提交 7184778c 编写于 作者: H Hongze Cheng

more page cache

上级 7248dc68
......@@ -48,8 +48,8 @@ struct PCache {
int szExtra; /* Size of extra space for each page */
u8 bPurgeable; /* True if pages are on backing store */
u8 eCreate; /* eCreate value for for xFetch() */
int (*xStress)(void *, PgHdr *); /* Call to try make a page clean */
void * pStress; /* Argument to xStress */
int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */
void *pStress; /* Argument to xStress */
sqlite3_pcache *pCache; /* Pluggable cache module */
};
......@@ -63,39 +63,36 @@ struct PCache {
** is displayed for many operations, resulting in a lot of output.
*/
#if defined(SQLITE_DEBUG) && 0
int sqlite3PcacheTrace = 2; /* 0: off 1: simple 2: cache dumps */
int sqlite3PcacheMxDump = 9999; /* Max cache entries for pcacheDump() */
#define pcacheTrace(X) \
if (sqlite3PcacheTrace) { \
sqlite3DebugPrintf X; \
}
void pcacheDump(PCache *pCache) {
int sqlite3PcacheTrace = 2; /* 0: off 1: simple 2: cache dumps */
int sqlite3PcacheMxDump = 9999; /* Max cache entries for pcacheDump() */
# define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;}
void pcacheDump(PCache *pCache){
int N;
int i, j;
sqlite3_pcache_page *pLower;
PgHdr * pPg;
unsigned char * a;
PgHdr *pPg;
unsigned char *a;
if (sqlite3PcacheTrace < 2) return;
if (pCache->pCache == 0) return;
if( sqlite3PcacheTrace<2 ) return;
if( pCache->pCache==0 ) return;
N = sqlite3PcachePagecount(pCache);
if (N > sqlite3PcacheMxDump) N = sqlite3PcacheMxDump;
for (i = 1; i <= N; i++) {
if( N>sqlite3PcacheMxDump ) N = sqlite3PcacheMxDump;
for(i=1; i<=N; i++){
pLower = pcache2.xFetch(pCache->pCache, i, 0);
if (pLower == 0) continue;
pPg = (PgHdr *)pLower->pExtra;
if( pLower==0 ) continue;
pPg = (PgHdr*)pLower->pExtra;
printf("%3d: nRef %2d flgs %02x data ", i, pPg->nRef, pPg->flags);
a = (unsigned char *)pLower->pBuf;
for (j = 0; j < 12; j++) printf("%02x", a[j]);
for(j=0; j<12; j++) printf("%02x", a[j]);
printf("\n");
if (pPg->pPage == 0) {
if( pPg->pPage==0 ){
pcache2.xUnpin(pCache->pCache, pLower, 0);
}
}
}
#else
#define pcacheTrace(X)
#define pcacheDump(X)
}
#else
# define pcacheTrace(X)
# define pcacheDump(X)
#endif
/*
......@@ -108,20 +105,20 @@ void pcacheDump(PCache *pCache) {
** assert( sqlite3PcachePageSanity(pPg) );
*/
#ifdef SQLITE_DEBUG
int sqlite3PcachePageSanity(PgHdr *pPg) {
int sqlite3PcachePageSanity(PgHdr *pPg){
PCache *pCache;
assert(pPg != 0);
assert(pPg->pgno > 0 || pPg->pPager == 0); /* Page number is 1 or more */
assert( pPg!=0 );
assert( pPg->pgno>0 || pPg->pPager==0 ); /* Page number is 1 or more */
pCache = pPg->pCache;
assert(pCache != 0); /* Every page has an associated PCache */
if (pPg->flags & PGHDR_CLEAN) {
assert((pPg->flags & PGHDR_DIRTY) == 0); /* Cannot be both CLEAN and DIRTY */
assert(pCache->pDirty != pPg); /* CLEAN pages not on dirty list */
assert(pCache->pDirtyTail != pPg);
assert( pCache!=0 ); /* Every page has an associated PCache */
if( pPg->flags & PGHDR_CLEAN ){
assert( (pPg->flags & PGHDR_DIRTY)==0 );/* Cannot be both CLEAN and DIRTY */
assert( pCache->pDirty!=pPg ); /* CLEAN pages not on dirty list */
assert( pCache->pDirtyTail!=pPg );
}
/* WRITEABLE pages must also be DIRTY */
if (pPg->flags & PGHDR_WRITEABLE) {
assert(pPg->flags & PGHDR_DIRTY); /* WRITEABLE implies DIRTY */
if( pPg->flags & PGHDR_WRITEABLE ){
assert( pPg->flags & PGHDR_DIRTY ); /* WRITEABLE implies DIRTY */
}
/* NEED_SYNC can be set independently of WRITEABLE. This can happen,
** for example, when using the sqlite3PagerDontWrite() optimization:
......@@ -144,6 +141,7 @@ int sqlite3PcachePageSanity(PgHdr *pPg) {
}
#endif /* SQLITE_DEBUG */
/********************************** Linked List Management ********************/
/* Allowed values for second argument to pcacheManageDirtyList() */
......@@ -157,51 +155,53 @@ int sqlite3PcachePageSanity(PgHdr *pPg) {
** remove pPage from the dirty list. The 0x02 means add pPage back to
** the dirty list. Doing both moves pPage to the front of the dirty list.
*/
static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove) {
static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){
PCache *p = pPage->pCache;
pcacheTrace(("%p.DIRTYLIST.%s %d\n", p, addRemove == 1 ? "REMOVE" : addRemove == 2 ? "ADD" : "FRONT", pPage->pgno));
if (addRemove & PCACHE_DIRTYLIST_REMOVE) {
assert(pPage->pDirtyNext || pPage == p->pDirtyTail);
assert(pPage->pDirtyPrev || pPage == p->pDirty);
pcacheTrace(("%p.DIRTYLIST.%s %d\n", p,
addRemove==1 ? "REMOVE" : addRemove==2 ? "ADD" : "FRONT",
pPage->pgno));
if( addRemove & PCACHE_DIRTYLIST_REMOVE ){
assert( pPage->pDirtyNext || pPage==p->pDirtyTail );
assert( pPage->pDirtyPrev || pPage==p->pDirty );
/* Update the PCache1.pSynced variable if necessary. */
if (p->pSynced == pPage) {
if( p->pSynced==pPage ){
p->pSynced = pPage->pDirtyPrev;
}
if (pPage->pDirtyNext) {
if( pPage->pDirtyNext ){
pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev;
} else {
assert(pPage == p->pDirtyTail);
}else{
assert( pPage==p->pDirtyTail );
p->pDirtyTail = pPage->pDirtyPrev;
}
if (pPage->pDirtyPrev) {
if( pPage->pDirtyPrev ){
pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext;
} else {
}else{
/* If there are now no dirty pages in the cache, set eCreate to 2.
** This is an optimization that allows sqlite3PcacheFetch() to skip
** searching for a dirty page to eject from the cache when it might
** otherwise have to. */
assert(pPage == p->pDirty);
assert( pPage==p->pDirty );
p->pDirty = pPage->pDirtyNext;
assert(p->bPurgeable || p->eCreate == 2);
if (p->pDirty == 0) { /*OPTIMIZATION-IF-TRUE*/
assert(p->bPurgeable == 0 || p->eCreate == 1);
assert( p->bPurgeable || p->eCreate==2 );
if( p->pDirty==0 ){ /*OPTIMIZATION-IF-TRUE*/
assert( p->bPurgeable==0 || p->eCreate==1 );
p->eCreate = 2;
}
}
}
if (addRemove & PCACHE_DIRTYLIST_ADD) {
if( addRemove & PCACHE_DIRTYLIST_ADD ){
pPage->pDirtyPrev = 0;
pPage->pDirtyNext = p->pDirty;
if (pPage->pDirtyNext) {
assert(pPage->pDirtyNext->pDirtyPrev == 0);
if( pPage->pDirtyNext ){
assert( pPage->pDirtyNext->pDirtyPrev==0 );
pPage->pDirtyNext->pDirtyPrev = pPage;
} else {
}else{
p->pDirtyTail = pPage;
if (p->bPurgeable) {
assert(p->eCreate == 2);
if( p->bPurgeable ){
assert( p->eCreate==2 );
p->eCreate = 1;
}
}
......@@ -212,8 +212,9 @@ static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove) {
** optimization, as if pSynced points to a page with the NEED_SYNC
** flag set sqlite3PcacheFetchStress() searches through all newer
** entries of the dirty-list for a page with NEED_SYNC clear anyway. */
if (!p->pSynced && 0 == (pPage->flags & PGHDR_NEED_SYNC) /*OPTIMIZATION-IF-FALSE*/
) {
if( !p->pSynced
&& 0==(pPage->flags&PGHDR_NEED_SYNC) /*OPTIMIZATION-IF-FALSE*/
){
p->pSynced = pPage;
}
}
......@@ -224,8 +225,8 @@ static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove) {
** Wrapper around the pluggable caches xUnpin method. If the cache is
** being used for an in-memory database, this function is a no-op.
*/
static void pcacheUnpin(PgHdr *p) {
if (p->pCache->bPurgeable) {
static void pcacheUnpin(PgHdr *p){
if( p->pCache->bPurgeable ){
pcacheTrace(("%p.UNPIN %d\n", p->pCache, p->pgno));
pcache2.xUnpin(p->pCache->pCache, p->pPage, 0);
pcacheDump(p->pCache);
......@@ -236,19 +237,19 @@ static void pcacheUnpin(PgHdr *p) {
** Compute the number of pages of cache requested. p->szCache is the
** cache size requested by the "PRAGMA cache_size" statement.
*/
static int numberOfCachePages(PCache *p) {
if (p->szCache >= 0) {
static int numberOfCachePages(PCache *p){
if( p->szCache>=0 ){
/* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the
** suggested cache size is set to N. */
return p->szCache;
} else {
}else{
i64 n;
/* IMPLEMANTATION-OF: R-59858-46238 If the argument N is negative, then the
** number of cache pages is adjusted to be a number of pages that would
** use approximately abs(N*1024) bytes of memory based on the current
** page size. */
n = ((-1024 * (i64)p->szCache) / (p->szPage + p->szExtra));
if (n > 1000000000) n = 1000000000;
n = ((-1024*(i64)p->szCache)/(p->szPage+p->szExtra));
if( n>1000000000 ) n = 1000000000;
return (int)n;
