr));
int16_t numOfCols = (int16_t) taosArrayGetSize(pQueryInfo->colList);
int16_t numOfOutput = (int16_t) getNumOfExprs(pQueryInfo);
pQueryAttr->topBotQuery = tscIsTopBotQuery(pQueryInfo);
pQueryAttr->hasTagResults = hasTagValOutput(pQueryInfo);
pQueryAttr->stabledev = isStabledev(pQueryInfo);
pQueryAttr->tsCompQuery = isTsCompQuery(pQueryInfo);
pQueryAttr->diffQuery = tscIsDiffDerivQuery(pQueryInfo);
pQueryAttr->simpleAgg = isSimpleAggregateRv(pQueryInfo);
pQueryAttr->needReverseScan = tscNeedReverseScan(pQueryInfo);
pQueryAttr->stableQuery = QUERY_IS_STABLE_QUERY(pQueryInfo->type);
pQueryAttr->groupbyColumn = (!pQueryInfo->stateWindow) && tscGroupbyColumn(pQueryInfo);
pQueryAttr->queryBlockDist = isBlockDistQuery(pQueryInfo);
pQueryAttr->pointInterpQuery = tscIsPointInterpQuery(pQueryInfo);
pQueryAttr->timeWindowInterpo = timeWindowInterpoRequired(pQueryInfo);
pQueryAttr->distinct = pQueryInfo->distinct;
pQueryAttr->sw = pQueryInfo->sessionWindow;
pQueryAttr->stateWindow = pQueryInfo->stateWindow;
pQueryAttr->multigroupResult = pQueryInfo->multigroupResult;
pQueryAttr->numOfCols = numOfCols;
pQueryAttr->numOfOutput = numOfOutput;
pQueryAttr->limit = pQueryInfo->limit;
pQueryAttr->slimit = pQueryInfo->slimit;
pQueryAttr->order = pQueryInfo->order;
pQueryAttr->fillType = pQueryInfo->fillType;
pQueryAttr->havingNum = pQueryInfo->havingFieldNum;
pQueryAttr->pUdfInfo = pQueryInfo->pUdfInfo;
if (pQueryInfo->order.order == TSDB_ORDER_ASC) { // TODO refactor
pQueryAttr->window = pQueryInfo->window;
} else {
pQueryAttr->window.skey = pQueryInfo->window.ekey;
pQueryAttr->window.ekey = pQueryInfo->window.skey;
}
memcpy(&pQueryAttr->interval, &pQueryInfo->interval, sizeof(pQueryAttr->interval));
STableMetaInfo* pTableMetaInfo = pQueryInfo->pTableMetaInfo[0];
if (pQueryInfo->groupbyExpr.numOfGroupCols > 0) {
pQueryAttr->pGroupbyExpr = calloc(1, sizeof(SGroupbyExpr));
*(pQueryAttr->pGroupbyExpr) = pQueryInfo->groupbyExpr;
pQueryAttr->pGroupbyExpr->columnInfo = taosArrayDup(pQueryInfo->groupbyExpr.columnInfo);
} else {
assert(pQueryInfo->groupbyExpr.columnInfo == NULL);
}
pQueryAttr->pExpr1 = calloc(pQueryAttr->numOfOutput, sizeof(SExprInfo));
for(int32_t i = 0; i < pQueryAttr->numOfOutput; ++i) {
SExprInfo* pExpr = getExprInfo(pQueryInfo, i);
tscExprAssign(&pQueryAttr->pExpr1[i], pExpr);
if (pQueryAttr->pExpr1[i].base.functionId == FUNCTION_ARITHM) {
for (int32_t j = 0; j < pQueryAttr->pExpr1[i].base.numOfParams; ++j) {
buildArithmeticExprFromMsg(&pQueryAttr->pExpr1[i], NULL);
}
}
}
pQueryAttr->tableCols = calloc(numOfCols, sizeof(SColumnInfo));
for(int32_t i = 0; i < numOfCols; ++i) {
SColumn* pCol = taosArrayGetP(pQueryInfo->colList, i);
if (!isValidDataType(pCol->info.type) || pCol->info.type == TSDB_DATA_TYPE_NULL) {
assert(0);
}
pQueryAttr->tableCols[i] = pCol->info;
pQueryAttr->tableCols[i].flist.filterInfo = tFilterInfoDup(pCol->info.flist.filterInfo, pQueryAttr->tableCols[i].flist.numOfFilters);
}
// global aggregate query
if (pQueryAttr->stableQuery && (pQueryAttr->simpleAgg || pQueryAttr->interval.interval > 0) && tscIsTwoStageSTableQuery(pQueryInfo, 0)) {
createGlobalAggregateExpr(pQueryAttr, pQueryInfo);
}
// for simple table, not for super table
if (pQueryInfo->arithmeticOnAgg) {
pQueryAttr->numOfExpr2 = (int32_t) taosArrayGetSize(pQueryInfo->exprList1);
pQueryAttr->pExpr2 = calloc(pQueryAttr->numOfExpr2, sizeof(SExprInfo));
for(int32_t i = 0; i < pQueryAttr->numOfExpr2; ++i) {
SExprInfo* p = taosArrayGetP(pQueryInfo->exprList1, i);
tscExprAssign(&pQueryAttr->pExpr2[i], p);
}
}
// tag column info
int32_t code = createTagColumnInfo(pQueryAttr, pQueryInfo, pTableMetaInfo);
if (code != TSDB_CODE_SUCCESS) {
return code;
}
if (pQueryAttr->fillType != TSDB_FILL_NONE) {
pQueryAttr->fillVal = calloc(pQueryAttr->numOfOutput, sizeof(int64_t));
memcpy(pQueryAttr->fillVal, pQueryInfo->fillVal, pQueryInfo->numOfFillVal * sizeof(int64_t));
}
pQueryAttr->srcRowSize = 0;
pQueryAttr->maxTableColumnWidth = 0;
for (int16_t i = 0; i < numOfCols; ++i) {
