未验证 提交 51943b6f 编写于 作者: S slguan 提交者: GitHub

Merge pull request #684 from taosdata/feature/newtimer

new timer implementation
......@@ -21,40 +21,41 @@ extern "C" {
#endif
typedef void *tmr_h;
typedef void (*TAOS_TMR_CALLBACK)(void *, void *);
extern uint32_t tmrDebugFlag;
extern int taosTmrThreads;
#define tmrError(...) \
if (tmrDebugFlag & DEBUG_ERROR) { \
do { if (tmrDebugFlag & DEBUG_ERROR) { \
tprintf("ERROR TMR ", tmrDebugFlag, __VA_ARGS__); \
}
} } while(0)
#define tmrWarn(...) \
if (tmrDebugFlag & DEBUG_WARN) { \
do { if (tmrDebugFlag & DEBUG_WARN) { \
tprintf("WARN TMR ", tmrDebugFlag, __VA_ARGS__); \
}
} } while(0)
#define tmrTrace(...) \
if (tmrDebugFlag & DEBUG_TRACE) { \
do { if (tmrDebugFlag & DEBUG_TRACE) { \
tprintf("TMR ", tmrDebugFlag, __VA_ARGS__); \
}
} } while(0)
#define MAX_NUM_OF_TMRCTL 512
#define MAX_NUM_OF_TMRCTL 32
#define MSECONDS_PER_TICK 5
void *taosTmrInit(int maxTmr, int resoultion, int longest, char *label);
void *taosTmrInit(int maxTmr, int resoultion, int longest, const char *label);
tmr_h taosTmrStart(void (*fp)(void *, void *), int mseconds, void *param1, void *handle);
tmr_h taosTmrStart(TAOS_TMR_CALLBACK fp, int mseconds, void *param, void *handle);
void taosTmrStop(tmr_h tmrId);
bool taosTmrStop(tmr_h tmrId);
void taosTmrStopA(tmr_h *timerId);
bool taosTmrStopA(tmr_h *timerId);
void taosTmrReset(void (*fp)(void *, void *), int mseconds, void *param1, void *handle, tmr_h *pTmrId);
bool taosTmrReset(TAOS_TMR_CALLBACK fp, int mseconds, void *param, void *handle, tmr_h *pTmrId);
void taosTmrCleanUp(void *handle);
void taosTmrList(void *handle);
#ifdef __cplusplus
}
#endif
......
......@@ -55,10 +55,44 @@
#define taosWriteSocket(fd, buf, len) write(fd, buf, len)
#define taosReadSocket(fd, buf, len) read(fd, buf, len)
#define atomic_load_8(ptr) __atomic_load_n((ptr), __ATOMIC_SEQ_CST)
#define atomic_load_16(ptr) __atomic_load_n((ptr), __ATOMIC_SEQ_CST)
#define atomic_load_32(ptr) __atomic_load_n((ptr), __ATOMIC_SEQ_CST)
#define atomic_load_64(ptr) __atomic_load_n((ptr), __ATOMIC_SEQ_CST)
#define atomic_load_ptr(ptr) __atomic_load_n((ptr), __ATOMIC_SEQ_CST)
#define atomic_store_8(ptr, val) __atomic_store_n((ptr), (val), __ATOMIC_SEQ_CST)
#define atomic_store_16(ptr, val) __atomic_store_n((ptr), (val), __ATOMIC_SEQ_CST)
#define atomic_store_32(ptr, val) __atomic_store_n((ptr), (val), __ATOMIC_SEQ_CST)
#define atomic_store_64(ptr, val) __atomic_store_n((ptr), (val), __ATOMIC_SEQ_CST)
#define atomic_store_ptr(ptr, val) __atomic_store_n((ptr), (val), __ATOMIC_SEQ_CST)
#define atomic_exchange_8(ptr, val) __atomic_exchange_n((ptr), (val), __ATOMIC_SEQ_CST)
#define atomic_exchange_16(ptr, val) __atomic_exchange_n((ptr), (val), __ATOMIC_SEQ_CST)
#define atomic_exchange_32(ptr, val) __atomic_exchange_n((ptr), (val), __ATOMIC_SEQ_CST)
#define atomic_exchange_64(ptr, val) __atomic_exchange_n((ptr), (val), __ATOMIC_SEQ_CST)
#define atomic_exchange_ptr(ptr, val) __atomic_exchange_n((ptr), (val), __ATOMIC_SEQ_CST)
// TODO: update prefix of below macros to 'atomic' as '__' is reserved by compiler
// and GCC suggest new code to use '__atomic' builtins to replace '__sync' builtins.
#define __sync_val_compare_and_swap_64 __sync_val_compare_and_swap
#define __sync_val_compare_and_swap_32 __sync_val_compare_and_swap
#define __sync_val_compare_and_swap_16 __sync_val_compare_and_swap
#define __sync_val_compare_and_swap_8 __sync_val_compare_and_swap
#define __sync_val_compare_and_swap_ptr __sync_val_compare_and_swap
#define __sync_add_and_fetch_64 __sync_add_and_fetch
#define __sync_add_and_fetch_32 __sync_add_and_fetch
#define __sync_add_and_fetch_16 __sync_add_and_fetch
#define __sync_add_and_fetch_8 __sync_add_and_fetch
#define __sync_add_and_fetch_ptr __sync_add_and_fetch
#define __sync_sub_and_fetch_64 __sync_sub_and_fetch
#define __sync_sub_and_fetch_32 __sync_sub_and_fetch
#define __sync_sub_and_fetch_16 __sync_sub_and_fetch
#define __sync_sub_and_fetch_8 __sync_sub_and_fetch
#define __sync_sub_and_fetch_ptr __sync_sub_and_fetch
int32_t __sync_val_load_32(int32_t *ptr);
void __sync_val_restore_32(int32_t *ptr, int32_t newval);
......