}
}
......@@ -258,9 +259,11 @@ static int numberOfCachePages(PCache *p) {
** Initialize and shutdown the page cache subsystem. Neither of these
** functions are threadsafe.
*/
int sqlite3PcacheInitialize(void) { return pcache2.xInit(pcache2.pArg); }
void sqlite3PcacheShutdown(void) {
if (pcache2.xShutdown) {
int sqlite3PcacheInitialize(void){
return pcache2.xInit(pcache2.pArg);
}
void sqlite3PcacheShutdown(void){
if( pcache2.xShutdown ){
/* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */
pcache2.xShutdown(pcache2.pArg);
}
......@@ -269,7 +272,7 @@ void sqlite3PcacheShutdown(void) {
/*
** Return the size in bytes of a PCache object.
*/
int sqlite3PcacheSize(void) { return sizeof(PCache); }
int sqlite3PcacheSize(void){ return sizeof(PCache); }
/*
** Create a new PCache object. Storage space to hold the object
......@@ -283,24 +286,25 @@ int sqlite3PcacheSize(void) { return sizeof(PCache); }
** to this module, the extra space really ends up being the MemPage
** structure in the pager.
*/
int sqlite3PcacheOpen(int szPage, /* Size of every page */
int sqlite3PcacheOpen(
int szPage, /* Size of every page */
int szExtra, /* Extra space associated with each page */
int bPurgeable, /* True if pages are on backing store */
int (*xStress)(void *, PgHdr *), /* Call to try to make pages clean */
void * pStress, /* Argument to xStress */
int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */
void *pStress, /* Argument to xStress */
PCache *p /* Preallocated space for the PCache */
) {
){
memset(p, 0, sizeof(PCache));
p->szPage = 1;
p->szExtra = szExtra;
assert(szExtra >= 8); /* First 8 bytes will be zeroed */
assert( szExtra>=8 ); /* First 8 bytes will be zeroed */
p->bPurgeable = bPurgeable;
p->eCreate = 2;
p->xStress = xStress;
p->pStress = pStress;
p->szCache = 100;
p->szSpill = 1;
pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n", p, szPage, bPurgeable));
pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n",p,szPage,bPurgeable));
return sqlite3PcacheSetPageSize(p, szPage);
}
......@@ -308,21 +312,24 @@ int sqlite3PcacheOpen(int szPage, /* Size of every page */
** Change the page size for PCache object. The caller must ensure that there
** are no outstanding page references when this function is called.
*/
int sqlite3PcacheSetPageSize(PCache *pCache, int szPage) {
assert(pCache->nRefSum == 0 && pCache->pDirty == 0);
if (pCache->szPage) {
int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){
assert( pCache->nRefSum==0 && pCache->pDirty==0 );
if( pCache->szPage ){
sqlite3_pcache *pNew;
pNew = pcache2.xCreate(szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)), pCache->bPurgeable);
if (pNew == 0) return SQLITE_NOMEM_BKPT;
pNew = pcache2.xCreate(
szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)),
pCache->bPurgeable
);
if( pNew==0 ) return SQLITE_NOMEM_BKPT;
pcache2.xCachesize(pNew, numberOfCachePages(pCache));
if (pCache->pCache) {
if( pCache->pCache ){
pcache2.xDestroy(pCache->pCache);
}
pCache->pCache = pNew;
pCache->szPage = szPage;
pcacheTrace(("%p.PAGESIZE %d\n", pCache, szPage));
pcacheTrace(("%p.PAGESIZE %d\n",pCache,szPage));
}
return SQLITE_OK;
return 0;
}
/*
......@@ -349,17 +356,18 @@ int sqlite3PcacheSetPageSize(PCache *pCache, int szPage) {
** the stack on entry and pop them back off on exit, which saves a
** lot of pushing and popping.
*/
sqlite3_pcache_page *sqlite3PcacheFetch(PCache *pCache, /* Obtain the page from this cache */
sqlite3_pcache_page *sqlite3PcacheFetch(
PCache *pCache, /* Obtain the page from this cache */
Pgno pgno, /* Page number to obtain */
int createFlag /* If true, create page if it does not exist already */
) {
){
int eCreate;
sqlite3_pcache_page *pRes;
assert(pCache != 0);
assert(pCache->pCache != 0);
assert(createFlag == 3 || createFlag == 0);
assert(pCache->eCreate == ((pCache->bPurgeable && pCache->pDirty) ? 1 : 2));
assert( pCache!=0 );
assert( pCache->pCache!=0 );
assert( createFlag==3 || createFlag==0 );
assert( pCache->eCreate==((pCache->bPurgeable && pCache->pDirty) ? 1 : 2) );
/* eCreate defines what to do if the page does not exist.
** 0 Do not allocate a new page. (createFlag==0)
......@@ -369,11 +377,12 @@ sqlite3_pcache_page *sqlite3PcacheFetch(PCache *pCache, /* Obtain the page fr
** (createFlag==1 AND !(bPurgeable AND pDirty)
*/
eCreate = createFlag & pCache->eCreate;
assert(eCreate == 0 || eCreate == 1 || eCreate == 2);
assert(createFlag == 0 || pCache->eCreate == eCreate);
assert(createFlag == 0 || eCreate == 1 + (!pCache->bPurgeable || !pCache->pDirty));
assert( eCreate==0 || eCreate==1 || eCreate==2 );
assert( createFlag==0 || pCache->eCreate==eCreate );
assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) );
pRes = pcache2.xFetch(pCache->pCache, pgno, eCreate);
pcacheTrace(("%p.FETCH %d%s (result: %p)\n", pCache, pgno, createFlag ? " create" : "", pRes));
pcacheTrace(("%p.FETCH %d%s (result: %p)\n",pCache,pgno,
createFlag?" create":"",pRes));
return pRes;
}
......@@ -388,14 +397,15 @@ sqlite3_pcache_page *sqlite3PcacheFetch(PCache *pCache, /* Obtain the page fr
**
** This routine should be invoked only after sqlite3PcacheFetch() fails.
*/
int sqlite3PcacheFetchStress(PCache * pCache, /* Obtain the page from this cache */
int sqlite3PcacheFetchStress(
PCache *pCache, /* Obtain the page from this cache */
Pgno pgno, /* Page number to obtain */
sqlite3_pcache_page **ppPage /* Write result here */
) {
){
PgHdr *pPg;
if (pCache->eCreate == 2) return 0;
if( pCache->eCreate==2 ) return 0;
if (sqlite3PcachePagecount(pCache) > pCache->szSpill) {
if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){
/* Find a dirty page to write-out and recycle. First try to find a
** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
** cleared), but if that is not possible settle for any other
......@@ -405,29 +415,33 @@ int sqlite3PcacheFetchStress(PCache * pCache, /* Obtain the page fr
** flag is currently referenced, then the following may leave pSynced
** set incorrectly (pointing to other than the LRU page with NEED_SYNC
** cleared). This is Ok, as pSynced is just an optimization. */
for (pPg = pCache->pSynced; pPg && (pPg->nRef || (pPg->flags & PGHDR_NEED_SYNC)); pPg = pPg->pDirtyPrev)
;
for(pPg=pCache->pSynced;
pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC));
pPg=pPg->pDirtyPrev
);
pCache->pSynced = pPg;
if (!pPg) {
for (pPg = pCache->pDirtyTail; pPg && pPg->nRef; pPg = pPg->pDirtyPrev)
;
if( !pPg ){
for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
}
if (pPg) {
if( pPg ){
int rc;
#ifdef SQLITE_LOG_CACHE_SPILL
sqlite3_log(SQLITE_FULL, "spill page %d making room for %d - cache used: %d/%d", pPg->pgno, pgno,
pcache2.xPagecount(pCache->pCache), numberOfCachePages(pCache));
sqlite3_log(SQLITE_FULL,
"spill page %d making room for %d - cache used: %d/%d",
pPg->pgno, pgno,
pcache2.xPagecount(pCache->pCache),
numberOfCachePages(pCache));
#endif
pcacheTrace(("%p.SPILL %d\n", pCache, pPg->pgno));
pcacheTrace(("%p.SPILL %d\n",pCache,pPg->pgno));
rc = pCache->xStress(pCache->pStress, pPg);
pcacheDump(pCache);
if (rc != SQLITE_OK && rc != SQLITE_BUSY) {
if( rc!=0 && rc!=SQLITE_BUSY ){
return rc;
}
}
}
*ppPage = pcache2.xFetch(pCache->pCache, pgno, 2);
return *ppPage == 0 ? SQLITE_NOMEM_BKPT : SQLITE_OK;
return *ppPage==0 ? SQLITE_NOMEM_BKPT : 0;
}
/*
......@@ -440,15 +454,15 @@ int sqlite3PcacheFetchStress(PCache * pCache, /* Obtain the page fr
** case.
*/
static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit(
PCache * pCache, /* Obtain the page from this cache */
PCache *pCache, /* Obtain the page from this cache */
Pgno pgno, /* Page number obtained */
sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */
) {
){
PgHdr *pPgHdr;
assert(pPage != 0);
pPgHdr = (PgHdr *)pPage->pExtra;
assert(pPgHdr->pPage == 0);
memset(&pPgHdr->pDirty, 0, sizeof(PgHdr) - offsetof(PgHdr, pDirty));
assert( pPage!=0 );
pPgHdr = (PgHdr*)pPage->pExtra;
assert( pPgHdr->pPage==0 );
memset(&pPgHdr->pDirty, 0, sizeof(PgHdr) - offsetof(PgHdr,pDirty));
pPgHdr->pPage = pPage;
pPgHdr->pData = pPage->pBuf;
pPgHdr->pExtra = (void *)&pPgHdr[1];
......@@ -456,7 +470,7 @@ static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit(
pPgHdr->pCache = pCache;
pPgHdr->pgno = pgno;
pPgHdr->flags = PGHDR_CLEAN;
return sqlite3PcacheFetchFinish(pCache, pgno, pPage);
return sqlite3PcacheFetchFinish(pCache,pgno,pPage);
}
/*
......@@ -465,21 +479,22 @@ static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit(
** must be called after sqlite3PcacheFetch() in order to get a usable
** result.
*/
PgHdr *sqlite3PcacheFetchFinish(PCache * pCache, /* Obtain the page from this cache */
PgHdr *sqlite3PcacheFetchFinish(
PCache *pCache, /* Obtain the page from this cache */
Pgno pgno, /* Page number obtained */
sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */
) {
){
PgHdr *pPgHdr;
assert(pPage != 0);
assert( pPage!=0 );
pPgHdr = (PgHdr *)pPage->pExtra;
if (!pPgHdr->pPage) {
if( !pPgHdr->pPage ){
return pcacheFetchFinishWithInit(pCache, pgno, pPage);
}
pCache->nRefSum++;
pPgHdr->nRef++;
assert(sqlite3PcachePageSanity(pPgHdr));
assert( sqlite3PcachePageSanity(pPgHdr) );
return pPgHdr;
}
......@@ -487,13 +502,13 @@ PgHdr *sqlite3PcacheFetchFinish(PCache * pCache, /* Obtain the page