pQueryAttr->srcRowSize += pQueryAttr->tableCols[i].bytes;
if (pQueryAttr->maxTableColumnWidth < pQueryAttr->tableCols[i].bytes) {
pQueryAttr->maxTableColumnWidth = pQueryAttr->tableCols[i].bytes;
}
}
pQueryAttr->interBufSize = getOutputInterResultBufSize(pQueryAttr);
if (pQueryAttr->numOfCols <= 0 && !tscQueryTags(pQueryInfo) && !pQueryAttr->queryBlockDist) {
tscError("%p illegal value of numOfCols in query msg: %" PRIu64 ", table cols:%d", addr,
(uint64_t)pQueryAttr->numOfCols, numOfCols);
return TSDB_CODE_TSC_INVALID_OPERATION;
}
if (pQueryAttr->interval.interval < 0) {
tscError("%p illegal value of aggregation time interval in query msg: %" PRId64, addr,
(int64_t)pQueryInfo->interval.interval);
return TSDB_CODE_TSC_INVALID_OPERATION;
}
if (pQueryAttr->pGroupbyExpr != NULL && pQueryAttr->pGroupbyExpr->numOfGroupCols < 0) {
tscError("%p illegal value of numOfGroupCols in query msg: %d", addr, pQueryInfo->groupbyExpr.numOfGroupCols);
return TSDB_CODE_TSC_INVALID_OPERATION;
}
return TSDB_CODE_SUCCESS;
}
static int32_t doAddTableName(char* nextStr, char** str, SArray* pNameArray, SSqlObj* pSql) {
int32_t code = TSDB_CODE_SUCCESS;
SSqlCmd* pCmd = &pSql->cmd;
char tablename[TSDB_TABLE_FNAME_LEN] = {0};
int32_t len = 0;
if (nextStr == NULL) {
tstrncpy(tablename, *str, TSDB_TABLE_FNAME_LEN);
len = (int32_t) strlen(tablename);
} else {
len = (int32_t)(nextStr - (*str));
if (len >= TSDB_TABLE_NAME_LEN) {
sprintf(pCmd->payload, "table name too long");
return TSDB_CODE_TSC_INVALID_OPERATION;
}
memcpy(tablename, *str, nextStr - (*str));
tablename[len] = '\0';
}
(*str) = nextStr + 1;
len = (int32_t)strtrim(tablename);
SToken sToken = {.n = len, .type = TK_ID, .z = tablename};
tGetToken(tablename, &sToken.type);
// Check if the table name available or not
if (tscValidateName(&sToken) != TSDB_CODE_SUCCESS) {
sprintf(pCmd->payload, "table name is invalid");
return TSDB_CODE_TSC_INVALID_TABLE_ID_LENGTH;
}
SName name = {0};
if ((code = tscSetTableFullName(&name, &sToken, pSql)) != TSDB_CODE_SUCCESS) {
return code;
}
memset(tablename, 0, tListLen(tablename));
tNameExtractFullName(&name, tablename);
char* p = strdup(tablename);
taosArrayPush(pNameArray, &p);
return TSDB_CODE_SUCCESS;
}
int32_t nameComparFn(const void* n1, const void* n2) {
int32_t ret = strcmp(*(char**)n1, *(char**)n2);
if (ret == 0) {
return 0;
} else {
return ret > 0? 1:-1;
}
}
static void freeContent(void* p) {
char* ptr = *(char**)p;
tfree(ptr);
}
int tscTransferTableNameList(SSqlObj *pSql, const char *pNameList, int32_t length, SArray* pNameArray) {
SSqlCmd *pCmd = &pSql->cmd;
pCmd->command = TSDB_SQL_MULTI_META;
pCmd->msgType = TSDB_MSG_TYPE_CM_TABLES_META;
int code = TSDB_CODE_TSC_INVALID_TABLE_ID_LENGTH;
char *str = (char *)pNameList;
SQueryStmtInfo *pQueryInfo = tscGetQueryInfoS(pCmd);
if (pQueryInfo == NULL) {
pSql->res.code = terrno;
return terrno;
}
char *nextStr;
while (1) {
nextStr = strchr(str, ',');
if (nextStr == NULL) {
code = doAddTableName(nextStr, &str, pNameArray, pSql);
break;
}
code = doAddTableName(nextStr, &str, pNameArray, pSql);
if (code != TSDB_CODE_SUCCESS) {
return code;
}
if (taosArrayGetSize(pNameArray) > TSDB_MULTI_TABLEMETA_MAX_NUM) {
code = TSDB_CODE_TSC_INVALID_TABLE_ID_LENGTH;
sprintf(pCmd->payload, "tables over the max number");
return code;
}
}
size_t len = taosArrayGetSize(pNameArray);
if (len == 1) {
return TSDB_CODE_SUCCESS;
}
if (len > TSDB_MULTI_TABLEMETA_MAX_NUM) {
code = TSDB_CODE_TSC_INVALID_TABLE_ID_LENGTH;
sprintf(pCmd->payload, "tables over the max number");
return code;
}
taosArraySort(pNameArray, nameComparFn);
taosArrayRemoveDuplicate(pNameArray, nameComparFn, freeContent);
return TSDB_CODE_SUCCESS;
}
bool vgroupInfoIdentical(SNewVgroupInfo *pExisted, SVgroupMsg* src) {
assert(pExisted != NULL && src != NULL);
if (pExisted->numOfEps != src->numOfEps) {
return false;
}
for(int32_t i = 0; i < pExisted->numOfEps; ++i) {
if (pExisted->ep[i].port != src->epAddr[i].port) {
return false;
}
if (strncmp(pExisted->ep[i].fqdn, src->epAddr[i].fqdn, tListLen(pExisted->ep[i].fqdn)) != 0) {