......@@ -71,14 +71,43 @@ extern "C" {
#define taosWriteSocket(fd, buf, len) write(fd, buf, len)
#define taosReadSocket(fd, buf, len) read(fd, buf, len)
#define atomic_load_8(ptr) __atomic_load_n((ptr), __ATOMIC_SEQ_CST)
#define atomic_load_16(ptr) __atomic_load_n((ptr), __ATOMIC_SEQ_CST)
#define atomic_load_32(ptr) __atomic_load_n((ptr), __ATOMIC_SEQ_CST)
#define atomic_load_64(ptr) __atomic_load_n((ptr), __ATOMIC_SEQ_CST)
#define atomic_load_ptr(ptr) __atomic_load_n((ptr), __ATOMIC_SEQ_CST)
#define atomic_store_8(ptr, val) __atomic_store_n((ptr), (val), __ATOMIC_SEQ_CST)
#define atomic_store_16(ptr, val) __atomic_store_n((ptr), (val), __ATOMIC_SEQ_CST)
#define atomic_store_32(ptr, val) __atomic_store_n((ptr), (val), __ATOMIC_SEQ_CST)
#define atomic_store_64(ptr, val) __atomic_store_n((ptr), (val), __ATOMIC_SEQ_CST)
#define atomic_store_ptr(ptr, val) __atomic_store_n((ptr), (val), __ATOMIC_SEQ_CST)
#define atomic_exchange_8(ptr, val) __atomic_exchange_n((ptr), (val), __ATOMIC_SEQ_CST)
#define atomic_exchange_16(ptr, val) __atomic_exchange_n((ptr), (val), __ATOMIC_SEQ_CST)
#define atomic_exchange_32(ptr, val) __atomic_exchange_n((ptr), (val), __ATOMIC_SEQ_CST)
#define atomic_exchange_64(ptr, val) __atomic_exchange_n((ptr), (val), __ATOMIC_SEQ_CST)
#define atomic_exchange_ptr(ptr, val) __atomic_exchange_n((ptr), (val), __ATOMIC_SEQ_CST)
// TODO: update prefix of below macros to 'atomic' as '__' is reserved by compiler
// and GCC suggest new code to use '__atomic' builtins to replace '__sync' builtins.
#define __sync_val_compare_and_swap_64 __sync_val_compare_and_swap
#define __sync_val_compare_and_swap_32 __sync_val_compare_and_swap
#define __sync_val_compare_and_swap_16 __sync_val_compare_and_swap
#define __sync_val_compare_and_swap_8 __sync_val_compare_and_swap
#define __sync_val_compare_and_swap_ptr __sync_val_compare_and_swap
#define __sync_add_and_fetch_64 __sync_add_and_fetch
#define __sync_add_and_fetch_32 __sync_add_and_fetch
#define __sync_add_and_fetch_16 __sync_add_and_fetch
#define __sync_add_and_fetch_8 __sync_add_and_fetch
#define __sync_add_and_fetch_ptr __sync_add_and_fetch
#define __sync_sub_and_fetch_64 __sync_sub_and_fetch
#define __sync_sub_and_fetch_32 __sync_sub_and_fetch
#define __sync_sub_and_fetch_16 __sync_sub_and_fetch
#define __sync_sub_and_fetch_8 __sync_sub_and_fetch
#define __sync_sub_and_fetch_ptr __sync_sub_and_fetch
int32_t __sync_val_load_32(int32_t *ptr);
void __sync_val_restore_32(int32_t *ptr, int32_t newval);
......
......@@ -29,6 +29,7 @@
#include <math.h>
#include <string.h>
#include <assert.h>
#include <intrin.h>
#ifdef __cplusplus
extern "C" {
......@@ -78,12 +79,75 @@ extern "C" {
#define taosWriteSocket(fd, buf, len) send(fd, buf, len, 0)
#define taosReadSocket(fd, buf, len) recv(fd, buf, len, 0)
int32_t __sync_val_compare_and_swap_32(int32_t *ptr, int32_t oldval, int32_t newval);
int32_t __sync_add_and_fetch_32(int32_t *ptr, int32_t val);
int32_t __sync_sub_and_fetch_32(int32_t *ptr, int32_t val);
int64_t __sync_val_compare_and_swap_64(int64_t *ptr, int64_t oldval, int64_t newval);
int64_t __sync_add_and_fetch_64(int64_t *ptr, int64_t val);
int64_t __sync_sub_and_fetch_64(int64_t *ptr, int64_t val);
#if defined(_M_ARM) || defined(_M_ARM64)
#define atomic_load_8(ptr) __iso_volatile_load8((const volatile __int8*)(ptr))
#define atomic_load_16(ptr) __iso_volatile_load16((const volatile __int16*)(ptr))
#define atomic_load_32(ptr) __iso_volatile_load32((const volatile __int32*)(ptr))
#define atomic_load_64(ptr) __iso_volatile_load64((const volatile __int64*)(ptr))
#define atomic_store_8(ptr, val) __iso_volatile_store8((volatile __int8*)(ptr), (__int8)(val))
