diff --git a/README-CN.md b/README-CN.md
index 7df2733a2e76f602363f219d61cc1f877f48f12e..6bfab379fe89c4cec91b48c65d514e97039634ee 100644
--- a/README-CN.md
+++ b/README-CN.md
@@ -21,17 +21,17 @@
TDengine 是一款开源、高性能、云原生的时序数据库 (Time-Series Database, TSDB)。TDengine 能被广泛运用于物联网、工业互联网、车联网、IT 运维、金融等领域。除核心的时序数据库功能外,TDengine 还提供缓存、数据订阅、流式计算等功能,是一极简的时序数据处理平台,最大程度的减小系统设计的复杂度,降低研发和运营成本。与其他时序数据库相比,TDengine 的主要优势如下:
-- 高性能:通过创新的存储引擎设计,无论是数据写入还是查询,TDengine 的性能比通用数据库快 10 倍以上,也远超其他时序数据库,存储空间不及通用数据库的1/10。
+- **高性能**:通过创新的存储引擎设计,无论是数据写入还是查询,TDengine 的性能比通用数据库快 10 倍以上,也远超其他时序数据库,存储空间不及通用数据库的1/10。
-- 云原生:通过原生分布式的设计,充分利用云平台的优势,TDengine 提供了水平扩展能力,具备弹性、韧性和可观测性,支持k8s部署,可运行在公有云、私有云和混合云上。
+- **云原生**:通过原生分布式的设计,充分利用云平台的优势,TDengine 提供了水平扩展能力,具备弹性、韧性和可观测性,支持k8s部署,可运行在公有云、私有云和混合云上。
-- 极简时序数据平台:TDengine 内建消息队列、缓存、流式计算等功能,应用无需再集成 Kafka/Redis/HBase/Spark 等软件,大幅降低系统的复杂度,降低应用开发和运营成本。
+- **极简时序数据平台**:TDengine 内建消息队列、缓存、流式计算等功能,应用无需再集成 Kafka/Redis/HBase/Spark 等软件,大幅降低系统的复杂度,降低应用开发和运营成本。
-- 分析能力:支持 SQL,同时为时序数据特有的分析提供SQL扩展。通过超级表、存储计算分离、分区分片、预计算、自定义函数等技术,TDengine 具备强大的分析能力。
+- **分析能力**:支持 SQL,同时为时序数据特有的分析提供SQL扩展。通过超级表、存储计算分离、分区分片、预计算、自定义函数等技术,TDengine 具备强大的分析能力。
-- 简单易用:无任何依赖,安装、集群几秒搞定;提供REST以及各种语言连接器,与众多第三方工具无缝集成;提供命令行程序,便于管理和即席查询;提供各种运维工具。
+- **简单易用**:无任何依赖,安装、集群几秒搞定;提供REST以及各种语言连接器,与众多第三方工具无缝集成;提供命令行程序,便于管理和即席查询;提供各种运维工具。
-- 核心开源:TDengine 的核心代码包括集群功能全部开源,截止到2022年8月1日,全球超过 135.9k 个运行实例,GitHub Star 18.7k,Fork 4.4k,社区活跃。
+- **核心开源**:TDengine 的核心代码包括集群功能全部开源,截止到2022年8月1日,全球超过 135.9k 个运行实例,GitHub Star 18.7k,Fork 4.4k,社区活跃。
# 文档
diff --git a/README.md b/README.md
index c915fe3aef8d46389af223708146a6a47dc8af0a..6baabed7be32fff97c4809f76666f0becf62040b 100644
--- a/README.md
+++ b/README.md
@@ -20,23 +20,19 @@ English | [简体中文](README-CN.md) | We are hiring, check [here](https://tde
# What is TDengine?
+TDengine is an open source, high-performance, cloud native time-series database optimized for Internet of Things (IoT), Connected Cars, and Industrial IoT. It enables efficient, real-time data ingestion, processing, and monitoring of TB and even PB scale data per day, generated by billions of sensors and data collectors. TDengine differentiates itself from other time-seires databases with the following advantages:
-TDengine is an open source, high performance , cloud native time-series database (Time-Series Database, TSDB).
+- **High-Performance**: TDengine is the only time-series database to solve the high cardinality issue to support billions of data collection points while out performing other time-series databases for data ingestion, querying and data compression.