return false;
}
}
return true;
}
SNewVgroupInfo createNewVgroupInfo(SVgroupMsg *pVgroupMsg) {
assert(pVgroupMsg != NULL);
SNewVgroupInfo info = {0};
info.numOfEps = pVgroupMsg->numOfEps;
info.vgId = pVgroupMsg->vgId;
info.inUse = 0; // 0 is the default value of inUse in case of multiple replica
assert(info.numOfEps >= 1 && info.vgId >= 1);
for(int32_t i = 0; i < pVgroupMsg->numOfEps; ++i) {
tstrncpy(info.ep[i].fqdn, pVgroupMsg->epAddr[i].fqdn, TSDB_FQDN_LEN);
info.ep[i].port = pVgroupMsg->epAddr[i].port;
}
return info;
}
char* cloneCurrentDBName(SSqlObj* pSql) {
char *p = NULL;
HttpContext *pCtx = NULL;
pthread_mutex_lock(&pSql->pTscObj->mutex);
STscObj *pTscObj = pSql->pTscObj;
switch (pTscObj->from) {
case TAOS_REQ_FROM_HTTP:
pCtx = pSql->param;
if (pCtx && pCtx->db[0] != '\0') {
char db[TSDB_ACCT_ID_LEN + TSDB_DB_NAME_LEN] = {0};
int32_t len = sprintf(db, "%s%s%s", pTscObj->acctId, TS_PATH_DELIMITER, pCtx->db);
assert(len <= sizeof(db));
p = strdup(db);
}
break;
default:
break;
}
if (p == NULL) {
p = strdup(pSql->pTscObj->db);
}
pthread_mutex_unlock(&pSql->pTscObj->mutex);
return p;
}
#endif
\ No newline at end of file
#include "queryInfoUtil.h"
#include "tmsgtype.h"
#include "astGenerator.h"
#include "os.h"
#include "parser.h"
#include "parserInt.h"
#include "parserUtil.h"
static struct SSchema _s = {
.colId = TSDB_TBNAME_COLUMN_INDEX,
.type = TSDB_DATA_TYPE_BINARY,
.bytes = TSDB_TABLE_NAME_LEN + VARSTR_HEADER_SIZE,
.name = "tbname",
};
SSchema* getTbnameColumnSchema() {
return &_s;
}
size_t getNumOfExprs(SQueryStmtInfo* pQueryInfo) {
return taosArrayGetSize(pQueryInfo->exprList);
}
SSchema* getOneColumnSchema(const STableMeta* pTableMeta, int32_t colIndex) {
assert(pTableMeta != NULL && pTableMeta->schema != NULL && colIndex >= 0 && colIndex < getNumOfColumns(pTableMeta));
SSchema* pSchema = (SSchema*) pTableMeta->schema;
return &pSchema[colIndex];
}
STableComInfo getTableInfo(const STableMeta* pTableMeta) {
assert(pTableMeta != NULL);
return pTableMeta->tableInfo;
}
int32_t getNumOfColumns(const STableMeta* pTableMeta) {
assert(pTableMeta != NULL);
// table created according to super table, use data from super table
return getTableInfo(pTableMeta).numOfColumns;
}
int32_t getNumOfTags(const STableMeta* pTableMeta) {
assert(pTableMeta != NULL);
return getTableInfo(pTableMeta).numOfTags;
}
SSchema *getTableColumnSchema(const STableMeta *pTableMeta) {
assert(pTableMeta != NULL);
return (SSchema*) pTableMeta->schema;
}
SSchema* getTableTagSchema(const STableMeta* pTableMeta) {
assert(pTableMeta != NULL && (pTableMeta->tableType == TSDB_SUPER_TABLE || pTableMeta->tableType == TSDB_CHILD_TABLE));
return getOneColumnSchema(pTableMeta, getTableInfo(pTableMeta).numOfColumns);
}
SExprInfo* createExprInfo(STableMetaInfo* pTableMetaInfo, int16_t functionId, SColumnIndex* pColIndex, int16_t type,
int16_t size, int16_t resColId, int16_t interSize, int32_t colType) {
SExprInfo* pExpr = calloc(1, sizeof(SExprInfo));
if (pExpr == NULL) {
return NULL;
}
SSqlExpr* p = &pExpr->base;
p->functionId = functionId;
// set the correct columnIndex index
if (pColIndex->columnIndex == TSDB_TBNAME_COLUMN_INDEX) {
SSchema* s = getTbnameColumnSchema();
p->colInfo.colId = TSDB_TBNAME_COLUMN_INDEX;
p->colBytes = s->bytes;
p->colType = s->type;
} else if (pColIndex->columnIndex <= TSDB_UD_COLUMN_INDEX) {
p->colInfo.colId = pColIndex->columnIndex;
p->colBytes = size;
p->colType = type;
} else if (functionId == 0/*TSDB_FUNC_BLKINFO*/) {
assert(0);
p->colInfo.colId = pColIndex->columnIndex;
p->colBytes = TSDB_MAX_BINARY_LEN;
p->colType = TSDB_DATA_TYPE_BINARY;
} else {
int32_t len = tListLen(p->colInfo.name);
if (TSDB_COL_IS_TAG(colType)) {
SSchema* pSchema = getTableTagSchema(pTableMetaInfo->pTableMeta);
p->colInfo.colId = pSchema[pColIndex->columnIndex].colId;
p->colBytes = pSchema[pColIndex->columnIndex].bytes;
p->colType = pSchema[pColIndex->columnIndex].type;
snprintf(p->colInfo.name, len, "%s.%s", pTableMetaInfo->aliasName, pSchema[pColIndex->columnIndex].name);