#define atomic_store_16(ptr, val) __iso_volatile_store16((volatile __int16*)(ptr), (__int16)(val))
#define atomic_store_32(ptr, val) __iso_volatile_store32((volatile __int32*)(ptr), (__int32)(val))
#define atomic_store_64(ptr, val) __iso_volatile_store64((volatile __int64*)(ptr), (__int64)(val))
#ifdef _M_ARM64
#define atomic_load_ptr atomic_load_64
#define atomic_store_ptr atomic_store_64
#else
#define atomic_load_ptr atomic_load_32
#define atomic_store_ptr atomic_store_32
#endif
#else
#define atomic_load_8(ptr) (*(char volatile*)(ptr))
#define atomic_load_16(ptr) (*(short volatile*)(ptr))
#define atomic_load_32(ptr) (*(long volatile*)(ptr))
#define atomic_load_64(ptr) (*(__int64 volatile*)(ptr))
#define atomic_load_ptr(ptr) (*(void* volatile*)(ptr))
#define atomic_store_8(ptr, val) ((*(char volatile*)(ptr)) = (char)(val))
#define atomic_store_16(ptr, val) ((*(short volatile*)(ptr)) = (short)(val))
#define atomic_store_32(ptr, val) ((*(long volatile*)(ptr)) = (long)(val))
#define atomic_store_64(ptr, val) ((*(__int64 volatile*)(ptr)) = (__int64)(val))
#define atomic_store_ptr(ptr, val) ((*(void* volatile*)(ptr)) = (void*)(val))
#endif
#define atomic_exchange_8(ptr, val) _InterlockedExchange8((char volatile*)(ptr), (char)(val))
#define atomic_exchange_16(ptr, val) _InterlockedExchange16((short volatile*)(ptr), (short)(val))
#define atomic_exchange_32(ptr, val) _InterlockedExchange((long volatile*)(ptr), (long)(val))
#define atomic_exchange_64(ptr, val) _InterlockedExchange64((__int64 volatile*)(ptr), (__int64)(val))
#define atomic_exchange_ptr(ptr, val) _InterlockedExchangePointer((void* volatile*)(ptr), (void*)(val))
#define __sync_val_compare_and_swap_8(ptr, oldval, newval) _InterlockedCompareExchange8((char volatile*)(ptr), (char)(newval), (char)(oldval))
#define __sync_val_compare_and_swap_16(ptr, oldval, newval) _InterlockedCompareExchange16((short volatile*)(ptr), (short)(newval), (short)(oldval))
#define __sync_val_compare_and_swap_32(ptr, oldval, newval) _InterlockedCompareExchange((long volatile*)(ptr), (long)(newval), (long)(oldval))
#define __sync_val_compare_and_swap_64(ptr, oldval, newval) _InterlockedCompareExchange64((__int64 volatile*)(ptr), (__int64)(newval), (__int64)(oldval))
#define __sync_val_compare_and_swap_ptr(ptr, oldval, newval) _InterlockedCompareExchangePointer((void* volatile*)(ptr), (void*)(newval), (void*)(oldval))
char interlocked_add_8(char volatile *ptr, char val);
short interlocked_add_16(short volatile *ptr, short val);
long interlocked_add_32(long volatile *ptr, long val);
__int64 interlocked_add_64(__int64 volatile *ptr, __int64 val);
#define __sync_add_and_fetch_8(ptr, val) interlocked_add_8((char volatile*)(ptr), (char)(val))
#define __sync_add_and_fetch_16(ptr, val) interlocked_add_16((short volatile*)(ptr), (short)(val))
#define __sync_add_and_fetch_32(ptr, val) interlocked_add_32((long volatile*)(ptr), (long)(val))
#define __sync_add_and_fetch_64(ptr, val) interlocked_add_64((__int64 volatile*)(ptr), (__int64)(val))
#ifdef _WIN64
#define __sync_add_and_fetch_ptr __sync_add_and_fetch_64
#else
#define __sync_add_and_fetch_ptr __sync_add_and_fetch_32
#endif
#define __sync_sub_and_fetch_8(ptr, val) __sync_add_and_fetch_8((ptr), -(val))
#define __sync_sub_and_fetch_16(ptr, val) __sync_add_and_fetch_16((ptr), -(val))
#define __sync_sub_and_fetch_32(ptr, val) __sync_add_and_fetch_32((ptr), -(val))
#define __sync_sub_and_fetch_64(ptr, val) __sync_add_and_fetch_64((ptr), -(val))
#define __sync_sub_and_fetch_ptr(ptr, val) __sync_add_and_fetch_ptr((ptr), -(val))
int32_t __sync_val_load_32(int32_t *ptr);
void __sync_val_restore_32(int32_t *ptr, int32_t newval);
......