** Decrement the reference count on a page. If the page is clean and the
** reference count drops to 0, then it is made eligible for recycling.
*/
void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p) {
assert(p->nRef > 0);
void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){
assert( p->nRef>0 );
p->pCache->nRefSum--;
if ((--p->nRef) == 0) {
if (p->flags & PGHDR_CLEAN) {
if( (--p->nRef)==0 ){
if( p->flags&PGHDR_CLEAN ){
pcacheUnpin(p);
} else {
}else{
pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
}
}
......@@ -502,9 +517,9 @@ void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p) {
/*
** Increase the reference count of a supplied page by 1.
*/
void sqlite3PcacheRef(PgHdr *p) {
assert(p->nRef > 0);
assert(sqlite3PcachePageSanity(p));
void sqlite3PcacheRef(PgHdr *p){
assert(p->nRef>0);
assert( sqlite3PcachePageSanity(p) );
p->nRef++;
p->pCache->nRefSum++;
}
......@@ -514,10 +529,10 @@ void sqlite3PcacheRef(PgHdr *p) {
** page. This function deletes that reference, so after it returns the
** page pointed to by p is invalid.
*/
void sqlite3PcacheDrop(PgHdr *p) {
assert(p->nRef == 1);
assert(sqlite3PcachePageSanity(p));
if (p->flags & PGHDR_DIRTY) {
void sqlite3PcacheDrop(PgHdr *p){
assert( p->nRef==1 );
assert( sqlite3PcachePageSanity(p) );
if( p->flags&PGHDR_DIRTY ){
pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
}
p->pCache->nRefSum--;
......@@ -528,18 +543,18 @@ void sqlite3PcacheDrop(PgHdr *p) {
** Make sure the page is marked as dirty. If it isn't dirty already,
** make it so.
*/
void sqlite3PcacheMakeDirty(PgHdr *p) {
assert(p->nRef > 0);
assert(sqlite3PcachePageSanity(p));
if (p->flags & (PGHDR_CLEAN | PGHDR_DONT_WRITE)) { /*OPTIMIZATION-IF-FALSE*/
void sqlite3PcacheMakeDirty(PgHdr *p){
assert( p->nRef>0 );
assert( sqlite3PcachePageSanity(p) );
if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){ /*OPTIMIZATION-IF-FALSE*/
p->flags &= ~PGHDR_DONT_WRITE;
if (p->flags & PGHDR_CLEAN) {
p->flags ^= (PGHDR_DIRTY | PGHDR_CLEAN);
pcacheTrace(("%p.DIRTY %d\n", p->pCache, p->pgno));
assert((p->flags & (PGHDR_DIRTY | PGHDR_CLEAN)) == PGHDR_DIRTY);
if( p->flags & PGHDR_CLEAN ){
p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN);
pcacheTrace(("%p.DIRTY %d\n",p->pCache,p->pgno));
assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY );
pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD);
}
assert(sqlite3PcachePageSanity(p));
assert( sqlite3PcachePageSanity(p) );
}
}
......@@ -547,16 +562,16 @@ void sqlite3PcacheMakeDirty(PgHdr *p) {
** Make sure the page is marked as clean. If it isn't clean already,
** make it so.
*/
void sqlite3PcacheMakeClean(PgHdr *p) {
assert(sqlite3PcachePageSanity(p));
assert((p->flags & PGHDR_DIRTY) != 0);
assert((p->flags & PGHDR_CLEAN) == 0);
void sqlite3PcacheMakeClean(PgHdr *p){
assert( sqlite3PcachePageSanity(p) );
assert( (p->flags & PGHDR_DIRTY)!=0 );
assert( (p->flags & PGHDR_CLEAN)==0 );
pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
p->flags &= ~(PGHDR_DIRTY | PGHDR_NEED_SYNC | PGHDR_WRITEABLE);
p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE);
p->flags |= PGHDR_CLEAN;
pcacheTrace(("%p.CLEAN %d\n", p->pCache, p->pgno));
assert(sqlite3PcachePageSanity(p));
if (p->nRef == 0) {
pcacheTrace(("%p.CLEAN %d\n",p->pCache,p->pgno));
assert( sqlite3PcachePageSanity(p) );
if( p->nRef==0 ){
pcacheUnpin(p);
}
}
......@@ -564,10 +579,10 @@ void sqlite3PcacheMakeClean(PgHdr *p) {
/*
** Make every page in the cache clean.
*/
void sqlite3PcacheCleanAll(PCache *pCache) {
void sqlite3PcacheCleanAll(PCache *pCache){
PgHdr *p;
pcacheTrace(("%p.CLEAN-ALL\n", pCache));
while ((p = pCache->pDirty) != 0) {
pcacheTrace(("%p.CLEAN-ALL\n",pCache));
while( (p = pCache->pDirty)!=0 ){
sqlite3PcacheMakeClean(p);
}
}
......@@ -575,11 +590,11 @@ void sqlite3PcacheCleanAll(PCache *pCache) {
/*
** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages.
*/
void sqlite3PcacheClearWritable(PCache *pCache) {
void sqlite3PcacheClearWritable(PCache *pCache){
PgHdr *p;
pcacheTrace(("%p.CLEAR-WRITEABLE\n", pCache));
for (p = pCache->pDirty; p; p = p->pDirtyNext) {
p->flags &= ~(PGHDR_NEED_SYNC | PGHDR_WRITEABLE);
pcacheTrace(("%p.CLEAR-WRITEABLE\n",pCache));
for(p=pCache->pDirty; p; p=p->pDirtyNext){
p->flags &= ~(PGHDR_NEED_SYNC|PGHDR_WRITEABLE);
}
pCache->pSynced = pCache->pDirtyTail;
}
......@@ -587,9 +602,9 @@ void sqlite3PcacheClearWritable(PCache *pCache) {
/*
** Clear the PGHDR_NEED_SYNC flag from all dirty pages.
*/
void sqlite3PcacheClearSyncFlags(PCache *pCache) {
void sqlite3PcacheClearSyncFlags(PCache *pCache){
PgHdr *p;
for (p = pCache->pDirty; p; p = p->pDirtyNext) {
for(p=pCache->pDirty; p; p=p->pDirtyNext){
p->flags &= ~PGHDR_NEED_SYNC;
}
pCache->pSynced = pCache->pDirtyTail;
......@@ -598,15 +613,15 @@ void sqlite3PcacheClearSyncFlags(PCache *pCache) {
/*
** Change the page number of page p to newPgno.
*/
void sqlite3PcacheMove(PgHdr *p, Pgno newPgno) {
void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){
PCache *pCache = p->pCache;
assert(p->nRef > 0);
assert(newPgno > 0);
assert(sqlite3PcachePageSanity(p));
pcacheTrace(("%p.MOVE %d -> %d\n", pCache, p->pgno, newPgno));
pcache2.xRekey(pCache->pCache, p->pPage, p->pgno, newPgno);
assert( p->nRef>0 );
assert( newPgno>0 );
assert( sqlite3PcachePageSanity(p) );
pcacheTrace(("%p.MOVE %d -> %d\n",pCache,p->pgno,newPgno));
pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno);
p->pgno = newPgno;
if ((p->flags & PGHDR_DIRTY) && (p->flags & PGHDR_NEED_SYNC)) {
if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){
pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
}
}
......@@ -620,72 +635,74 @@ void sqlite3PcacheMove(PgHdr *p, Pgno newPgno) {
** function is 0, then the data area associated with page 1 is zeroed, but
** the page object is not dropped.
*/
void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno) {
if (pCache->pCache) {
void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){
if( pCache->pCache ){
PgHdr *p;
PgHdr *pNext;
pcacheTrace(("%p.TRUNCATE %d\n", pCache, pgno));
for (p = pCache->pDirty; p; p = pNext) {
pcacheTrace(("%p.TRUNCATE %d\n",pCache,pgno));
for(p=pCache->pDirty; p; p=pNext){
pNext = p->pDirtyNext;
/* This routine never gets call with a positive pgno except right
** after sqlite3PcacheCleanAll(). So if there are dirty pages,
** it must be that pgno==0.
*/
assert(p->pgno > 0);
if (p->pgno > pgno) {
assert(p->flags & PGHDR_DIRTY);
assert( p->pgno>0 );
if( p->pgno>pgno ){
assert( p->flags&PGHDR_DIRTY );
sqlite3PcacheMakeClean(p);
}
}
if (pgno == 0 && pCache->nRefSum) {
if( pgno==0 && pCache->nRefSum ){
sqlite3_pcache_page *pPage1;
pPage1 = pcache2.xFetch(pCache->pCache, 1, 0);
if (ALWAYS(pPage1)) { /* Page 1 is always available in cache, because
pPage1 = pcache2.xFetch(pCache->pCache,1,0);
if( ALWAYS(pPage1) ){ /* Page 1 is always available in cache, because
** pCache->nRefSum>0 */
memset(pPage1->pBuf, 0, pCache->szPage);
pgno = 1;
}
}
pcache2.xTruncate(pCache->pCache, pgno + 1);
pcache2.xTruncate(pCache->pCache, pgno+1);
}
}
/*
** Close a cache.
*/
void sqlite3PcacheClose(PCache *pCache) {
assert(pCache->pCache != 0);
pcacheTrace(("%p.CLOSE\n", pCache));
void sqlite3PcacheClose(PCache *pCache){
assert( pCache->pCache!=0 );
pcacheTrace(("%p.CLOSE\n",pCache));
pcache2.xDestroy(pCache->pCache);
}
/*
** Discard the contents of the cache.
*/
void sqlite3PcacheClear(PCache *pCache) { sqlite3PcacheTruncate(pCache, 0); }
void sqlite3PcacheClear(PCache *pCache){
sqlite3PcacheTruncate(pCache, 0);
}
/*
** Merge two lists of pages connected by pDirty and in pgno order.
** Do not bother fixing the pDirtyPrev pointers.
*/
static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB) {
static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){
PgHdr result, *pTail;
pTail = &result;
assert(pA != 0 && pB != 0);
for (;;) {
if (pA->pgno < pB->pgno) {
assert( pA!=0 && pB!=0 );
for(;;){
if( pA->pgno<pB->pgno ){
pTail->pDirty = pA;
pTail = pA;
pA = pA->pDirty;
if (pA == 0) {
if( pA==0 ){
pTail->pDirty = pB;
break;
}
} else {
}else{
pTail->pDirty = pB;
pTail = pB;
pB = pB->pDirty;
if (pB == 0) {
if( pB==0 ){
pTail->pDirty = pA;
break;
}
......@@ -705,24 +722,24 @@ static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB) {