} else if (pTableMetaInfo->pTableMeta != NULL) {
// in handling select database/version/server_status(), the pTableMeta is NULL
SSchema* pSchema = getOneColumnSchema(pTableMetaInfo->pTableMeta, pColIndex->columnIndex);
p->colInfo.colId = pSchema->colId;
p->colBytes = pSchema->bytes;
p->colType = pSchema->type;
snprintf(p->colInfo.name, len, "%s.%s", pTableMetaInfo->aliasName, pSchema->name);
}
}
p->colInfo.flag = colType;
p->colInfo.colIndex = pColIndex->columnIndex;
p->resType = type;
p->resBytes = size;
p->resColId = resColId;
p->interBytes = interSize;
if (pTableMetaInfo->pTableMeta) {
p->uid = pTableMetaInfo->pTableMeta->uid;
}
return pExpr;
}
void addExprInfo(SQueryStmtInfo* pQueryInfo, int32_t index, SExprInfo* pExprInfo) {
assert(pQueryInfo != NULL && pQueryInfo->exprList != NULL);
int32_t num = (int32_t) taosArrayGetSize(pQueryInfo->exprList);
if (index == num) {
taosArrayPush(pQueryInfo->exprList, &pExprInfo);
} else {
taosArrayInsert(pQueryInfo->exprList, index, &pExprInfo);
}
}
void updateExprInfo(SExprInfo* pExprInfo, int16_t functionId, int32_t colId, int16_t srcColumnIndex, int16_t resType, int16_t resSize) {
assert(pExprInfo != NULL);
SSqlExpr* pse = &pExprInfo->base;
pse->functionId = functionId;
pse->colInfo.colIndex = srcColumnIndex;
pse->colInfo.colId = colId;
pse->resType = resType;
pse->resBytes = resSize;
}
SExprInfo* getExprInfo(SQueryStmtInfo* pQueryInfo, int32_t index) {
assert(pQueryInfo != NULL && pQueryInfo->exprList && index >= 0);
return taosArrayGetP(pQueryInfo->exprList, index);
}
void destroyExprInfo(SArray* pExprInfo) {
size_t size = taosArrayGetSize(pExprInfo);
for(int32_t i = 0; i < size; ++i) {
SExprInfo* pExpr = taosArrayGetP(pExprInfo, i);
tSqlExprDestroy(&pExpr->base);
}
taosArrayDestroy(pExprInfo);
}
void addExprParam(SSqlExpr* pExpr, char* argument, int32_t type, int32_t bytes) {
assert (pExpr != NULL || argument != NULL || bytes != 0);
// set parameter value
// transfer to tVariant from byte data/no ascii data
taosVariantCreateFromBinary(&pExpr->param[pExpr->numOfParams], argument, bytes, type);
pExpr->numOfParams += 1;
assert(pExpr->numOfParams <= 3);
}
void assignExprInfo(SExprInfo* dst, const SExprInfo* src) {
assert(dst != NULL && src != NULL);
*dst = *src;
if (src->base.flist.numOfFilters > 0) {
dst->base.flist.filterInfo = calloc(src->base.flist.numOfFilters, sizeof(SColumnFilterInfo));
memcpy(dst->base.flist.filterInfo, src->base.flist.filterInfo, sizeof(SColumnFilterInfo) * src->base.flist.numOfFilters);
}
assert(0);
// dst->pExpr = exprdup(src->pExpr);
memset(dst->base.param, 0, sizeof(SVariant) * tListLen(dst->base.param));
for (int32_t j = 0; j < src->base.numOfParams; ++j) {
taosVariantAssign(&dst->base.param[j], &src->base.param[j]);
}
}
int32_t copyOneExprInfo(SArray* dst, const SArray* src, uint64_t uid, bool deepcopy) {
assert(src != NULL && dst != NULL);
size_t size = taosArrayGetSize(src);
for (int32_t i = 0; i < size; ++i) {
SExprInfo* pExpr = taosArrayGetP(src, i);
if (pExpr->base.uid == uid) {
if (deepcopy) {
SExprInfo* p1 = calloc(1, sizeof(SExprInfo));
assignExprInfo(p1, pExpr);
taosArrayPush(dst, &p1);
} else {
taosArrayPush(dst, &pExpr);
}
}
}
return 0;
}
int32_t copyAllExprInfo(SArray* dst, const SArray* src, bool deepcopy) {
assert(src != NULL && dst != NULL);
size_t size = taosArrayGetSize(src);
for (int32_t i = 0; i < size; ++i) {
SExprInfo* pExpr = taosArrayGetP(src, i);
if (deepcopy) {
SExprInfo* p1 = calloc(1, sizeof(SExprInfo));
assignExprInfo(p1, pExpr);
taosArrayPush(dst, &p1);
} else {
taosArrayPush(dst, &pExpr);
}
}
return 0;
}
//void* tSqlExprDestroy(SExprInfo* pExpr) {
// if (pExpr == NULL) {
// return NULL;
// }
//
// SSqlExpr* p = &pExpr->base;
// for(int32_t i = 0; i < tListLen(p->param); ++i) {
// taosVariantDestroy(&p->param[i]);
// }
//
// if (p->flist.numOfFilters > 0) {
// tfree(p->flist.filterInfo);
// }
//
// if (pExpr->pExpr != NULL) {
// tExprTreeDestroy(pExpr->pExpr, NULL);
// }
//
// tfree(pExpr);
// return NULL;
//}