......@@ -43,8 +43,11 @@ void taosResetPthread(pthread_t *thread) {
}
int64_t taosGetPthreadId() {
pthread_t id = pthread_self();
return (int64_t)id.p;
#ifdef PTW32_VERSION
return pthread_getw32threadid_np(pthread_self());
#else
return (int64_t)pthread_self();
#endif
}
int taosSetSockOpt(int socketfd, int level, int optname, void *optval, int optlen) {
......@@ -63,28 +66,21 @@ int taosSetSockOpt(int socketfd, int level, int optname, void *optval, int optle
return setsockopt(socketfd, level, optname, optval, optlen);
}
int32_t __sync_val_compare_and_swap_32(int32_t *ptr, int32_t oldval, int32_t newval) {
return InterlockedCompareExchange(ptr, newval, oldval);
}
int32_t __sync_add_and_fetch_32(int32_t *ptr, int32_t val) {
return InterlockedAdd(ptr, val);
}
int32_t __sync_sub_and_fetch_32(int32_t *ptr, int32_t val) {
return InterlockedAdd(ptr, -val);
char interlocked_add_8(char volatile* ptr, char val) {
return _InterlockedExchangeAdd8(ptr, val) + val;
}
int64_t __sync_val_compare_and_swap_64(int64_t *ptr, int64_t oldval, int64_t newval) {
return InterlockedCompareExchange64(ptr, newval, oldval);
short interlocked_add_16(short volatile* ptr, short val) {
return _InterlockedExchangeAdd16(ptr, val) + val;
}
int64_t __sync_add_and_fetch_64(int64_t *ptr, int64_t val) {
return InterlockedAdd64(ptr, val);
long interlocked_add_32(long volatile* ptr, long val) {
return _InterlockedExchangeAdd(ptr, val) + val;
}
int64_t __sync_sub_and_fetch_64(int64_t *ptr, int64_t val) {
return InterlockedAdd64(ptr, -val);
__int64 interlocked_add_64(__int64 volatile* ptr, __int64 val) {
return _InterlockedExchangeAdd64(ptr, val) + val;
}
int32_t __sync_val_load_32(int32_t *ptr) {
......
......@@ -16,555 +16,539 @@
#include <assert.h>
#include <errno.h>
#include <pthread.h>
#include <semaphore.h>
#include <signal.h>
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "os.h"
#include "tidpool.h"
#include "tlog.h"
#include "tsched.h"
#include "ttime.h"
#include "ttimer.h"
#include "tutil.h"
// special mempool without mutex
#define mpool_h void *
typedef struct {
int numOfFree; /* number of free slots */
int first; /* the first free slot */
int numOfBlock; /* the number of blocks */
int blockSize; /* block size in bytes */
int * freeList; /* the index list */
char *pool; /* the actual mem block */
} pool_t;
mpool_h tmrMemPoolInit(int maxNum, int blockSize);
char *tmrMemPoolMalloc(mpool_h handle);
void tmrMemPoolFree(mpool_h handle, char *p);
void tmrMemPoolCleanUp(mpool_h handle);
typedef struct _tmr_obj {
void *param1;
void (*fp)(void *, void *);
tmr_h timerId;
short cycle;
struct _tmr_obj * prev;
struct _tmr_obj * next;
int index;
struct _tmr_ctrl_t *pCtrl;
} tmr_obj_t;
typedef struct {
tmr_obj_t *head;
int count;
} tmr_list_t;
typedef struct _tmr_ctrl_t {
void * signature;
pthread_mutex_t mutex; /* mutex to protect critical resource */
int resolution; /* resolution in mseconds */
int numOfPeriods; /* total number of periods */
int64_t periodsFromStart; /* count number of periods since start */
pthread_t thread; /* timer thread ID */
tmr_list_t * tmrList;
mpool_h poolHandle;
char label[12];
int maxNumOfTmrs;
int numOfTmrs;
int ticks;
int maxTicks;
int tmrCtrlId;
#define TIMER_STATE_WAITING 0
#define TIMER_STATE_EXPIRED 1
#define TIMER_STATE_STOPPED 2
#define TIMER_STATE_CANCELED 3
typedef union _tmr_ctrl_t {
char label[16];
struct {
// pad to ensure 'next' is the end of this union
char padding[16 - sizeof(union _tmr_ctrl_t*)];
union _tmr_ctrl_t* next;
};
} tmr_ctrl_t;
typedef struct tmr_obj_t {
uintptr_t id;
tmr_ctrl_t* ctrl;
struct tmr_obj_t* mnext;
struct tmr_obj_t* prev;
struct tmr_obj_t* next;
uint16_t slot;
uint8_t wheel;
uint8_t state;
uint8_t refCount;
uint8_t reserved1;
uint16_t reserved2;
union {
int64_t expireAt;
int64_t executedBy;
};
TAOS_TMR_CALLBACK fp;
void* param;
} tmr_obj_t;
typedef struct timer_list_t {
int64_t lockedBy;
tmr_obj_t* timers;
} timer_list_t;
typedef struct timer_map_t {
uint32_t size;
uint32_t count;
timer_list_t* slots;
} timer_map_t;
typedef struct time_wheel_t {
pthread_mutex_t mutex;
int64_t nextScanAt;
uint32_t resolution;
uint16_t size;
uint16_t index;
tmr_obj_t** slots;
} time_wheel_t;
uint32_t tmrDebugFlag = DEBUG_ERROR | DEBUG_WARN | DEBUG_FILE;
void taosTmrProcessList(tmr_ctrl_t *);