-TDengine can be optimized for Internet of Things (IoT), Connected Cars, and Industrial IoT, IT operation and maintenance, finance and other fields. In addition to the core time series database functions, TDengine also provides functions such as caching, data subscription, and streaming computing. It is a minimalist time series data processing platform that minimizes the complexity of system design and reduces R&D and operating costs. Compared with other time series databases, the main advantages of TDengine are as follows:
+- **Simplified Solution**: Through built-in caching, stream processing and data subscription features, TDengine provides a simplified solution for time-series data processing. It reduces system design complexity and operation costs significantly.
+- **Cloud Native**: Through native distributed design, sharding and partitioning, separation of compute and storage, RAFT, support for kubernetes deployment and full observability, TDengine is a cloud native Time-Series Database and can be deployed on public, private or hybrid clouds.
-- High-Performance: TDengine is the only time-series database to solve the high cardinality issue to support billions of data collection points while out performing other time-series databases for data ingestion, querying and data compression.
+- **Ease of Use**: For administrators, TDengine significantly reduces the effort to deploy and maintain. For developers, it provides a simple interface, simplified solution and seamless integrations for third party tools. For data users, it gives easy data access.
-- Simplified Solution: Through built-in caching, stream processing and data subscription features, TDengine provides a simplified solution for time-series data processing. It reduces system design complexity and operation costs significantly.
+- **Easy Data Analytics**: Through super tables, storage and compute separation, data partitioning by time interval, pre-computation and other means, TDengine makes it easy to explore, format, and get access to data in a highly efficient way.
-- Cloud Native: Through native distributed design, sharding and partitioning, separation of compute and storage, RAFT, support for kubernetes deployment and full observability, TDengine is a cloud native Time-Series Database and can be deployed on public, private or hybrid clouds.
-
-- Ease of Use: For administrators, TDengine significantly reduces the effort to deploy and maintain. For developers, it provides a simple interface, simplified solution and seamless integrations for third party tools. For data users, it gives easy data access.
-
-- Easy Data Analytics: Through super tables, storage and compute separation, data partitioning by time interval, pre-computation and other means, TDengine makes it easy to explore, format, and get access to data in a highly efficient way.
-
-- Open Source: TDengine’s core modules, including cluster feature, are all available under open source licenses. It has gathered 18.8k stars on GitHub, an active developer community, and over 137k running instances worldwide.
+- **Open Source**: TDengine’s core modules, including cluster feature, are all available under open source licenses. It has gathered 18.8k stars on GitHub. There is an active developer community, and over 139k running instances worldwide.
# Documentation
@@ -44,14 +40,9 @@ For user manual, system design and architecture, please refer to [TDengine Docum
# Building
-
At the moment, TDengine server supports running on Linux, Windows systems.Any OS application can also choose the RESTful interface of taosAdapter to connect the taosd service . TDengine supports X64/ARM64 CPU , and it will support MIPS64, Alpha64, ARM32, RISC-V and other CPU architectures in the future.
-
-
-You can choose to install through source code according to your needs, [container](https://docs.taosdata.com/get-started/docker/), [installation package](https://docs.taosdata.com/get-started/package/) or [Kubenetes](https://docs.taosdata.com/deployment/k8s/) to install. This quick guide only applies to installing from source.
-
-
+You can choose to install through source code according to your needs, [container](https://docs.taosdata.com/get-started/docker/), [installation package](https://docs.taosdata.com/get-started/package/) or [Kubenetes](https://docs.taosdata.com/deployment/k8s/) to install. This quick guide only applies to installing from source.
TDengine provide a few useful tools such as taosBenchmark (was named taosdemo) and taosdump. They were part of TDengine. By default, TDengine compiling does not include taosTools. You can use `cmake .. -DBUILD_TOOLS=true` to make them be compiled with TDengine.
diff --git a/docs/en/07-develop/_sub_java.mdx b/docs/en/07-develop/_sub_java.mdx
index e7de158cc8d2b0b686b25bbe96e7a092c2a68e51..d14b5fd6095dd90f89dd2c2e828858585cfddff9 100644
--- a/docs/en/07-develop/_sub_java.mdx
+++ b/docs/en/07-develop/_sub_java.mdx
@@ -1,5 +1,7 @@
```java
{{#include docs/examples/java/src/main/java/com/taos/example/SubscribeDemo.java}}
+{{#include docs/examples/java/src/main/java/com/taos/example/MetersDeserializer.java}}
+{{#include docs/examples/java/src/main/java/com/taos/example/Meters.java}}
```
```java
{{#include docs/examples/java/src/main/java/com/taos/example/MetersDeserializer.java}}
diff --git a/docs/en/14-reference/03-connector/java.mdx b/docs/en/14-reference/03-connector/java.mdx
index cbf7daa879ae58e6c4f08c23330d943d50f7f4bc..1ea033eab4c7f9afb2cd4bf1eb82f5fd5b31d31a 100644
--- a/docs/en/14-reference/03-connector/java.mdx
+++ b/docs/en/14-reference/03-connector/java.mdx
@@ -130,7 +130,7 @@ The configuration parameters in the URL are as follows:
- charset: The character set used by the client, the default value is the system character set.