int32_t getResRowLength(SArray* pExprList) {
size_t num = taosArrayGetSize(pExprList);
if (num == 0) {
return 0;
}
int32_t size = 0;
for(int32_t i = 0; i < num; ++i) {
SExprInfo* pExpr = taosArrayGetP(pExprList, i);
size += pExpr->base.resBytes;
}
return size;
}
static void freeQueryInfoImpl(SQueryStmtInfo* pQueryInfo) {
cleanupTagCond(&pQueryInfo->tagCond);
cleanupColumnCond(&pQueryInfo->colCond);
cleanupFieldInfo(&pQueryInfo->fieldsInfo);
destroyExprInfo(pQueryInfo->exprList);
pQueryInfo->exprList = NULL;
if (pQueryInfo->exprList1 != NULL) {
destroyExprInfo(pQueryInfo->exprList1);
pQueryInfo->exprList1 = NULL;
}
columnListDestroy(pQueryInfo->colList);
pQueryInfo->colList = NULL;
if (pQueryInfo->groupbyExpr.columnInfo != NULL) {
taosArrayDestroy(pQueryInfo->groupbyExpr.columnInfo);
pQueryInfo->groupbyExpr.columnInfo = NULL;
}
pQueryInfo->fillType = 0;
tfree(pQueryInfo->fillVal);
tfree(pQueryInfo->buf);
taosArrayDestroy(pQueryInfo->pUpstream);
pQueryInfo->pUpstream = NULL;
pQueryInfo->bufLen = 0;
}
void freeQueryInfo(SQueryStmtInfo* pQueryInfo, bool removeCachedMeta, uint64_t id) {
while(pQueryInfo != NULL) {
SQueryStmtInfo* p = pQueryInfo->sibling;
size_t numOfUpstream = taosArrayGetSize(pQueryInfo->pUpstream);
for(int32_t i = 0; i < numOfUpstream; ++i) {
SQueryStmtInfo* pUpQueryInfo = taosArrayGetP(pQueryInfo->pUpstream, i);
freeQueryInfoImpl(pUpQueryInfo);
clearAllTableMetaInfo(pUpQueryInfo, removeCachedMeta, id);
tfree(pUpQueryInfo);
}
freeQueryInfoImpl(pQueryInfo);
clearAllTableMetaInfo(pQueryInfo, removeCachedMeta, id);
tfree(pQueryInfo);
pQueryInfo = p;
}
}
SArray* extractFunctionIdList(SArray* pExprInfoList) {
assert(pExprInfoList != NULL);
size_t len = taosArrayGetSize(pExprInfoList);
SArray* p = taosArrayInit(len, sizeof(int16_t));
for(int32_t i = 0; i < len; ++i) {
SExprInfo* pExprInfo = taosArrayGetP(pExprInfoList, i);
taosArrayPush(p, &pExprInfo->base.functionId);
}
return p;
}
bool tscIsProjectionQueryOnSTable(SQueryStmtInfo* pQueryInfo, int32_t tableIndex);
bool tscNonOrderedProjectionQueryOnSTable(SQueryStmtInfo* pQueryInfo, int32_t tableIndex) {
if (!tscIsProjectionQueryOnSTable(pQueryInfo, tableIndex)) {
return false;
}
// order by columnIndex exists, not a non-ordered projection query
return pQueryInfo->order.orderColId < 0;
}
// not order by timestamp projection query on super table
bool tscOrderedProjectionQueryOnSTable(SQueryStmtInfo* pQueryInfo, int32_t tableIndex) {
if (!tscIsProjectionQueryOnSTable(pQueryInfo, tableIndex)) {
return false;
}
// order by columnIndex exists, a non-ordered projection query
return pQueryInfo->order.orderColId >= 0;
}
bool tscHasColumnFilter(SQueryStmtInfo* pQueryInfo) {
// filter on primary timestamp column
if (pQueryInfo->window.skey != INT64_MIN || pQueryInfo->window.ekey != INT64_MAX) {
return true;
}
size_t size = taosArrayGetSize(pQueryInfo->colList);
for (int32_t i = 0; i < size; ++i) {
SColumn* pCol = taosArrayGetP(pQueryInfo->colList, i);
if (pCol->info.flist.numOfFilters > 0) {
return true;
}
}
return false;
}
//void tscClearInterpInfo(SQueryStmtInfo* pQueryInfo) {
// if (!tscIsPointInterpQuery(pQueryInfo)) {
// return;
// }
//
// pQueryInfo->fillType = TSDB_FILL_NONE;
// tfree(pQueryInfo->fillVal);
//}
\ No newline at end of file
#include "tpagedfile.h"
#include "thash.h"
#include "stddef.h"
#include "taoserror.h"
#include "tcompression.h"
#define GET_DATA_PAYLOAD(_p) ((char *)(_p)->pData + POINTER_BYTES)
#define NO_IN_MEM_AVAILABLE_PAGES(_b) (listNEles((_b)->lruList) >= (_b)->inMemPages)
int32_t createDiskbasedResultBuffer(SDiskbasedResultBuf** pResultBuf, int32_t pagesize, int32_t inMemBufSize, uint64_t qId) {
*pResultBuf = calloc(1, sizeof(SDiskbasedResultBuf));
SDiskbasedResultBuf* pResBuf = *pResultBuf;
if (pResBuf == NULL) {
return TSDB_CODE_COM_OUT_OF_MEMORY;
}
pResBuf->pageSize = pagesize;
pResBuf->numOfPages = 0; // all pages are in buffer in the first place
pResBuf->totalBufSize = 0;
pResBuf->inMemPages = inMemBufSize/pagesize; // maximum allowed pages, it is a soft limit.