tmr_ctrl_t tmrCtrl[MAX_NUM_OF_TMRCTL];
int numOfTmrCtrl = 0;
void * tmrIdPool = NULL;
void * tmrQhandle;
static pthread_once_t tmrModuleInit = PTHREAD_ONCE_INIT;
static pthread_mutex_t tmrCtrlMutex;
static tmr_ctrl_t tmrCtrls[MAX_NUM_OF_TMRCTL];
static tmr_ctrl_t* unusedTmrCtrl = NULL;
void* tmrQhandle;
int taosTmrThreads = 1;
void taosTimerLoopFunc(int signo) {
tmr_ctrl_t *pCtrl;
int count = 0;
static uintptr_t nextTimerId = 0;
static time_wheel_t wheels[] = {
{.resolution = MSECONDS_PER_TICK, .size = 4096},
{.resolution = 1000, .size = 1024},
{.resolution = 60000, .size = 1024},
};
static timer_map_t timerMap;
static uintptr_t getNextTimerId() {
uintptr_t id;
do {
id = __sync_add_and_fetch_ptr(&nextTimerId, 1);
} while (id == 0);
return id;
}
static void timerAddRef(tmr_obj_t* timer) { __sync_add_and_fetch_8(&timer->refCount, 1); }
for (int i = 1; i < MAX_NUM_OF_TMRCTL; ++i) {
pCtrl = tmrCtrl + i;
if (pCtrl->signature) {
count++;
pCtrl->ticks++;
if (pCtrl->ticks >= pCtrl->maxTicks) {
taosTmrProcessList(pCtrl);
pCtrl->ticks = 0;
static void timerDecRef(tmr_obj_t* timer) {
if (__sync_sub_and_fetch_8(&timer->refCount, 1) == 0) {
free(timer);
}
if (count >= numOfTmrCtrl) break;
}
static void lockTimerList(timer_list_t* list) {
int64_t tid = taosGetPthreadId();
int i = 0;
while (__sync_val_compare_and_swap_64(&(list->lockedBy), 0, tid) != 0) {
if (++i % 1000 == 0) {
sched_yield();
}
}
}
void taosTmrModuleInit(void) {
tmrIdPool = taosInitIdPool(MAX_NUM_OF_TMRCTL);
memset(tmrCtrl, 0, sizeof(tmrCtrl));
static void unlockTimerList(timer_list_t* list) {
int64_t tid = taosGetPthreadId();
if (__sync_val_compare_and_swap_64(&(list->lockedBy), tid, 0) != tid) {
assert(false);
tmrError("trying to unlock a timer list not locked by current thread.");
}
}
static void addTimer(tmr_obj_t* timer) {
timerAddRef(timer);
timer->wheel = tListLen(wheels);
taosInitTimer(taosTimerLoopFunc, MSECONDS_PER_TICK);
uint32_t idx = (uint32_t)(timer->id % timerMap.size);
timer_list_t* list = timerMap.slots + idx;
tmrQhandle = taosInitScheduler(10000, taosTmrThreads, "tmr");
tmrTrace("timer module is initialized, thread:%d", taosTmrThreads);
lockTimerList(list);
timer->mnext = list->timers;
list->timers = timer;
unlockTimerList(list);
}
void *taosTmrInit(int maxNumOfTmrs, int resolution, int longest, char *label) {
static pthread_once_t tmrInit = PTHREAD_ONCE_INIT;
tmr_ctrl_t * pCtrl;
pthread_once(&tmrInit, taosTmrModuleInit);
static tmr_obj_t* findTimer(uintptr_t id) {
tmr_obj_t* timer = NULL;
if (id > 0) {
uint32_t idx = (uint32_t)(id % timerMap.size);
timer_list_t* list = timerMap.slots + idx;
lockTimerList(list);
for (timer = list->timers; timer != NULL; timer = timer->mnext) {
if (timer->id == id) {
timerAddRef(timer);
break;
}
}
unlockTimerList(list);
}
return timer;
}
int tmrCtrlId = taosAllocateId(tmrIdPool);
static void removeTimer(uintptr_t id) {
tmr_obj_t* prev = NULL;
uint32_t idx = (uint32_t)(id % timerMap.size);
timer_list_t* list = timerMap.slots + idx;
lockTimerList(list);
for (tmr_obj_t* p = list->timers; p != NULL; p = p->mnext) {
if (p->id == id) {
if (prev == NULL) {
list->timers = p->mnext;
} else {
prev->mnext = p->mnext;
}
timerDecRef(p);
break;
}
prev = p;
}
unlockTimerList(list);
}
if (tmrCtrlId < 0) {
tmrError("%s bug!!! too many timers!!!", label);
return NULL;
static void addToWheel(tmr_obj_t* timer, uint32_t delay) {
timerAddRef(timer);
// select a wheel for the timer, we are not an accurate timer,
// but the inaccuracy should not be too large.
timer->wheel = tListLen(wheels) - 1;
for (uint8_t i = 0; i < tListLen(wheels); i++) {
time_wheel_t* wheel = wheels + i;
if (delay < wheel->resolution * wheel->size) {
timer->wheel = i;
break;
}
}
pCtrl = tmrCtrl + tmrCtrlId;
tfree(pCtrl->tmrList);
tmrMemPoolCleanUp(pCtrl->poolHandle);
time_wheel_t* wheel = wheels + timer->wheel;
timer->prev = NULL;
timer->expireAt = taosGetTimestampMs() + delay;
memset(pCtrl, 0, sizeof(tmr_ctrl_t));
pthread_mutex_lock(&wheel->mutex);
pCtrl->tmrCtrlId = tmrCtrlId;
strcpy(pCtrl->label, label);
pCtrl->maxNumOfTmrs = maxNumOfTmrs;
uint32_t idx = 0;
if (timer->expireAt > wheel->nextScanAt) {
// adjust delay according to next scan time of this wheel
// so that the timer is not fired earlier than desired.