- locale: Client locale, by default, use the system's current locale.
- timezone: The time zone used by the client, the default value is the system's current time zone.
-- batchfetch: true: pulls result sets in batches when executing queries; false: pulls result sets row by row. The default value is: false. Enabling batch pulling and obtaining a batch of data can improve query performance when the query data volume is large.
+- batchfetch: true: pulls result sets in batches when executing queries; false: pulls result sets row by row. The default value is: true. Enabling batch pulling and obtaining a batch of data can improve query performance when the query data volume is large.
- batchErrorIgnore:true: When executing statement executeBatch, if there is a SQL execution failure in the middle, the following SQL will continue to be executed. false: No more statements after the failed SQL are executed. The default value is: false.
For more information about JDBC native connections, see [Video Tutorial](https://www.taosdata.com/blog/2020/11/11/1955.html).
diff --git a/docs/zh/05-get-started/03-package.md b/docs/zh/05-get-started/03-package.md
index 4c6757b930e03c50c36aaf2308bf8d73419ce433..9cd2446ba918ca14856c52c02986b2e7a8462847 100644
--- a/docs/zh/05-get-started/03-package.md
+++ b/docs/zh/05-get-started/03-package.md
@@ -7,7 +7,7 @@ import Tabs from "@theme/Tabs";
import TabItem from "@theme/TabItem";
import PkgListV3 from "/components/PkgListV3";
-TDengine 完整的软件包包括服务端(taosd)、用于与第三方系统对接并提供 RESTful 接口的 taosAdapter、应用驱动(taosc)、命令行程序 (CLI,taos) 和一些工具软件,目前服务端 taosd 和 taosAdapter 仅在 Linux 系统上安装和运行,后续将支持 Windows、macOS 等系统。应用驱动 taosc 与 TDengine CLI 可以在 Windows 或 Linux 上安装和运行。TDengine 除了提供多种语言的连接器之外,还通过 [taosAdapter](../../reference/taosadapter/) 提供 [RESTful 接口](../../reference/rest-api/)。
+TDengine 完整的软件包包括服务端(taosd)、用于与第三方系统对接并提供 RESTful 接口的 taosAdapter、应用驱动(taosc)、命令行程序 (CLI,taos) 和一些工具软件。目前 taosAdapter 仅在 Linux 系统上安装和运行,后续将支持 Windows、macOS 等系统。TDengine 除了提供多种语言的连接器之外,还通过 [taosAdapter](../../reference/taosadapter/) 提供 [RESTful 接口](../../reference/rest-api/)。
为方便使用,标准的服务端安装包包含了 taos、taosd、taosAdapter、taosdump、taosBenchmark、TDinsight 安装脚本和示例代码;如果您只需要用到服务端程序和客户端连接的 C/C++ 语言支持,也可以仅下载 lite 版本的安装包。
@@ -205,7 +205,7 @@ Query OK, 2 row(s) in set (0.003128s)
## 使用 taosBenchmark 体验写入速度
-启动 TDengine 的服务,在 Linux 终端执行 `taosBenchmark` (曾命名为 `taosdemo`):
+启动 TDengine 的服务,在 Linux 或 windows 终端执行 `taosBenchmark` (曾命名为 `taosdemo`):
```bash
taosBenchmark
diff --git a/docs/zh/07-develop/_sub_java.mdx b/docs/zh/07-develop/_sub_java.mdx
index e7de158cc8d2b0b686b25bbe96e7a092c2a68e51..d14b5fd6095dd90f89dd2c2e828858585cfddff9 100644
--- a/docs/zh/07-develop/_sub_java.mdx
+++ b/docs/zh/07-develop/_sub_java.mdx
@@ -1,5 +1,7 @@
```java
{{#include docs/examples/java/src/main/java/com/taos/example/SubscribeDemo.java}}
+{{#include docs/examples/java/src/main/java/com/taos/example/MetersDeserializer.java}}
+{{#include docs/examples/java/src/main/java/com/taos/example/Meters.java}}
```
```java
{{#include docs/examples/java/src/main/java/com/taos/example/MetersDeserializer.java}}