** ever changes to make the previous sentence incorrect.
*/
#define N_SORT_BUCKET 32
static PgHdr *pcacheSortDirtyList(PgHdr *pIn) {
static PgHdr *pcacheSortDirtyList(PgHdr *pIn){
PgHdr *a[N_SORT_BUCKET], *p;
int i;
memset(a, 0, sizeof(a));
while (pIn) {
while( pIn ){
p = pIn;
pIn = p->pDirty;
p->pDirty = 0;
for (i = 0; ALWAYS(i < N_SORT_BUCKET - 1); i++) {
if (a[i] == 0) {
for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){
if( a[i]==0 ){
a[i] = p;
break;
} else {
}else{
p = pcacheMergeDirtyList(a[i], p);
a[i] = 0;
}
}
if (NEVER(i == N_SORT_BUCKET - 1)) {
if( NEVER(i==N_SORT_BUCKET-1) ){
/* To get here, there need to be 2^(N_SORT_BUCKET) elements in
** the input list. But that is impossible.
*/
......@@ -730,8 +747,8 @@ static PgHdr *pcacheSortDirtyList(PgHdr *pIn) {
}
}
p = a[0];
for (i = 1; i < N_SORT_BUCKET; i++) {
if (a[i] == 0) continue;
for(i=1; i<N_SORT_BUCKET; i++){
if( a[i]==0 ) continue;
p = p ? pcacheMergeDirtyList(p, a[i]) : a[i];
}
return p;
......@@ -740,9 +757,9 @@ static PgHdr *pcacheSortDirtyList(PgHdr *pIn) {
/*
** Return a list of all dirty pages in the cache, sorted by page number.
*/
PgHdr *sqlite3PcacheDirtyList(PCache *pCache) {
PgHdr *sqlite3PcacheDirtyList(PCache *pCache){
PgHdr *p;
for (p = pCache->pDirty; p; p = p->pDirtyNext) {
for(p=pCache->pDirty; p; p=p->pDirtyNext){
p->pDirty = p->pDirtyNext;
}
return pcacheSortDirtyList(pCache->pDirty);
......@@ -754,18 +771,22 @@ PgHdr *sqlite3PcacheDirtyList(PCache *pCache) {
** This is not the total number of pages referenced, but the sum of the
** reference count for all pages.
*/
int sqlite3PcacheRefCount(PCache *pCache) { return pCache->nRefSum; }
int sqlite3PcacheRefCount(PCache *pCache){
return pCache->nRefSum;
}
/*
** Return the number of references to the page supplied as an argument.
*/
int sqlite3PcachePageRefcount(PgHdr *p) { return p->nRef; }
int sqlite3PcachePageRefcount(PgHdr *p){
return p->nRef;
}
/*
** Return the total number of pages in the cache.
*/
int sqlite3PcachePagecount(PCache *pCache) {
assert(pCache->pCache != 0);
int sqlite3PcachePagecount(PCache *pCache){
assert( pCache->pCache!=0 );
return pcache2.xPagecount(pCache->pCache);
}
......@@ -773,16 +794,19 @@ int sqlite3PcachePagecount(PCache *pCache) {
/*
** Get the suggested cache-size value.
*/
int sqlite3PcacheGetCachesize(PCache *pCache) { return numberOfCachePages(pCache); }
int sqlite3PcacheGetCachesize(PCache *pCache){
return numberOfCachePages(pCache);
}
#endif
/*
** Set the suggested cache-size value.
*/
void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage) {
assert(pCache->pCache != 0);
void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){
assert( pCache->pCache!=0 );
pCache->szCache = mxPage;
pcache2.xCachesize(pCache->pCache, numberOfCachePages(pCache));
pcache2.xCachesize(pCache->pCache,
numberOfCachePages(pCache));
}
/*
......@@ -790,25 +814,25 @@ void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage) {
** argument is zero. Return the effective cache-spill size, which will
** be the larger of the szSpill and szCache.
*/
int sqlite3PcacheSetSpillsize(PCache *p, int mxPage) {
int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){
int res;
assert(p->pCache != 0);
if (mxPage) {
if (mxPage < 0) {
mxPage = (int)((-1024 * (i64)mxPage) / (p->szPage + p->szExtra));
assert( p->pCache!=0 );
if( mxPage ){
if( mxPage<0 ){
mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra));
}
p->szSpill = mxPage;
}
res = numberOfCachePages(p);
if (res < p->szSpill) res = p->szSpill;
if( res<p->szSpill ) res = p->szSpill;
return res;
}
/*
** Free up as much memory as possible from the page cache.
*/
void sqlite3PcacheShrink(PCache *pCache) {
assert(pCache->pCache != 0);
void sqlite3PcacheShrink(PCache *pCache){
assert( pCache->pCache!=0 );
pcache2.xShrink(pCache->pCache);
}
......@@ -816,17 +840,17 @@ void sqlite3PcacheShrink(PCache *pCache) {
** Return the size of the header added by this middleware layer
** in the page-cache hierarchy.
*/
int sqlite3HeaderSizePcache(void) { return ROUND8(sizeof(PgHdr)); }
int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); }
/*
** Return the number of dirty pages currently in the cache, as a percentage
** of the configured cache size.
*/
int sqlite3PCachePercentDirty(PCache *pCache) {
int sqlite3PCachePercentDirty(PCache *pCache){
PgHdr *pDirty;
int nDirty = 0;
int nCache = numberOfCachePages(pCache);
for (pDirty = pCache->pDirty; pDirty; pDirty = pDirty->pDirtyNext) nDirty++;
for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++;
return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0;
}
......@@ -834,7 +858,9 @@ int sqlite3PCachePercentDirty(PCache *pCache) {
/*
** Return true if there are one or more dirty pages in the cache. Else false.
*/
int sqlite3PCacheIsDirty(PCache *pCache) { return (pCache->pDirty != 0); }
int sqlite3PCacheIsDirty(PCache *pCache){
return (pCache->pDirty!=0);
}
#endif
#if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
......@@ -843,9 +869,9 @@ int sqlite3PCacheIsDirty(PCache *pCache) { return (pCache->pDirty != 0); }
** callback. This is only used if the SQLITE_CHECK_PAGES macro is
** defined.
*/
void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)) {
void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){
PgHdr *pDirty;
for (pDirty = pCache->pDirty; pDirty; pDirty = pDirty->pDirtyNext) {
for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){
xIter(pDirty);
}
}
......
......@@ -108,10 +108,10 @@ struct PgHdr1 {
unsigned int iKey; /* Key value (page number) */
u16 isBulkLocal; /* This page from bulk local storage */
u16 isAnchor; /* This is the PGroup.lru element */
PgHdr1 *pNext; /* Next in hash table chain */
PCache1 *pCache; /* Cache that currently owns this page */
PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */
PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */
PgHdr1 * pNext; /* Next in hash table chain */
PCache1 * pCache; /* Cache that currently owns this page */
PgHdr1 * pLruNext; /* Next in LRU list of unpinned pages */
PgHdr1 * pLruPrev; /* Previous in LRU list of unpinned pages */
/* NB: pLruPrev is only valid if pLruNext!=0 */
};
......@@ -119,8 +119,8 @@ struct PgHdr1 {
** A page is pinned if it is not on the LRU list. To be "pinned" means
** that the page is in active use and must not be deallocated.
*/
#define PAGE_IS_PINNED(p) ((p)->pLruNext==0)
#define PAGE_IS_UNPINNED(p) ((p)->pLruNext!=0)
#define PAGE_IS_PINNED(p) ((p)->pLruNext == 0)
#define PAGE_IS_UNPINNED(p) ((p)->pLruNext != 0)
/* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set
** of one or more PCaches that are able to recycle each other's unpinned
......@@ -145,7 +145,7 @@ struct PgHdr1 {
** SQLITE_MUTEX_STATIC_LRU.
*/
struct PGroup {
sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */
pthread_mutex_t mutex; /* MUTEX_STATIC_LRU or NULL */
unsigned int nMaxPage; /* Sum of nMax for purgeable caches */
unsigned int nMinPage; /* Sum of nMin for purgeable caches */
unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */
......@@ -168,7 +168,7 @@ struct PCache1 {
** modified at any time by a call to the pcache1Cachesize() method.
** The PGroup mutex must be held when accessing nMax.
*/
PGroup *pGroup; /* PGroup this cache belongs to */
PGroup * pGroup; /* PGroup this cache belongs to */
unsigned int *pnPurgeable; /* Pointer to pGroup->nPurgeable */
int szPage; /* Size of database content section */
int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */
......@@ -186,9 +186,9 @@ struct PCache1 {
unsigned int nRecyclable; /* Number of pages in the LRU list */
unsigned int nPage; /* Total number of pages in apHash */
unsigned int nHash; /* Number of slots in apHash[] */
PgHdr1 **apHash; /* Hash table for fast lookup by key */
PgHdr1 *pFree; /* List of unused pcache-local pages */
void *pBulk; /* Bulk memory used by pcache-local */
PgHdr1 ** apHash; /* Hash table for fast lookup by key */
PgHdr1 * pFree; /* List of unused pcache-local pages */
void * pBulk; /* Bulk memory used by pcache-local */
};
/*
......@@ -199,22 +199,6 @@ struct PgFreeslot {
PgFreeslot *pNext; /* Next free slot */
};
sqlite3_pcache_methods2 pcache2 = {
1, /* iVersion */
0, /* pArg */
pcache1Init, /* xInit */
pcache1Shutdown, /* xShutdown */
pcache1Create, /* xCreate */
pcache1Cachesize, /* xCachesize */
pcache1Pagecount, /* xPagecount */
pcache1Fetch, /* xFetch */
pcache1Unpin, /* xUnpin */
pcache1Rekey, /* xRekey */
pcache1Truncate, /* xTruncate */
pcache1Destroy, /* xDestroy */
pcache1Shrink /* xShrink */
};