delay = (uint32_t)(timer->expireAt - wheel->nextScanAt);
idx = (delay + wheel->resolution - 1) / wheel->resolution;
}
if ((pCtrl->poolHandle = tmrMemPoolInit(maxNumOfTmrs + 10, sizeof(tmr_obj_t))) == NULL) {
tmrError("%s failed to allocate mem pool", label);
tmrMemPoolCleanUp(pCtrl->poolHandle);
return NULL;
timer->slot = (uint16_t)((wheel->index + idx + 1) % wheel->size);
tmr_obj_t* p = wheel->slots[timer->slot];
wheel->slots[timer->slot] = timer;
timer->next = p;
if (p != NULL) {
p->prev = timer;
}
if (resolution < MSECONDS_PER_TICK) resolution = MSECONDS_PER_TICK;
pCtrl->resolution = resolution;
pCtrl->maxTicks = resolution / MSECONDS_PER_TICK;
pCtrl->ticks = rand() / pCtrl->maxTicks;
pCtrl->numOfPeriods = longest / resolution;
if (pCtrl->numOfPeriods < 10) pCtrl->numOfPeriods = 10;
pthread_mutex_unlock(&wheel->mutex);
}
pCtrl->tmrList = (tmr_list_t *)malloc(sizeof(tmr_list_t) * pCtrl->numOfPeriods);
if (pCtrl->tmrList == NULL) {
tmrError("%s failed to allocate(size:%d) mem for tmrList", label, sizeof(tmr_list_t) * pCtrl->numOfPeriods);
tmrMemPoolCleanUp(pCtrl->poolHandle);
taosTmrCleanUp(pCtrl);
return NULL;
static bool removeFromWheel(tmr_obj_t* timer) {
if (timer->wheel >= tListLen(wheels)) {
return false;
}
time_wheel_t* wheel = wheels + timer->wheel;
for (int i = 0; i < pCtrl->numOfPeriods; i++) {
pCtrl->tmrList[i].head = NULL;
pCtrl->tmrList[i].count = 0;
bool removed = false;
pthread_mutex_lock(&wheel->mutex);
// other thread may modify timer->wheel, check again.
if (timer->wheel < tListLen(wheels)) {
if (timer->prev != NULL) {
timer->prev->next = timer->next;
}
if (pthread_mutex_init(&pCtrl->mutex, NULL) < 0) {
tmrError("%s failed to create the mutex, reason:%s", label, strerror(errno));
taosTmrCleanUp(pCtrl);
return NULL;
if (timer->next != NULL) {
timer->next->prev = timer->prev;
}
if (timer == wheel->slots[timer->slot]) {
wheel->slots[timer->slot] = timer->next;
}
timer->wheel = tListLen(wheels);
timer->next = NULL;
timer->prev = NULL;
timerDecRef(timer);
removed = true;
}
pthread_mutex_unlock(&wheel->mutex);
pCtrl->signature = pCtrl;
numOfTmrCtrl++;
tmrTrace("%s timer ctrl is initialized, index:%d", label, tmrCtrlId);
return pCtrl;
return removed;
}
void taosTmrProcessList(tmr_ctrl_t *pCtrl) {
unsigned int index;
tmr_list_t * pList;
tmr_obj_t * pObj, *header;
static void processExpiredTimer(void* handle, void* arg) {
tmr_obj_t* timer = (tmr_obj_t*)handle;
timer->executedBy = taosGetPthreadId();
uint8_t state = __sync_val_compare_and_swap_8(&timer->state, TIMER_STATE_WAITING, TIMER_STATE_EXPIRED);
if (state == TIMER_STATE_WAITING) {
const char* fmt = "timer[label=%s, id=%lld, fp=%p, param=%p] execution start.";
tmrTrace(fmt, timer->ctrl->label, timer->id, timer->fp, timer->param);
pthread_mutex_lock(&pCtrl->mutex);
index = pCtrl->periodsFromStart % pCtrl->numOfPeriods;
pList = &pCtrl->tmrList[index];
(*timer->fp)(timer->param, (tmr_h)timer->id);
atomic_store_8(&timer->state, TIMER_STATE_STOPPED);
while (1) {
header = pList->head;
if (header == NULL) break;
if (header->cycle > 0) {
pObj = header;
while (pObj) {
pObj->cycle--;
pObj = pObj->next;
}
break;
fmt = "timer[label=%s, id=%lld, fp=%p, param=%p] execution end.";
tmrTrace(fmt, timer->ctrl->label, timer->id, timer->fp, timer->param);
}
removeTimer(timer->id);
timerDecRef(timer);
}
pCtrl->numOfTmrs--;
tmrTrace("%s %p, timer expired, fp:%p, tmr_h:%p, index:%d, total:%d", pCtrl->label, header->param1, header->fp,
header, index, pCtrl->numOfTmrs);
static void addToExpired(tmr_obj_t* head) {
const char* fmt = "timer[label=%s, id=%lld, fp=%p, param=%p] expired";
pList->head = header->next;
if (header->next) header->next->prev = NULL;
pList->count--;
header->timerId = NULL;
while (head != NULL) {
tmrTrace(fmt, head->ctrl->label, head->id, head->fp, head->param);
tmr_obj_t* next = head->next;
SSchedMsg schedMsg;
schedMsg.fp = NULL;
schedMsg.tfp = header->fp;
schedMsg.ahandle = header->param1;
schedMsg.thandle = header;
schedMsg.tfp = processExpiredTimer;
schedMsg.ahandle = head;
schedMsg.thandle = NULL;
taosScheduleTask(tmrQhandle, &schedMsg);
tmrMemPoolFree(pCtrl->poolHandle, (char *)header);
head = next;
}
pCtrl->periodsFromStart++;
pthread_mutex_unlock(&pCtrl->mutex);
}
void taosTmrCleanUp(void *handle) {
tmr_ctrl_t *pCtrl = (tmr_ctrl_t *)handle;
if (pCtrl == NULL || pCtrl->signature != pCtrl) return;
static uintptr_t doStartTimer(tmr_obj_t* timer, TAOS_TMR_CALLBACK fp, int mseconds, void* param, tmr_ctrl_t* ctrl) {
uintptr_t id = getNextTimerId();
timer->id = id;
timer->state = TIMER_STATE_WAITING;
timer->fp = fp;
timer->param = param;
timer->ctrl = ctrl;
addTimer(timer);
const char* fmt = "timer[label=%s, id=%lld, fp=%p, param=%p] started";
tmrTrace(fmt, ctrl->label, timer->id, timer->fp, timer->param);