pResBuf->allocateId = -1;
pResBuf->comp = true;
pResBuf->file = NULL;
pResBuf->qId = qId;
pResBuf->fileSize = 0;
// at least more than 2 pages must be in memory
assert(inMemBufSize >= pagesize * 2);
pResBuf->lruList = tdListNew(POINTER_BYTES);
// init id hash table
pResBuf->groupSet = taosHashInit(10, taosGetDefaultHashFunction(TSDB_DATA_TYPE_INT), true, false);
pResBuf->assistBuf = malloc(pResBuf->pageSize + 2); // EXTRA BYTES
pResBuf->all = taosHashInit(10, taosGetDefaultHashFunction(TSDB_DATA_TYPE_INT), true, false);
char path[PATH_MAX] = {0};
taosGetTmpfilePath("qbuf", path);
pResBuf->path = strdup(path);
pResBuf->emptyDummyIdList = taosArrayInit(1, sizeof(int32_t));
// qDebug("QInfo:0x%"PRIx64" create resBuf for output, page size:%d, inmem buf pages:%d, file:%s", qId, pResBuf->pageSize,
// pResBuf->inMemPages, pResBuf->path);
return TSDB_CODE_SUCCESS;
}
static int32_t createDiskFile(SDiskbasedResultBuf* pResultBuf) {
pResultBuf->file = fopen(pResultBuf->path, "wb+");
if (pResultBuf->file == NULL) {
// qError("failed to create tmp file: %s on disk. %s", pResultBuf->path, strerror(errno));
return TAOS_SYSTEM_ERROR(errno);
}
return TSDB_CODE_SUCCESS;
}
static char* doCompressData(void* data, int32_t srcSize, int32_t *dst, SDiskbasedResultBuf* pResultBuf) { // do nothing
if (!pResultBuf->comp) {
*dst = srcSize;
return data;
}
*dst = tsCompressString(data, srcSize, 1, pResultBuf->assistBuf, srcSize, ONE_STAGE_COMP, NULL, 0);
memcpy(data, pResultBuf->assistBuf, *dst);
return data;
}
static char* doDecompressData(void* data, int32_t srcSize, int32_t *dst, SDiskbasedResultBuf* pResultBuf) { // do nothing
if (!pResultBuf->comp) {
*dst = srcSize;
return data;
}
*dst = tsDecompressString(data, srcSize, 1, pResultBuf->assistBuf, pResultBuf->pageSize, ONE_STAGE_COMP, NULL, 0);
if (*dst > 0) {
memcpy(data, pResultBuf->assistBuf, *dst);
}
return data;
}
static int32_t allocatePositionInFile(SDiskbasedResultBuf* pResultBuf, size_t size) {
if (pResultBuf->pFree == NULL) {
return pResultBuf->nextPos;
} else {
int32_t offset = -1;
size_t num = taosArrayGetSize(pResultBuf->pFree);
for(int32_t i = 0; i < num; ++i) {
SFreeListItem* pi = taosArrayGet(pResultBuf->pFree, i);
if (pi->len >= size) {
offset = pi->offset;
pi->offset += (int32_t)size;
pi->len -= (int32_t)size;
return offset;
}
}
// no available recycle space, allocate new area in file
return pResultBuf->nextPos;
}
}
static char* doFlushPageToDisk(SDiskbasedResultBuf* pResultBuf, SPageInfo* pg) {
assert(!pg->used && pg->pData != NULL);
int32_t size = -1;
char* t = doCompressData(GET_DATA_PAYLOAD(pg), pResultBuf->pageSize, &size, pResultBuf);
// this page is flushed to disk for the first time
if (pg->info.offset == -1) {
pg->info.offset = allocatePositionInFile(pResultBuf, size);
pResultBuf->nextPos += size;
int32_t ret = fseek(pResultBuf->file, pg->info.offset, SEEK_SET);
assert(ret == 0);
ret = (int32_t) fwrite(t, 1, size, pResultBuf->file);
assert(ret == size);
if (pResultBuf->fileSize < pg->info.offset + pg->info.length) {
pResultBuf->fileSize = pg->info.offset + pg->info.length;
}
} else {
// length becomes greater, current space is not enough, allocate new place, otherwise, do nothing
if (pg->info.length < size) {
// 1. add current space to free list
taosArrayPush(pResultBuf->pFree, &pg->info);
// 2. allocate new position, and update the info
pg->info.offset = allocatePositionInFile(pResultBuf, size);
pResultBuf->nextPos += size;
}
//3. write to disk.