/*
** Global data used by this cache.
*/
......@@ -234,8 +218,8 @@ static struct PCacheGlobal {
int nReserve; /* Try to keep nFreeSlot above this */
void *pStart, *pEnd; /* Bounds of global page cache memory */
/* Above requires no mutex. Use mutex below for variable that follow. */
sqlite3_mutex *mutex; /* Mutex for accessing the following: */
PgFreeslot *pFree; /* Free page blocks */
pthread_mutex_t mutex; /* Mutex for accessing the following: */
PgFreeslot * pFree; /* Free page blocks */
int nFreeSlot; /* Number of unused pcache slots */
/* The following value requires a mutex to change. We skip the mutex on
** reading because (1) most platforms read a 32-bit integer atomically and
......@@ -247,20 +231,19 @@ static struct PCacheGlobal {
/*
** Macros to enter and leave the PCache LRU mutex.
*/
#if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
# define pcache1EnterMutex(X) assert((X)->mutex==0)
# define pcache1LeaveMutex(X) assert((X)->mutex==0)
# define PCACHE1_MIGHT_USE_GROUP_MUTEX 0
#if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE == 0
#define pcache1EnterMutex(X) assert((X)->mutex == 0)
#define pcache1LeaveMutex(X) assert((X)->mutex == 0)
#define PCACHE1_MIGHT_USE_GROUP_MUTEX 0
#else
# define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
# define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
# define PCACHE1_MIGHT_USE_GROUP_MUTEX 1
#define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
#define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
#define PCACHE1_MIGHT_USE_GROUP_MUTEX 1
#endif
/******************************************************************************/
/******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
/*
** This function is called during initialization if a static buffer is
** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
......@@ -270,23 +253,23 @@ static struct PCacheGlobal {
** This routine is called from sqlite3_initialize() and so it is guaranteed
** to be serialized already. There is no need for further mutexing.
*/
void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
if( pcache1.isInit ){
void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n) {
if (pcache1.isInit) {
PgFreeslot *p;
if( pBuf==0 ) sz = n = 0;
if( n==0 ) sz = 0;
if (pBuf == 0) sz = n = 0;
if (n == 0) sz = 0;
sz = ROUNDDOWN8(sz);
pcache1.szSlot = sz;
pcache1.nSlot = pcache1.nFreeSlot = n;
pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
pcache1.nReserve = n > 90 ? 10 : (n / 10 + 1);
pcache1.pStart = pBuf;
pcache1.pFree = 0;
pcache1.bUnderPressure = 0;
while( n-- ){
p = (PgFreeslot*)pBuf;
while (n--) {
p = (PgFreeslot *)pBuf;
p->pNext = pcache1.pFree;
pcache1.pFree = p;
pBuf = (void*)&((char*)pBuf)[sz];
pBuf = (void *)&((char *)pBuf)[sz];
}
pcache1.pEnd = pBuf;
}
......@@ -296,27 +279,27 @@ void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
** Try to initialize the pCache->pFree and pCache->pBulk fields. Return
** true if pCache->pFree ends up containing one or more free pages.
*/
static int pcache1InitBulk(PCache1 *pCache){
static int pcache1InitBulk(PCache1 *pCache) {
i64 szBulk;
char *zBulk;
if( pcache1.nInitPage==0 ) return 0;
if (pcache1.nInitPage == 0) return 0;
/* Do not bother with a bulk allocation if the cache size very small */
if( pCache->nMax<3 ) return 0;
if (pCache->nMax < 3) return 0;
sqlite3BeginBenignMalloc();
if( pcache1.nInitPage>0 ){
if (pcache1.nInitPage > 0) {
szBulk = pCache->szAlloc * (i64)pcache1.nInitPage;
}else{
} else {
szBulk = -1024 * (i64)pcache1.nInitPage;
}
if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){
szBulk = pCache->szAlloc*(i64)pCache->nMax;
if (szBulk > pCache->szAlloc * (i64)pCache->nMax) {
szBulk = pCache->szAlloc * (i64)pCache->nMax;
}
zBulk = pCache->pBulk = sqlite3Malloc( szBulk );
zBulk = pCache->pBulk = sqlite3Malloc(szBulk);
sqlite3EndBenignMalloc();
if( zBulk ){
int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;
do{
PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage];
if (zBulk) {
int nBulk = sqlite3MallocSize(zBulk) / pCache->szAlloc;
do {
PgHdr1 *pX = (PgHdr1 *)&zBulk[pCache->szPage];
pX->page.pBuf = zBulk;
pX->page.pExtra = &pX[1];
pX->isBulkLocal = 1;
......@@ -325,9 +308,9 @@ static int pcache1InitBulk(PCache1 *pCache){
pX->pLruPrev = 0; /* Initializing this saves a valgrind error */
pCache->pFree = pX;
zBulk += pCache->szAlloc;
}while( --nBulk );
} while (--nBulk);
}
return pCache->pFree!=0;
return pCache->pFree != 0;
}
/*
......@@ -339,29 +322,29 @@ static int pcache1InitBulk(PCache1 *pCache){
** Multiple threads can run this routine at the same time. Global variables
** in pcache1 need to be protected via mutex.
*/
static void *pcache1Alloc(int nByte){
static void *pcache1Alloc(int nByte) {
void *p = 0;
assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
if( nByte<=pcache1.szSlot ){
assert(sqlite3_mutex_notheld(pcache1.grp.mutex));
if (nByte <= pcache1.szSlot) {
sqlite3_mutex_enter(pcache1.mutex);
p = (PgHdr1 *)pcache1.pFree;
if( p ){
if (p) {
pcache1.pFree = pcache1.pFree->pNext;
pcache1.nFreeSlot--;
pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
assert( pcache1.nFreeSlot>=0 );
pcache1.bUnderPressure = pcache1.nFreeSlot < pcache1.nReserve;
assert(pcache1.nFreeSlot >= 0);
sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
}
sqlite3_mutex_leave(pcache1.mutex);
}
if( p==0 ){
if (p == 0) {
/* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get
** it from sqlite3Malloc instead.
*/
p = sqlite3Malloc(nByte);
#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
if( p ){
if (p) {
int sz = sqlite3MallocSize(p);
sqlite3_mutex_enter(pcache1.mutex);
sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
......@@ -377,21 +360,21 @@ static void *pcache1Alloc(int nByte){
/*
** Free an allocated buffer obtained from pcache1Alloc().
*/
static void pcache1Free(void *p){
if( p==0 ) return;
if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){
static void pcache1Free(void *p) {
if (p == 0) return;
if (SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd)) {
PgFreeslot *pSlot;
sqlite3_mutex_enter(pcache1.mutex);
sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
pSlot = (PgFreeslot*)p;
pSlot = (PgFreeslot *)p;
pSlot->pNext = pcache1.pFree;
pcache1.pFree = pSlot;
pcache1.nFreeSlot++;
pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
assert( pcache1.nFreeSlot<=pcache1.nSlot );
pcache1.bUnderPressure = pcache1.nFreeSlot < pcache1.nReserve;
assert(pcache1.nFreeSlot <= pcache1.nSlot);
sqlite3_mutex_leave(pcache1.mutex);
}else{
assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
} else {
assert(sqlite3MemdebugHasType(p, MEMTYPE_PCACHE));
sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
{
......@@ -410,12 +393,12 @@ static void pcache1Free(void *p){
/*
** Return the size of a pcache allocation
*/
static int pcache1MemSize(void *p){
if( p>=pcache1.pStart && p<pcache1.pEnd ){
static int pcache1MemSize(void *p) {
if (p >= pcache1.pStart && p < pcache1.pEnd) {
return pcache1.szSlot;
}else{
} else {
int iSize;
assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
assert(sqlite3MemdebugHasType(p, MEMTYPE_PCACHE));
sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
iSize = sqlite3MallocSize(p);
sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
......@@ -427,30 +410,32 @@ static int pcache1MemSize(void *p){
/*
** Allocate a new page object initially associated with cache pCache.
*/
static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){
static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc) {
PgHdr1 *p = 0;
void *pPg;
void * pPg;
assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){
assert( pCache->pFree!=0 );
assert(sqlite3_mutex_held(pCache->pGroup->mutex));
if (pCache->pFree || (pCache->nPage == 0 && pcache1InitBulk(pCache))) {
assert(pCache->pFree != 0);
p = pCache->pFree;
pCache->pFree = p->pNext;
p->pNext = 0;
}else{
} else {
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
/* The group mutex must be released before pcache1Alloc() is called. This
** is because it might call sqlite3_release_memory(), which assumes that
** this mutex is not held. */
assert( pcache1.separateCache==0 );
assert( pCache->pGroup==&pcache1.grp );
assert(pcache1.separateCache == 0);
assert(pCache->pGroup == &pcache1.grp);
pcache1LeaveMutex(pCache->pGroup);
#endif
if( benignMalloc ){ sqlite3BeginBenignMalloc(); }
if (benignMalloc) {
sqlite3BeginBenignMalloc();
}
#ifdef SQLITE_PCACHE_SEPARATE_HEADER
pPg = pcache1Alloc(pCache->szPage);
p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra);
if( !pPg || !p ){
if (!pPg || !p) {
pcache1Free(pPg);
sqlite3_free(p);
pPg = 0;
......@@ -458,11 +443,13 @@ static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){
#else
pPg = pcache1Alloc(pCache->szAlloc);
#endif
if( benignMalloc ){ sqlite3EndBenignMalloc(); }
if (benignMalloc) {
sqlite3EndBenignMalloc();
}
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
pcache1EnterMutex(pCache->pGroup);
#endif
if( pPg==0 ) return 0;
if (pPg == 0) return 0;
#ifndef SQLITE_PCACHE_SEPARATE_HEADER
p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
#endif
......@@ -479,15 +466,15 @@ static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){
/*
** Free a page object allocated by pcache1AllocPage().
*/
static void pcache1FreePage(PgHdr1 *p){
static void pcache1FreePage(PgHdr1 *p) {
PCache1 *pCache;
assert( p!=0 );
assert(p != 0);
pCache = p->pCache;
assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
if( p->isBulkLocal ){
assert(sqlite3_mutex_held(p->pCache->pGroup->mutex));
if (p->isBulkLocal) {
p->pNext = pCache->pFree;
pCache->pFree = p;
}else{
} else {
pcache1Free(p->page.pBuf);
#ifdef SQLITE_PCACHE_SEPARATE_HEADER
sqlite3_free(p);
......@@ -501,18 +488,15 @@ static void pcache1FreePage(PgHdr1 *p){
** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
** exists, this function falls back to sqlite3Malloc().
*/
void *sqlite3PageMalloc(int sz){
assert( sz<=65536+8 ); /* These allocations are never very large */
void *sqlite3PageMalloc(int sz) {
assert(sz <= 65536 + 8); /* These allocations are never very large */
return pcache1Alloc(sz);
}
/*
** Free an allocated buffer obtained from sqlite3PageMalloc().
*/
void sqlite3PageFree(void *p){
pcache1Free(p);
}
void sqlite3PageFree(void *p) { pcache1Free(p); }
/*
** Return true if it desirable to avoid allocating a new page cache
......@@ -530,10 +514,10 @@ void sqlite3PageFree(void *p){
** allocating a new page cache entry in order to avoid stressing
** the heap even further.
*/
static int pcache1UnderMemoryPressure(PCache1 *pCache){
if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
static int pcache1UnderMemoryPressure(PCache1 *pCache) {
if (pcache1.nSlot && (pCache->szPage + pCache->szExtra) <= pcache1.szSlot) {
return pcache1.bUnderPressure;
}else{
} else {
return sqlite3HeapNearlyFull();
}
}
......@@ -547,28 +531,32 @@ static int pcache1UnderMemoryPressure(PCache1 *pCache){