if (mseconds == 0) {
timer->wheel = tListLen(wheels);
timerAddRef(timer);
addToExpired(timer);
} else {
addToWheel(timer, mseconds);
}
pCtrl->signature = NULL;
taosFreeId(tmrIdPool, pCtrl->tmrCtrlId);
numOfTmrCtrl--;
tmrTrace("%s is cleaned up, numOfTmrs:%d", pCtrl->label, numOfTmrCtrl);
// note: use `timer->id` here is unsafe as `timer` may already be freed
return id;
}
tmr_h taosTmrStart(void (*fp)(void *, void *), int mseconds, void *param1, void *handle) {
tmr_obj_t * pObj, *cNode, *pNode;
tmr_list_t *pList;
int index, period;
tmr_ctrl_t *pCtrl = (tmr_ctrl_t *)handle;
if (handle == NULL) return NULL;
period = mseconds / pCtrl->resolution;
if (pthread_mutex_lock(&pCtrl->mutex) != 0)
tmrError("%s mutex lock failed, reason:%s", pCtrl->label, strerror(errno));
pObj = (tmr_obj_t *)tmrMemPoolMalloc(pCtrl->poolHandle);
if (pObj == NULL) {
tmrError("%s reach max number of timers:%d", pCtrl->label, pCtrl->maxNumOfTmrs);
pthread_mutex_unlock(&pCtrl->mutex);
tmr_h taosTmrStart(TAOS_TMR_CALLBACK fp, int mseconds, void* param, void* handle) {
tmr_ctrl_t* ctrl = (tmr_ctrl_t*)handle;
if (ctrl == NULL || ctrl->label[0] == 0) {
return NULL;
}
pObj->cycle = period / pCtrl->numOfPeriods;
pObj->param1 = param1;
pObj->fp = fp;
pObj->timerId = pObj;
pObj->pCtrl = pCtrl;
index = (period + pCtrl->periodsFromStart) % pCtrl->numOfPeriods;
int cindex = (pCtrl->periodsFromStart) % pCtrl->numOfPeriods;
pList = &(pCtrl->tmrList[index]);
pObj->index = index;
cNode = pList->head;
pNode = NULL;
while (cNode != NULL) {
if (cNode->cycle < pObj->cycle) {
pNode = cNode;
cNode = cNode->next;
} else {
break;
}
tmr_obj_t* timer = (tmr_obj_t*)calloc(1, sizeof(tmr_obj_t));
if (timer == NULL) {
tmrError("failed to allocated memory for new timer object.");
return NULL;
}
pObj->next = cNode;
pObj->prev = pNode;
return (tmr_h)doStartTimer(timer, fp, mseconds, param, ctrl);
}
if (cNode != NULL) {
cNode->prev = pObj;
static void taosTimerLoopFunc(int signo) {
int64_t now = taosGetTimestampMs();
for (int i = 0; i < tListLen(wheels); i++) {
// `expried` is a temporary expire list.
// expired timers are first add to this list, then move
// to expired queue as a batch to improve performance.
// note this list is used as a stack in this function.
tmr_obj_t* expired = NULL;
time_wheel_t* wheel = wheels + i;
while (now >= wheel->nextScanAt) {
pthread_mutex_lock(&wheel->mutex);
wheel->index = (wheel->index + 1) % wheel->size;
tmr_obj_t* timer = wheel->slots[wheel->index];
while (timer != NULL) {
tmr_obj_t* next = timer->next;
if (now < timer->expireAt) {
timer = next;
continue;
}
// remove from the wheel
if (timer->prev == NULL) {
wheel->slots[wheel->index] = next;
if (next != NULL) {
next->prev = NULL;
}
if (pNode != NULL) {
pNode->next = pObj;
} else {
pList->head = pObj;
timer->prev->next = next;
if (next != NULL) {
next->prev = timer->prev;
}
pList->count++;
pCtrl->numOfTmrs++;
if (pthread_mutex_unlock(&pCtrl->mutex) != 0)
tmrError("%s mutex unlock failed, reason:%s", pCtrl->label, strerror(errno));
tmrTrace("%s %p, timer started, fp:%p, tmr_h:%p, index:%d, total:%d cindex:%d", pCtrl->label, param1, fp, pObj, index,
pCtrl->numOfTmrs, cindex);
return (tmr_h)pObj;
}
void taosTmrStop(tmr_h timerId) {
tmr_obj_t * pObj;
tmr_list_t *pList;
tmr_ctrl_t *pCtrl;
pObj = (tmr_obj_t *)timerId;
if (pObj == NULL) return;
pCtrl = pObj->pCtrl;
if (pCtrl == NULL) return;
if (pthread_mutex_lock(&pCtrl->mutex) != 0)
tmrError("%s mutex lock failed, reason:%s", pCtrl->label, strerror(errno));
if (pObj->timerId == timerId) {
pList = &(pCtrl->tmrList[pObj->index]);
if (pObj->prev) {
pObj->prev->next = pObj->next;
} else {
pList->head = pObj->next;
}
timer->wheel = tListLen(wheels);
if (pObj->next) {
pObj->next->prev = pObj->prev;
// add to temporary expire list
timer->next = expired;
timer->prev = NULL;
if (expired != NULL) {
expired->prev = timer;
}
expired = timer;
pList->count--;
pObj->timerId = NULL;
pCtrl->numOfTmrs--;
tmrTrace("%s %p, timer stopped, fp:%p, tmr_h:%p, total:%d", pCtrl->label, pObj->param1, pObj->fp, pObj,
pCtrl->numOfTmrs);
tmrMemPoolFree(pCtrl->poolHandle, (char *)(pObj));
timer = next;
}
pthread_mutex_unlock(&wheel->mutex);
wheel->nextScanAt += wheel->resolution;
}
pthread_mutex_unlock(&pCtrl->mutex);
addToExpired(expired);
}
}
void taosTmrStopA(tmr_h *timerId) {
tmr_obj_t * pObj;
tmr_list_t *pList;
tmr_ctrl_t *pCtrl;
pObj = *(tmr_obj_t **)timerId;
if (pObj == NULL) return;
pCtrl = pObj->pCtrl;
if (pCtrl == NULL) return;
static bool doStopTimer(tmr_obj_t* timer, uint8_t state) {
bool reusable = false;
if (state == TIMER_STATE_WAITING) {
if (removeFromWheel(timer)) {
removeTimer(timer->id);
// only safe to reuse the timer when timer is removed from the wheel.