int32_t ret = fseek(pResultBuf->file, pg->info.offset, SEEK_SET);
if (ret != 0) { // todo handle the error case
}
ret = (int32_t)fwrite(t, size, 1, pResultBuf->file);
if (ret != size) { // todo handle the error case
}
if (pResultBuf->fileSize < pg->info.offset + pg->info.length) {
pResultBuf->fileSize = pg->info.offset + pg->info.length;
}
}
char* ret = pg->pData;
memset(ret, 0, pResultBuf->pageSize);
pg->pData = NULL;
pg->info.length = size;
pResultBuf->statis.flushBytes += pg->info.length;
return ret;
}
static char* flushPageToDisk(SDiskbasedResultBuf* pResultBuf, SPageInfo* pg) {
int32_t ret = TSDB_CODE_SUCCESS;
assert(((int64_t) pResultBuf->numOfPages * pResultBuf->pageSize) == pResultBuf->totalBufSize && pResultBuf->numOfPages >= pResultBuf->inMemPages);
if (pResultBuf->file == NULL) {
if ((ret = createDiskFile(pResultBuf)) != TSDB_CODE_SUCCESS) {
terrno = ret;
return NULL;
}
}
return doFlushPageToDisk(pResultBuf, pg);
}
// load file block data in disk
static char* loadPageFromDisk(SDiskbasedResultBuf* pResultBuf, SPageInfo* pg) {
int32_t ret = fseek(pResultBuf->file, pg->info.offset, SEEK_SET);
ret = (int32_t)fread(GET_DATA_PAYLOAD(pg), 1, pg->info.length, pResultBuf->file);
if (ret != pg->info.length) {
terrno = errno;
return NULL;
}
pResultBuf->statis.loadBytes += pg->info.length;
int32_t fullSize = 0;
doDecompressData(GET_DATA_PAYLOAD(pg), pg->info.length, &fullSize, pResultBuf);
return (char*)GET_DATA_PAYLOAD(pg);
}
static SIDList addNewGroup(SDiskbasedResultBuf* pResultBuf, int32_t groupId) {
assert(taosHashGet(pResultBuf->groupSet, (const char*) &groupId, sizeof(int32_t)) == NULL);
SArray* pa = taosArrayInit(1, POINTER_BYTES);
int32_t ret = taosHashPut(pResultBuf->groupSet, (const char*)&groupId, sizeof(int32_t), &pa, POINTER_BYTES);
assert(ret == 0);
return pa;
}
static SPageInfo* registerPage(SDiskbasedResultBuf* pResultBuf, int32_t groupId, int32_t pageId) {
SIDList list = NULL;
char** p = taosHashGet(pResultBuf->groupSet, (const char*)&groupId, sizeof(int32_t));
if (p == NULL) { // it is a new group id
list = addNewGroup(pResultBuf, groupId);
} else {
list = (SIDList) (*p);
}
pResultBuf->numOfPages += 1;
SPageInfo* ppi = malloc(sizeof(SPageInfo));//{ .info = PAGE_INFO_INITIALIZER, .pageId = pageId, .pn = NULL};
ppi->pageId = pageId;
ppi->pData = NULL;
ppi->info = PAGE_INFO_INITIALIZER;
ppi->used = true;
ppi->pn = NULL;
return *(SPageInfo**) taosArrayPush(list, &ppi);
}
static SListNode* getEldestUnrefedPage(SDiskbasedResultBuf* pResultBuf) {
SListIter iter = {0};
tdListInitIter(pResultBuf->lruList, &iter, TD_LIST_BACKWARD);
SListNode* pn = NULL;
while((pn = tdListNext(&iter)) != NULL) {
assert(pn != NULL);
SPageInfo* pageInfo = *(SPageInfo**) pn->data;
assert(pageInfo->pageId >= 0 && pageInfo->pn == pn);
if (!pageInfo->used) {
break;
}
}
return pn;
}
static char* evicOneDataPage(SDiskbasedResultBuf* pResultBuf) {
char* bufPage = NULL;
SListNode* pn = getEldestUnrefedPage(pResultBuf);
// all pages are referenced by user, try to allocate new space
if (pn == NULL) {
int32_t prev = pResultBuf->inMemPages;
// increase by 50% of previous mem pages
pResultBuf->inMemPages = (int32_t)(pResultBuf->inMemPages * 1.5f);
// qWarn("%p in memory buf page not sufficient, expand from %d to %d, page size:%d", pResultBuf, prev,
// pResultBuf->inMemPages, pResultBuf->pageSize);
} else {
pResultBuf->statis.flushPages += 1;
tdListPopNode(pResultBuf->lruList, pn);
SPageInfo* d = *(SPageInfo**) pn->data;
assert(d->pn == pn);
d->pn = NULL;
tfree(pn);
bufPage = flushPageToDisk(pResultBuf, d);
}
return bufPage;
}
static void lruListPushFront(SList *pList, SPageInfo* pi) {
tdListPrepend(pList, &pi);
SListNode* front = tdListGetHead(pList);
pi->pn = front;
}
static void lruListMoveToFront(SList *pList, SPageInfo* pi) {
tdListPopNode(pList, pi->pn);
tdListPrependNode(pList, pi->pn);
}
static FORCE_INLINE size_t getAllocPageSize(int32_t pageSize) {
return pageSize + POINTER_BYTES + 2 + sizeof(SFilePage);
}
SFilePage* getNewDataBuf(SDiskbasedResultBuf* pResultBuf, int32_t groupId, int32_t* pageId) {
pResultBuf->statis.getPages += 1;
char* availablePage = NULL;
if (NO_IN_MEM_AVAILABLE_PAGES(pResultBuf)) {
availablePage = evicOneDataPage(pResultBuf);
}
// register new id in this group
*pageId = (++pResultBuf->allocateId);
// register page id info
SPageInfo* pi = registerPage(pResultBuf, groupId, *pageId);
// add to LRU list
assert(listNEles(pResultBuf->lruList) < pResultBuf->inMemPages && pResultBuf->inMemPages > 0);
lruListPushFront(pResultBuf->lruList, pi);
// add to hash map
taosHashPut(pResultBuf->all, pageId, sizeof(int32_t), &pi, POINTER_BYTES);
// allocate buf
if (availablePage == NULL) {
pi->pData = calloc(1, getAllocPageSize(pResultBuf->pageSize)); // add extract bytes in case of zipped buffer increased.