**
** The PCache mutex must be held when this function is called.
*/
static void pcache1ResizeHash(PCache1 *p){
PgHdr1 **apNew;
static void pcache1ResizeHash(PCache1 *p) {
PgHdr1 ** apNew;
unsigned int nNew;
unsigned int i;
assert( sqlite3_mutex_held(p->pGroup->mutex) );
assert(sqlite3_mutex_held(p->pGroup->mutex));
nNew = p->nHash*2;
if( nNew<256 ){
nNew = p->nHash * 2;
if (nNew < 256) {
nNew = 256;
}
pcache1LeaveMutex(p->pGroup);
if( p->nHash ){ sqlite3BeginBenignMalloc(); }
apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
if( p->nHash ){ sqlite3EndBenignMalloc(); }
if (p->nHash) {
sqlite3BeginBenignMalloc();
}
apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *) * nNew);
if (p->nHash) {
sqlite3EndBenignMalloc();
}
pcache1EnterMutex(p->pGroup);
if( apNew ){
for(i=0; i<p->nHash; i++){
if (apNew) {
for (i = 0; i < p->nHash; i++) {
PgHdr1 *pPage;
PgHdr1 *pNext = p->apHash[i];
while( (pPage = pNext)!=0 ){
while ((pPage = pNext) != 0) {
unsigned int h = pPage->iKey % nNew;
pNext = pPage->pNext;
pPage->pNext = apNew[h];
......@@ -588,24 +576,23 @@ static void pcache1ResizeHash(PCache1 *p){
**
** The PGroup mutex must be held when this function is called.
*/
static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){
assert( pPage!=0 );
assert( PAGE_IS_UNPINNED(pPage) );
assert( pPage->pLruNext );
assert( pPage->pLruPrev );
assert( sqlite3_mutex_held(pPage->pCache->pGroup->mutex) );
static PgHdr1 *pcache1PinPage(PgHdr1 *pPage) {
assert(pPage != 0);
assert(PAGE_IS_UNPINNED(pPage));
assert(pPage->pLruNext);
assert(pPage->pLruPrev);
assert(sqlite3_mutex_held(pPage->pCache->pGroup->mutex));
pPage->pLruPrev->pLruNext = pPage->pLruNext;
pPage->pLruNext->pLruPrev = pPage->pLruPrev;
pPage->pLruNext = 0;
/* pPage->pLruPrev = 0;
** No need to clear pLruPrev as it is never accessed if pLruNext is 0 */
assert( pPage->isAnchor==0 );
assert( pPage->pCache->pGroup->lru.isAnchor==1 );
assert(pPage->isAnchor == 0);
assert(pPage->pCache->pGroup->lru.isAnchor == 1);
pPage->pCache->nRecyclable--;
return pPage;
}
/*
** Remove the page supplied as an argument from the hash table
** (PCache1.apHash structure) that it is currently stored in.
......@@ -613,37 +600,36 @@ static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){
**
** The PGroup mutex must be held when this function is called.
*/
static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){
static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag) {
unsigned int h;
PCache1 *pCache = pPage->pCache;
PgHdr1 **pp;
PCache1 * pCache = pPage->pCache;
PgHdr1 ** pp;
assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
assert(sqlite3_mutex_held(pCache->pGroup->mutex));
h = pPage->iKey % pCache->nHash;
for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
for (pp = &pCache->apHash[h]; (*pp) != pPage; pp = &(*pp)->pNext)
;
*pp = (*pp)->pNext;
pCache->nPage--;
if( freeFlag ) pcache1FreePage(pPage);
if (freeFlag) pcache1FreePage(pPage);
}
/*
** If there are currently more than nMaxPage pages allocated, try
** to recycle pages to reduce the number allocated to nMaxPage.
*/
static void pcache1EnforceMaxPage(PCache1 *pCache){
static void pcache1EnforceMaxPage(PCache1 *pCache) {
PGroup *pGroup = pCache->pGroup;
PgHdr1 *p;
assert( sqlite3_mutex_held(pGroup->mutex) );
while( pGroup->nPurgeable>pGroup->nMaxPage
&& (p=pGroup->lru.pLruPrev)->isAnchor==0
){
assert( p->pCache->pGroup==pGroup );
assert( PAGE_IS_UNPINNED(p) );
assert(sqlite3_mutex_held(pGroup->mutex));
while (pGroup->nPurgeable > pGroup->nMaxPage && (p = pGroup->lru.pLruPrev)->isAnchor == 0) {
assert(p->pCache->pGroup == pGroup);
assert(PAGE_IS_UNPINNED(p));
pcache1PinPage(p);
pcache1RemoveFromHash(p, 1);
}
if( pCache->nPage==0 && pCache->pBulk ){
if (pCache->nPage == 0 && pCache->pBulk) {
sqlite3_free(pCache->pBulk);
pCache->pBulk = pCache->pFree = 0;
}
......@@ -656,49 +642,48 @@ static void pcache1EnforceMaxPage(PCache1 *pCache){
**
** The PCache mutex must be held when this function is called.
*/
static void pcache1TruncateUnsafe(
PCache1 *pCache, /* The cache to truncate */
static void pcache1TruncateUnsafe(PCache1 * pCache, /* The cache to truncate */
unsigned int iLimit /* Drop pages with this pgno or larger */
){
TESTONLY( int nPage = 0; ) /* To assert pCache->nPage is correct */
) {
TESTONLY(int nPage = 0;) /* To assert pCache->nPage is correct */
unsigned int h, iStop;
assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
assert( pCache->iMaxKey >= iLimit );
assert( pCache->nHash > 0 );
if( pCache->iMaxKey - iLimit < pCache->nHash ){
assert(sqlite3_mutex_held(pCache->pGroup->mutex));
assert(pCache->iMaxKey >= iLimit);
assert(pCache->nHash > 0);
if (pCache->iMaxKey - iLimit < pCache->nHash) {
/* If we are just shaving the last few pages off the end of the
** cache, then there is no point in scanning the entire hash table.
** Only scan those hash slots that might contain pages that need to
** be removed. */
h = iLimit % pCache->nHash;
iStop = pCache->iMaxKey % pCache->nHash;
TESTONLY( nPage = -10; ) /* Disable the pCache->nPage validity check */
}else{
TESTONLY(nPage = -10;) /* Disable the pCache->nPage validity check */
} else {
/* This is the general case where many pages are being removed.
** It is necessary to scan the entire hash table */
h = pCache->nHash/2;
h = pCache->nHash / 2;
iStop = h - 1;
}
for(;;){
for (;;) {
PgHdr1 **pp;
PgHdr1 *pPage;
assert( h<pCache->nHash );
PgHdr1 * pPage;
assert(h < pCache->nHash);
pp = &pCache->apHash[h];
while( (pPage = *pp)!=0 ){
if( pPage->iKey>=iLimit ){
while ((pPage = *pp) != 0) {
if (pPage->iKey >= iLimit) {
pCache->nPage--;
*pp = pPage->pNext;
if( PAGE_IS_UNPINNED(pPage) ) pcache1PinPage(pPage);
if (PAGE_IS_UNPINNED(pPage)) pcache1PinPage(pPage);
pcache1FreePage(pPage);
}else{
} else {
pp = &pPage->pNext;
TESTONLY( if( nPage>=0 ) nPage++; )
TESTONLY(if (nPage >= 0) nPage++;)
}
}
if( h==iStop ) break;
h = (h+1) % pCache->nHash;
if (h == iStop) break;
h = (h + 1) % pCache->nHash;
}
assert( nPage<0 || pCache->nPage==(unsigned)nPage );
assert(nPage < 0 || pCache->nPage == (unsigned)nPage);
}
/******************************************************************************/
......@@ -707,52 +692,45 @@ static void pcache1TruncateUnsafe(
/*
** Implementation of the sqlite3_pcache.xInit method.
*/
static int pcache1Init(void *NotUsed){
UNUSED_PARAMETER(NotUsed);
assert( pcache1.isInit==0 );
static int pcache1Init(void *NotUsed) {
assert(pcache1.isInit == 0);
memset(&pcache1, 0, sizeof(pcache1));
/*
** The pcache1.separateCache variable is true if each PCache has its own
** private PGroup (mode-1). pcache1.separateCache is false if the single
** PGroup in pcache1.grp is used for all page caches (mode-2).
**
** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
**
** * Use a unified cache in single-threaded applications that have
** configured a start-time buffer for use as page-cache memory using
** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL
** pBuf argument.
**
** * Otherwise use separate caches (mode-1)
*/
#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
pcache1.separateCache = 0;
#elif SQLITE_THREADSAFE
pcache1.separateCache = sqlite3GlobalConfig.pPage==0
|| sqlite3GlobalConfig.bCoreMutex>0;
#else
pcache1.separateCache = sqlite3GlobalConfig.pPage==0;
#endif
#if SQLITE_THREADSAFE
if( sqlite3GlobalConfig.bCoreMutex ){
pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU);
pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM);
}
#endif
if( pcache1.separateCache
&& sqlite3GlobalConfig.nPage!=0
&& sqlite3GlobalConfig.pPage==0
){
pcache1.nInitPage = sqlite3GlobalConfig.nPage;
}else{
// /*
// ** The pcache1.separateCache variable is true if each PCache has its own
// ** private PGroup (mode-1). pcache1.separateCache is false if the single
// ** PGroup in pcache1.grp is used for all page caches (mode-2).
// **
// ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
// **
// ** * Use a unified cache in single-threaded applications that have
// ** configured a start-time buffer for use as page-cache memory using
// ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL
// ** pBuf argument.