diff --git a/docs/zh/14-reference/03-connector/java.mdx b/docs/zh/14-reference/03-connector/java.mdx
index 6a78902b1edb19bb140ef1176b88f8280de54c93..183994313e205bbaf13f30d534fa151a23216708 100644
--- a/docs/zh/14-reference/03-connector/java.mdx
+++ b/docs/zh/14-reference/03-connector/java.mdx
@@ -131,7 +131,7 @@ url 中的配置参数如下:
- charset:客户端使用的字符集,默认值为系统字符集。
- locale:客户端语言环境,默认值系统当前 locale。
- timezone:客户端使用的时区,默认值为系统当前时区。
-- batchfetch: true:在执行查询时批量拉取结果集;false:逐行拉取结果集。默认值为:false。开启批量拉取同时获取一批数据在查询数据量较大时批量拉取可以有效的提升查询性能。
+- batchfetch: true:在执行查询时批量拉取结果集;false:逐行拉取结果集。默认值为:true。开启批量拉取同时获取一批数据在查询数据量较大时批量拉取可以有效的提升查询性能。
- batchErrorIgnore:true:在执行 Statement 的 executeBatch 时,如果中间有一条 SQL 执行失败将继续执行下面的 SQL。false:不再执行失败 SQL 后的任何语句。默认值为:false。
JDBC 原生连接的使用请参见[视频教程](https://www.taosdata.com/blog/2020/11/11/1955.html)。
diff --git a/examples/JDBC/connectionPools/pom.xml b/examples/JDBC/connectionPools/pom.xml
index 34518900ed30f48effd47a8786233080f3e5291f..99a7892a250bd656479b0901682d6a86c2b27d14 100644
--- a/examples/JDBC/connectionPools/pom.xml
+++ b/examples/JDBC/connectionPools/pom.xml
@@ -53,7 +53,7 @@
org.apache.logging.log4j
log4j-core
- 2.14.1
+ 2.17.1
diff --git a/examples/JDBC/taosdemo/pom.xml b/examples/JDBC/taosdemo/pom.xml
index 91b976c2ae6c76a5ae2d7b76c3b90d05e4dae57f..07fd4a3576243b8950ccd25515f2512226e313d6 100644
--- a/examples/JDBC/taosdemo/pom.xml
+++ b/examples/JDBC/taosdemo/pom.xml
@@ -10,7 +10,7 @@
Demo project for TDengine
- 5.3.2
+ 5.3.20
@@ -75,20 +75,20 @@
com.alibaba
fastjson
- 1.2.75
+ 1.2.83
mysql
mysql-connector-java
- 8.0.16
+ 8.0.28
test
org.apache.logging.log4j
log4j-core
- 2.14.1
+ 2.17.1
diff --git a/include/common/tglobal.h b/include/common/tglobal.h
index 9111728e1ad15d7cfc105a5a65ee8364f7ab2f95..cd74ffd47764fab78f224c2f373e0c93e8117d12 100644
--- a/include/common/tglobal.h
+++ b/include/common/tglobal.h
@@ -139,7 +139,6 @@ int32_t taosInitCfg(const char *cfgDir, const char **envCmd, const char *envFile
bool tsc);
void taosCleanupCfg();
void taosCfgDynamicOptions(const char *option, const char *value);
-void taosAddDataDir(int32_t index, char *v1, int32_t level, int32_t primary);
struct SConfig *taosGetCfg();
diff --git a/source/common/src/tglobal.c b/source/common/src/tglobal.c
index 3956b99fdb9357ed4555ea121375d789800c6ac2..c763bbed9c470d9527877a7cfb2312efdc8d612a 100644
--- a/source/common/src/tglobal.c
+++ b/source/common/src/tglobal.c
@@ -166,7 +166,22 @@ int32_t tsTtlPushInterval = 86400;
int32_t tsGrantHBInterval = 60;
#ifndef _STORAGE
-int32_t taosSetTfsCfg(SConfig *pCfg) { return 0; }
+int32_t taosSetTfsCfg(SConfig *pCfg) {
+ SConfigItem *pItem = cfgGetItem(pCfg, "dataDir");
+ memset(tsDataDir, 0, PATH_MAX);
+
+ int32_t size = taosArrayGetSize(pItem->array);
+ tsDiskCfgNum = 1;
+ tstrncpy(tsDiskCfg[0].dir, pItem->str, TSDB_FILENAME_LEN);
+ tsDiskCfg[0].level = 0;
+ tsDiskCfg[0].primary = 1;
+ tstrncpy(tsDataDir, pItem->str, PATH_MAX);
+ if (taosMulMkDir(tsDataDir) != 0) {
+ uError("failed to create dataDir:%s", tsDataDir);
+ return -1;
+ }
+ return 0;
+}
#else
int32_t taosSetTfsCfg(SConfig *pCfg);