} else {
pi->pData = availablePage;
}
pResultBuf->totalBufSize += pResultBuf->pageSize;
((void**)pi->pData)[0] = pi;
pi->used = true;
return (void *)(GET_DATA_PAYLOAD(pi));
}
SFilePage* getResBufPage(SDiskbasedResultBuf* pResultBuf, int32_t id) {
assert(pResultBuf != NULL && id >= 0);
pResultBuf->statis.getPages += 1;
SPageInfo** pi = taosHashGet(pResultBuf->all, &id, sizeof(int32_t));
assert(pi != NULL && *pi != NULL);
if ((*pi)->pData != NULL) { // it is in memory
// no need to update the LRU list if only one page exists
if (pResultBuf->numOfPages == 1) {
(*pi)->used = true;
return (void *)(GET_DATA_PAYLOAD(*pi));
}
SPageInfo** pInfo = (SPageInfo**) ((*pi)->pn->data);
assert(*pInfo == *pi);
lruListMoveToFront(pResultBuf->lruList, (*pi));
(*pi)->used = true;
return (void *)(GET_DATA_PAYLOAD(*pi));
} else { // not in memory
assert((*pi)->pData == NULL && (*pi)->pn == NULL && (*pi)->info.length >= 0 && (*pi)->info.offset >= 0);
char* availablePage = NULL;
if (NO_IN_MEM_AVAILABLE_PAGES(pResultBuf)) {
availablePage = evicOneDataPage(pResultBuf);
}
if (availablePage == NULL) {
(*pi)->pData = calloc(1, getAllocPageSize(pResultBuf->pageSize));
} else {
(*pi)->pData = availablePage;
}
((void**)((*pi)->pData))[0] = (*pi);
lruListPushFront(pResultBuf->lruList, *pi);
(*pi)->used = true;
loadPageFromDisk(pResultBuf, *pi);
return (void *)(GET_DATA_PAYLOAD(*pi));
}
}
void releaseResBufPage(SDiskbasedResultBuf* pResultBuf, void* page) {
assert(pResultBuf != NULL && page != NULL);
char* p = (char*) page - POINTER_BYTES;
SPageInfo* ppi = ((SPageInfo**) p)[0];
releaseResBufPageInfo(pResultBuf, ppi);
}
void releaseResBufPageInfo(SDiskbasedResultBuf* pResultBuf, SPageInfo* pi) {
assert(pi->pData != NULL && pi->used);
pi->used = false;
pResultBuf->statis.releasePages += 1;
}
size_t getNumOfResultBufGroupId(const SDiskbasedResultBuf* pResultBuf) { return taosHashGetSize(pResultBuf->groupSet); }
size_t getResBufSize(const SDiskbasedResultBuf* pResultBuf) { return (size_t)pResultBuf->totalBufSize; }
SIDList getDataBufPagesIdList(SDiskbasedResultBuf* pResultBuf, int32_t groupId) {
assert(pResultBuf != NULL);
char** p = taosHashGet(pResultBuf->groupSet, (const char*)&groupId, sizeof(int32_t));
if (p == NULL) { // it is a new group id
return pResultBuf->emptyDummyIdList;
} else {
return (SArray*) (*p);
}
}
void destroyResultBuf(SDiskbasedResultBuf* pResultBuf) {
if (pResultBuf == NULL) {
return;
}
if (pResultBuf->file != NULL) {
// qDebug("QInfo:0x%"PRIx64" res output buffer closed, total:%.2f Kb, inmem size:%.2f Kb, file size:%.2f Kb",
// pResultBuf->qId, pResultBuf->totalBufSize/1024.0, listNEles(pResultBuf->lruList) * pResultBuf->pageSize / 1024.0,
// pResultBuf->fileSize/1024.0);
fclose(pResultBuf->file);
} else {
// qDebug("QInfo:0x%"PRIx64" res output buffer closed, total:%.2f Kb, no file created", pResultBuf->qId,
// pResultBuf->totalBufSize/1024.0);
}
remove(pResultBuf->path);
tfree(pResultBuf->path);
SArray** p = taosHashIterate(pResultBuf->groupSet, NULL);
while(p) {
size_t n = taosArrayGetSize(*p);
for(int32_t i = 0; i < n; ++i) {
SPageInfo* pi = taosArrayGetP(*p, i);
tfree(pi->pData);
tfree(pi);
}
taosArrayDestroy(*p);
p = taosHashIterate(pResultBuf->groupSet, p);
}
tdListFree(pResultBuf->lruList);
taosArrayDestroy(pResultBuf->emptyDummyIdList);
taosHashCleanup(pResultBuf->groupSet);
taosHashCleanup(pResultBuf->all);
tfree(pResultBuf->assistBuf);
tfree(pResultBuf);
}
SPageInfo* getLastPageInfo(SIDList pList) {
size_t size = taosArrayGetSize(pList);
return (SPageInfo*) taosArrayGetP(pList, size - 1);
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册