// **
// ** * Otherwise use separate caches (mode-1)
// */
// #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
// pcache1.separateCache = 0;
// #elif SQLITE_THREADSAFE
// pcache1.separateCache = sqlite3GlobalConfig.pPage==0
// || sqlite3GlobalConfig.bCoreMutex>0;
// #else
// pcache1.separateCache = sqlite3GlobalConfig.pPage==0;
// #endif
pcache1.separateCache = 1;
pthread_mutex_init(&pcache1.grp.mutex, NULL);
pthread_mutex_init(&pcache1.mutex, NULL);
// if (pcache1.separateCache && sqlite3GlobalConfig.nPage != 0 && sqlite3GlobalConfig.pPage == 0) {
// pcache1.nInitPage = sqlite3GlobalConfig.nPage;
// } else {
pcache1.nInitPage = 0;
}
// }
pcache1.grp.mxPinned = 10;
pcache1.isInit = 1;
return SQLITE_OK;
return 0;
}
/*
......@@ -760,9 +738,8 @@ static int pcache1Init(void *NotUsed){
** Note that the static mutex allocated in xInit does
** not need to be freed.
*/
static void pcache1Shutdown(void *NotUsed){
UNUSED_PARAMETER(NotUsed);
assert( pcache1.isInit!=0 );
static void pcache1Shutdown(void *NotUsed) {
assert(pcache1.isInit != 0);
memset(&pcache1, 0, sizeof(pcache1));
}
......@@ -774,25 +751,25 @@ static void pcache1Destroy(sqlite3_pcache *p);
**
** Allocate a new cache.
*/
static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable) {
PCache1 *pCache; /* The newly created page cache */
PGroup *pGroup; /* The group the new page cache will belong to */
PGroup * pGroup; /* The group the new page cache will belong to */
int sz; /* Bytes of memory required to allocate the new cache */
assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
assert( szExtra < 300 );
assert((szPage & (szPage - 1)) == 0 && szPage >= 512 && szPage <= 65536);
assert(szExtra < 300);
sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache;
sz = sizeof(PCache1) + sizeof(PGroup) * pcache1.separateCache;
pCache = (PCache1 *)sqlite3MallocZero(sz);
if( pCache ){
if( pcache1.separateCache ){
pGroup = (PGroup*)&pCache[1];
if (pCache) {
if (pcache1.separateCache) {
pGroup = (PGroup *)&pCache[1];
pGroup->mxPinned = 10;
}else{
} else {
pGroup = &pcache1.grp;
}
pcache1EnterMutex(pGroup);
if( pGroup->lru.isAnchor==0 ){
if (pGroup->lru.isAnchor == 0) {
pGroup->lru.isAnchor = 1;
pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru;
}
......@@ -802,17 +779,17 @@ static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1));
pCache->bPurgeable = (bPurgeable ? 1 : 0);
pcache1ResizeHash(pCache);
if( bPurgeable ){
if (bPurgeable) {
pCache->nMin = 10;
pGroup->nMinPage += pCache->nMin;
pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
pCache->pnPurgeable = &pGroup->nPurgeable;
}else{
} else {
pCache->pnPurgeable = &pCache->nPurgeableDummy;
}
pcache1LeaveMutex(pGroup);
if( pCache->nHash==0 ){
pcache1Destroy((sqlite3_pcache*)pCache);
if (pCache->nHash == 0) {
pcache1Destroy((sqlite3_pcache *)pCache);
pCache = 0;
}
}
......@@ -824,21 +801,21 @@ static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
**
** Configure the cache_size limit for a cache.
*/
static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
static void pcache1Cachesize(sqlite3_pcache *p, int nMax) {
PCache1 *pCache = (PCache1 *)p;
u32 n;
assert( nMax>=0 );
if( pCache->bPurgeable ){
assert(nMax >= 0);
if (pCache->bPurgeable) {
PGroup *pGroup = pCache->pGroup;
pcache1EnterMutex(pGroup);
n = (u32)nMax;
if( n > 0x7fff0000 - pGroup->nMaxPage + pCache->nMax ){
if (n > 0x7fff0000 - pGroup->nMaxPage + pCache->nMax) {
n = 0x7fff0000 - pGroup->nMaxPage + pCache->nMax;
}
pGroup->nMaxPage += (n - pCache->nMax);
pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
pCache->nMax = n;
pCache->n90pct = pCache->nMax*9/10;
pCache->n90pct = pCache->nMax * 9 / 10;
pcache1EnforceMaxPage(pCache);
pcache1LeaveMutex(pGroup);
}
......@@ -849,10 +826,10 @@ static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
**
** Free up as much memory as possible.
*/
static void pcache1Shrink(sqlite3_pcache *p){
PCache1 *pCache = (PCache1*)p;
if( pCache->bPurgeable ){
PGroup *pGroup = pCache->pGroup;
static void pcache1Shrink(sqlite3_pcache *p) {
PCache1 *pCache = (PCache1 *)p;
if (pCache->bPurgeable) {
PGroup * pGroup = pCache->pGroup;
unsigned int savedMaxPage;
pcache1EnterMutex(pGroup);
savedMaxPage = pGroup->nMaxPage;
......@@ -866,16 +843,15 @@ static void pcache1Shrink(sqlite3_pcache *p){
/*
** Implementation of the sqlite3_pcache.xPagecount method.
*/
static int pcache1Pagecount(sqlite3_pcache *p){
static int pcache1Pagecount(sqlite3_pcache *p) {
int n;
PCache1 *pCache = (PCache1*)p;
PCache1 *pCache = (PCache1 *)p;
pcache1EnterMutex(pCache->pGroup);
n = pCache->nPage;
pcache1LeaveMutex(pCache->pGroup);
return n;
}
/*
** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described
** in the header of the pcache1Fetch() procedure.
......@@ -884,46 +860,37 @@ static int pcache1Pagecount(sqlite3_pcache *p){
** usually not needed, and by avoiding the stack initialization required
** for these steps, the main pcache1Fetch() procedure can run faster.
*/
static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
PCache1 *pCache,
unsigned int iKey,
int createFlag
){
static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(PCache1 *pCache, unsigned int iKey, int createFlag) {
unsigned int nPinned;
PGroup *pGroup = pCache->pGroup;
PgHdr1 *pPage = 0;
PGroup * pGroup = pCache->pGroup;
PgHdr1 * pPage = 0;
/* Step 3: Abort if createFlag is 1 but the cache is nearly full */
assert( pCache->nPage >= pCache->nRecyclable );
assert(pCache->nPage >= pCache->nRecyclable);
nPinned = pCache->nPage - pCache->nRecyclable;
assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
assert( pCache->n90pct == pCache->nMax*9/10 );
if( createFlag==1 && (
nPinned>=pGroup->mxPinned
|| nPinned>=pCache->n90pct
|| (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned)
)){
assert(pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage);
assert(pCache->n90pct == pCache->nMax * 9 / 10);
if (createFlag == 1 && (nPinned >= pGroup->mxPinned || nPinned >= pCache->n90pct ||
(pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable < nPinned))) {
return 0;
}
if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
assert( pCache->nHash>0 && pCache->apHash );
if (pCache->nPage >= pCache->nHash) pcache1ResizeHash(pCache);
assert(pCache->nHash > 0 && pCache->apHash);
/* Step 4. Try to recycle a page. */
if( pCache->bPurgeable
&& !pGroup->lru.pLruPrev->isAnchor
&& ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache))
){
if (pCache->bPurgeable && !pGroup->lru.pLruPrev->isAnchor &&
((pCache->nPage + 1 >= pCache->nMax) || pcache1UnderMemoryPressure(pCache))) {
PCache1 *pOther;
pPage = pGroup->lru.pLruPrev;
assert( PAGE_IS_UNPINNED(pPage) );
assert(PAGE_IS_UNPINNED(pPage));
pcache1RemoveFromHash(pPage, 0);
pcache1PinPage(pPage);
pOther = pPage->pCache;
if( pOther->szAlloc != pCache->szAlloc ){
if (pOther->szAlloc != pCache->szAlloc) {
pcache1FreePage(pPage);
pPage = 0;
}else{
} else {
pGroup->nPurgeable -= (pOther->bPurgeable - pCache->bPurgeable);
}
}
......@@ -931,11 +898,11 @@ static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
/* Step 5. If a usable page buffer has still not been found,
** attempt to allocate a new one.
*/
if( !pPage ){
pPage = pcache1AllocPage(pCache, createFlag==1);
if (!pPage) {
pPage = pcache1AllocPage(pCache, createFlag == 1);
}
if( pPage ){
if (pPage) {
unsigned int h = iKey % pCache->nHash;
pCache->nPage++;
pPage->iKey = iKey;
......@@ -946,7 +913,7 @@ static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
** No need to clear pLruPrev since it is not accessed when pLruNext==0 */
*(void **)pPage->page.pExtra = 0;
pCache->apHash[h] = pPage;
if( iKey>pCache->iMaxKey ){
if (iKey > pCache->iMaxKey) {
pCache->iMaxKey = iKey;
}
}
......@@ -1012,103 +979,88 @@ static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper
** invokes the appropriate routine.
*/
static PgHdr1 *pcache1FetchNoMutex(
sqlite3_pcache *p,
unsigned int iKey,
int createFlag
){
static PgHdr1 *pcache1FetchNoMutex(sqlite3_pcache *p, unsigned int iKey, int createFlag) {
PCache1 *pCache = (PCache1 *)p;
PgHdr1 *pPage = 0;
PgHdr1 * pPage = 0;
/* Step 1: Search the hash table for an existing entry. */
pPage = pCache->apHash[iKey % pCache->nHash];
while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; }
while (pPage && pPage->iKey != iKey) {
pPage = pPage->pNext;
}
/* Step 2: If the page was found in the hash table, then return it.
** If the page was not in the hash table and createFlag is 0, abort.
** Otherwise (page not in hash and createFlag!=0) continue with
** subsequent steps to try to create the page. */
if( pPage ){
if( PAGE_IS_UNPINNED(pPage) ){
if (pPage) {
if (PAGE_IS_UNPINNED(pPage)) {
return pcache1PinPage(pPage);
}else{
} else {
return pPage;
}
}else if( createFlag ){
} else if (createFlag) {
/* Steps 3, 4, and 5 implemented by this subroutine */
return pcache1FetchStage2(pCache, iKey, createFlag);
}else{
} else {
return 0;
}
}
#if PCACHE1_MIGHT_USE_GROUP_MUTEX
static PgHdr1 *pcache1FetchWithMutex(
sqlite3_pcache *p,
unsigned int iKey,
int createFlag
){
static PgHdr1 *pcache1FetchWithMutex(sqlite3_pcache *p, unsigned int iKey, int createFlag) {
PCache1 *pCache = (PCache1 *)p;
PgHdr1 *pPage;
PgHdr1 * pPage;
pcache1EnterMutex(pCache->pGroup);
pPage = pcache1FetchNoMutex(p, iKey, createFlag);
assert( pPage==0 || pCache->iMaxKey>=iKey );
assert(pPage == 0 || pCache->iMaxKey >= iKey);
pcache1LeaveMutex(pCache->pGroup);
return pPage;
}
#endif
static sqlite3_pcache_page *pcache1Fetch(
sqlite3_pcache *p,
unsigned int iKey,
int createFlag
){
static sqlite3_pcache_page *pcache1Fetch(sqlite3_pcache *p, unsigned int iKey, int createFlag) {
#if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG)
PCache1 *pCache = (PCache1 *)p;
#endif
assert( offsetof(PgHdr1,page)==0 );
assert( pCache->bPurgeable || createFlag!=1 );
assert( pCache->bPurgeable || pCache->nMin==0 );
assert( pCache->bPurgeable==0 || pCache->nMin==10 );
assert( pCache->nMin==0 || pCache->bPurgeable );
assert( pCache->nHash>0 );
assert(offsetof(PgHdr1, page) == 0);
assert(pCache->bPurgeable || createFlag != 1);
assert(pCache->bPurgeable || pCache->nMin == 0);
assert(pCache->bPurgeable == 0 || pCache->nMin == 10);
assert(pCache->nMin == 0 || pCache->bPurgeable);
assert(pCache->nHash > 0);
#if PCACHE1_MIGHT_USE_GROUP_MUTEX
if( pCache->pGroup->mutex ){
return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag);
}else
if (pCache->pGroup->mutex) {
return (sqlite3_pcache_page *)pcache1FetchWithMutex(p, iKey, createFlag);
} else
#endif
{
return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag);
return (sqlite3_pcache_page *)pcache1FetchNoMutex(p, iKey, createFlag);