#endif
diff --git a/source/libs/executor/src/scanoperator.c b/source/libs/executor/src/scanoperator.c
index 454a0b007072f72a234fa5bb3359182681ac6d49..02089d9fecbde6074c574af601c0104751839357 100644
--- a/source/libs/executor/src/scanoperator.c
+++ b/source/libs/executor/src/scanoperator.c
@@ -353,6 +353,7 @@ static int32_t loadDataBlock(SOperatorInfo* pOperator, STableScanInfo* pTableSca
pBlockInfo->window.skey, pBlockInfo->window.ekey, pBlockInfo->rows);
pCost->skipBlocks += 1;
+ *status = FUNC_DATA_REQUIRED_FILTEROUT;
return TSDB_CODE_SUCCESS;
}
diff --git a/tests/script/tsim/parser/columnValue_unsign.sim b/tests/script/tsim/parser/columnValue_unsign.sim
index 758814bc2b662998f5074dc36dbf45cf67ae41d7..85ff490bf4e520cdbbc0ed0008499af4425b2b93 100644
--- a/tests/script/tsim/parser/columnValue_unsign.sim
+++ b/tests/script/tsim/parser/columnValue_unsign.sim
@@ -76,17 +76,16 @@ if $data03 != NULL then
return -1
endi
-sql insert into mt_unsigned_1 values(now, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
-sql insert into mt_unsigned_1 values(now+1s, 1, 2, 3, 4, 5, 6, 7, 8, 9);
-
-sql_error insert into mt_unsigned_1 values(now, -1, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
-sql_error insert into mt_unsigned_1 values(now, NULL, -1, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
-sql_error insert into mt_unsigned_1 values(now, NULL, NULL, -1, NULL, NULL, NULL, NULL, NULL, NULL);
-sql_error insert into mt_unsigned_1 values(now, NULL, NULL, NULL, -1, NULL, NULL, NULL, NULL, NULL);
-sql insert into mt_unsigned_1 values(now, 255, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
-sql insert into mt_unsigned_1 values(now, NULL, 65535, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
-sql insert into mt_unsigned_1 values(now, NULL, NULL, 4294967295, NULL, NULL, NULL, NULL, NULL, NULL);
-sql insert into mt_unsigned_1 values(now, NULL, NULL, NULL, 18446744073709551615, NULL, NULL, NULL, NULL, NULL);
+sql insert into mt_unsigned_1 values(now+1s, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
+sql insert into mt_unsigned_1 values(now+2s, 1, 2, 3, 4, 5, 6, 7, 8, 9);
+sql_error insert into mt_unsigned_1 values(now+3s, -1, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
+sql_error insert into mt_unsigned_1 values(now+4s, NULL, -1, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
+sql_error insert into mt_unsigned_1 values(now+5s, NULL, NULL, -1, NULL, NULL, NULL, NULL, NULL, NULL);
+sql_error insert into mt_unsigned_1 values(now+6s, NULL, NULL, NULL, -1, NULL, NULL, NULL, NULL, NULL);
+sql insert into mt_unsigned_1 values(now+7s, 255, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
+sql insert into mt_unsigned_1 values(now+8s, NULL, 65535, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
+sql insert into mt_unsigned_1 values(now+9s, NULL, NULL, 4294967295, NULL, NULL, NULL, NULL, NULL, NULL);
+sql insert into mt_unsigned_1 values(now+10s, NULL, NULL, NULL, 18446744073709551615, NULL, NULL, NULL, NULL, NULL);
sql select count(a),count(b),count(c),count(d), count(e) from mt_unsigned_1
if $rows != 1 then