}
}
/*
** Implementation of the sqlite3_pcache.xUnpin method.
**
** Mark a page as unpinned (eligible for asynchronous recycling).
*/
static void pcache1Unpin(
sqlite3_pcache *p,
sqlite3_pcache_page *pPg,
int reuseUnlikely
){
static void pcache1Unpin(sqlite3_pcache *p, sqlite3_pcache_page *pPg, int reuseUnlikely) {
PCache1 *pCache = (PCache1 *)p;
PgHdr1 *pPage = (PgHdr1 *)pPg;
PGroup *pGroup = pCache->pGroup;
PgHdr1 * pPage = (PgHdr1 *)pPg;
PGroup * pGroup = pCache->pGroup;
assert( pPage->pCache==pCache );
assert(pPage->pCache == pCache);
pcache1EnterMutex(pGroup);
/* It is an error to call this function if the page is already
** part of the PGroup LRU list.
*/
assert( pPage->pLruNext==0 );
assert( PAGE_IS_PINNED(pPage) );
assert(pPage->pLruNext == 0);
assert(PAGE_IS_PINNED(pPage));
if( reuseUnlikely || pGroup->nPurgeable>pGroup->nMaxPage ){
if (reuseUnlikely || pGroup->nPurgeable > pGroup->nMaxPage) {
pcache1RemoveFromHash(pPage, 1);
}else{
} else {
/* Add the page to the PGroup LRU list. */
PgHdr1 **ppFirst = &pGroup->lru.pLruNext;
pPage->pLruPrev = &pGroup->lru;
......@@ -1123,33 +1075,28 @@ static void pcache1Unpin(
/*
** Implementation of the sqlite3_pcache.xRekey method.
*/
static void pcache1Rekey(
sqlite3_pcache *p,
sqlite3_pcache_page *pPg,
unsigned int iOld,
unsigned int iNew
){
PCache1 *pCache = (PCache1 *)p;
PgHdr1 *pPage = (PgHdr1 *)pPg;
PgHdr1 **pp;
static void pcache1Rekey(sqlite3_pcache *p, sqlite3_pcache_page *pPg, unsigned int iOld, unsigned int iNew) {
PCache1 * pCache = (PCache1 *)p;
PgHdr1 * pPage = (PgHdr1 *)pPg;
PgHdr1 ** pp;
unsigned int h;
assert( pPage->iKey==iOld );
assert( pPage->pCache==pCache );
assert(pPage->iKey == iOld);
assert(pPage->pCache == pCache);
pcache1EnterMutex(pCache->pGroup);
h = iOld%pCache->nHash;
h = iOld % pCache->nHash;
pp = &pCache->apHash[h];
while( (*pp)!=pPage ){
while ((*pp) != pPage) {
pp = &(*pp)->pNext;
}
*pp = pPage->pNext;
h = iNew%pCache->nHash;
h = iNew % pCache->nHash;
pPage->iKey = iNew;
pPage->pNext = pCache->apHash[h];
pCache->apHash[h] = pPage;
if( iNew>pCache->iMaxKey ){
if (iNew > pCache->iMaxKey) {
pCache->iMaxKey = iNew;
}
......@@ -1163,12 +1110,12 @@ static void pcache1Rekey(
** or greater than parameter iLimit. Any pinned pages with a page number
** equal to or greater than iLimit are implicitly unpinned.
*/
static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit) {
PCache1 *pCache = (PCache1 *)p;
pcache1EnterMutex(pCache->pGroup);
if( iLimit<=pCache->iMaxKey ){
if (iLimit <= pCache->iMaxKey) {
pcache1TruncateUnsafe(pCache, iLimit);
pCache->iMaxKey = iLimit-1;
pCache->iMaxKey = iLimit - 1;
}
pcache1LeaveMutex(pCache->pGroup);
}
......@@ -1178,15 +1125,15 @@ static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
**
** Destroy a cache allocated using pcache1Create().
*/
static void pcache1Destroy(sqlite3_pcache *p){
static void pcache1Destroy(sqlite3_pcache *p) {
PCache1 *pCache = (PCache1 *)p;
PGroup *pGroup = pCache->pGroup;
assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
PGroup * pGroup = pCache->pGroup;
assert(pCache->bPurgeable || (pCache->nMax == 0 && pCache->nMin == 0));
pcache1EnterMutex(pGroup);
if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0);
assert( pGroup->nMaxPage >= pCache->nMax );
if (pCache->nPage) pcache1TruncateUnsafe(pCache, 0);
assert(pGroup->nMaxPage >= pCache->nMax);
pGroup->nMaxPage -= pCache->nMax;
assert( pGroup->nMinPage >= pCache->nMin );
assert(pGroup->nMinPage >= pCache->nMin);
pGroup->nMinPage -= pCache->nMin;
pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
pcache1EnforceMaxPage(pCache);
......@@ -1196,42 +1143,16 @@ static void pcache1Destroy(sqlite3_pcache *p){
sqlite3_free(pCache);
}
/*
** This function is called during initialization (sqlite3_initialize()) to
** install the default pluggable cache module, assuming the user has not
** already provided an alternative.
*/
void sqlite3PCacheSetDefault(void){
static const sqlite3_pcache_methods2 defaultMethods = {
1, /* iVersion */
0, /* pArg */
pcache1Init, /* xInit */
pcache1Shutdown, /* xShutdown */
pcache1Create, /* xCreate */
pcache1Cachesize, /* xCachesize */
pcache1Pagecount, /* xPagecount */
pcache1Fetch, /* xFetch */
pcache1Unpin, /* xUnpin */
pcache1Rekey, /* xRekey */
pcache1Truncate, /* xTruncate */
pcache1Destroy, /* xDestroy */
pcache1Shrink /* xShrink */
};
sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
}
/*
** Return the size of the header on each page of this PCACHE implementation.
*/
int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }
int sqlite3HeaderSizePcache1(void) { return ROUND8(sizeof(PgHdr1)); }
/*
** Return the global mutex used by this PCACHE implementation. The
** sqlite3_status() routine needs access to this mutex.
*/
sqlite3_mutex *sqlite3Pcache1Mutex(void){
return pcache1.mutex;
}
sqlite3_mutex *sqlite3Pcache1Mutex(void) { return pcache1.mutex; }
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
/*
......@@ -1243,22 +1164,19 @@ sqlite3_mutex *sqlite3Pcache1Mutex(void){
** been released, the function returns. The return value is the total number
** of bytes of memory released.
*/
int sqlite3PcacheReleaseMemory(int nReq){
int sqlite3PcacheReleaseMemory(int nReq) {
int nFree = 0;
assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
assert( sqlite3_mutex_notheld(pcache1.mutex) );
if( sqlite3GlobalConfig.pPage==0 ){
assert(sqlite3_mutex_notheld(pcache1.grp.mutex));
assert(sqlite3_mutex_notheld(pcache1.mutex));
if (sqlite3GlobalConfig.pPage == 0) {
PgHdr1 *p;
pcache1EnterMutex(&pcache1.grp);
while( (nReq<0 || nFree<nReq)
&& (p=pcache1.grp.lru.pLruPrev)!=0
&& p->isAnchor==0
){
while ((nReq < 0 || nFree < nReq) && (p = pcache1.grp.lru.pLruPrev) != 0 && p->isAnchor == 0) {
nFree += pcache1MemSize(p->page.pBuf);
#ifdef SQLITE_PCACHE_SEPARATE_HEADER
nFree += sqlite3MemSize(p);
#endif
assert( PAGE_IS_UNPINNED(p) );
assert(PAGE_IS_UNPINNED(p));
pcache1PinPage(p);
pcache1RemoveFromHash(p, 1);
}
......@@ -1273,16 +1191,15 @@ int sqlite3PcacheReleaseMemory(int nReq){
** This function is used by test procedures to inspect the internal state
** of the global cache.
*/
void sqlite3PcacheStats(
int *pnCurrent, /* OUT: Total number of pages cached */
void sqlite3PcacheStats(int *pnCurrent, /* OUT: Total number of pages cached */
int *pnMax, /* OUT: Global maximum cache size */
int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */
int *pnRecyclable /* OUT: Total number of pages available for recycling */
){
) {
PgHdr1 *p;
int nRecyclable = 0;
for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){
assert( PAGE_IS_UNPINNED(p) );
for (p = pcache1.grp.lru.pLruNext; p && !p->isAnchor; p = p->pLruNext) {
assert(PAGE_IS_UNPINNED(p));
nRecyclable++;
}
*pnCurrent = pcache1.grp.nPurgeable;
......@@ -1291,3 +1208,19 @@ void sqlite3PcacheStats(
*pnRecyclable = nRecyclable;
}
#endif
sqlite3_pcache_methods2 pcache2 = {
1, /* iVersion */
0, /* pArg */
pcache1Init, /* xInit */
pcache1Shutdown, /* xShutdown */
pcache1Create, /* xCreate */
pcache1Cachesize, /* xCachesize */
pcache1Pagecount, /* xPagecount */
pcache1Fetch, /* xFetch */
pcache1Unpin, /* xUnpin */
pcache1Rekey, /* xRekey */
pcache1Truncate, /* xTruncate */
pcache1Destroy, /* xDestroy */
pcache1Shrink /* xShrink */
};
......@@ -13,7 +13,10 @@
**
*/
#include <assert.h>
#include <pthread.h>
#include <stdint.h>
#include <string.h>
#ifndef SQLITEINT_H
#define SQLITEINT_H
......@@ -32,6 +35,10 @@ typedef struct sqlite3_pcache_page {
void *pExtra; /* Extra information associated with the page */
} sqlite3_pcache_page;
#define ROUNDDOWN8(x) ((x) & ~7)
#define ROUND8(x) (((x) + 7) & ~7)
typedef u32 Pgno;
typedef struct Pager Pager;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册