// we cannot guarantee the thread safety of the timr in all other cases.
reusable = true;
}
const char* fmt = "timer[label=%s, id=%lld, fp=%p, param=%p] is cancelled.";
tmrTrace(fmt, timer->ctrl->label, timer->id, timer->fp, timer->param);
} else if (state != TIMER_STATE_EXPIRED) {
// timer already stopped or cancelled, has nothing to do in this case
} else if (timer->executedBy == taosGetPthreadId()) {
// taosTmrReset is called in the timer callback, should do nothing in this
// case to avoid dead lock. note taosTmrReset must be the last statement
// of the callback funtion, will be a bug otherwise.
} else {
assert(timer->executedBy != taosGetPthreadId());
if (pthread_mutex_lock(&pCtrl->mutex) != 0)
tmrError("%s mutex lock failed, reason:%s", pCtrl->label, strerror(errno));
const char* fmt = "timer[label=%s, id=%lld, fp=%p, param=%p] fired, waiting...";
tmrTrace(fmt, timer->ctrl->label, timer->id, timer->fp, timer->param);
if (pObj->timerId == pObj) {
pList = &(pCtrl->tmrList[pObj->index]);
if (pObj->prev) {
pObj->prev->next = pObj->next;
} else {
pList->head = pObj->next;
for (int i = 1; atomic_load_8(&timer->state) != TIMER_STATE_STOPPED; i++) {
if (i % 1000 == 0) {
sched_yield();
}
if (pObj->next) {
pObj->next->prev = pObj->prev;
}
pList->count--;
pObj->timerId = NULL;
pCtrl->numOfTmrs--;
tmrTrace("%s %p, timer stopped atomiclly, fp:%p, tmr_h:%p, total:%d", pCtrl->label, pObj->param1, pObj->fp, pObj,
pCtrl->numOfTmrs);
tmrMemPoolFree(pCtrl->poolHandle, (char *)(pObj));
*(tmr_obj_t **)timerId = NULL;
} else {
tmrTrace("%s %p, timer stopped atomiclly, fp:%p, tmr_h:%p, total:%d", pCtrl->label, pObj->param1, pObj->fp, pObj,
pCtrl->numOfTmrs);
fmt = "timer[label=%s, id=%lld, fp=%p, param=%p] stopped.";
tmrTrace(fmt, timer->ctrl->label, timer->id, timer->fp, timer->param);
}
pthread_mutex_unlock(&pCtrl->mutex);
return reusable;
}
void taosTmrReset(void (*fp)(void *, void *), int mseconds, void *param1, void *handle, tmr_h *pTmrId) {
tmr_obj_t * pObj, *cNode, *pNode;
tmr_list_t *pList;
int index, period;
tmr_ctrl_t *pCtrl = (tmr_ctrl_t *)handle;
bool taosTmrStop(tmr_h timerId) {
uintptr_t id = (uintptr_t)timerId;
if (handle == NULL) return;
if (pTmrId == NULL) return;
tmr_obj_t* timer = findTimer(id);
if (timer == NULL) {
tmrTrace("timer[id=%lld] does not exist", id);
return false;
}
period = mseconds / pCtrl->resolution;
if (pthread_mutex_lock(&pCtrl->mutex) != 0)
tmrError("%s mutex lock failed, reason:%s", pCtrl->label, strerror(errno));
uint8_t state = __sync_val_compare_and_swap_8(&timer->state, TIMER_STATE_WAITING, TIMER_STATE_CANCELED);
doStopTimer(timer, state);
timerDecRef(timer);
pObj = (tmr_obj_t *)(*pTmrId);
return state == TIMER_STATE_WAITING;
}
if (pObj && pObj->timerId == *pTmrId) {
// exist, stop it first
pList = &(pCtrl->tmrList[pObj->index]);
if (pObj->prev) {
pObj->prev->next = pObj->next;
} else {
pList->head = pObj->next;
}
bool taosTmrStopA(tmr_h* timerId) {
bool ret = taosTmrStop(*timerId);
*timerId = NULL;
return ret;
}
if (pObj->next) {
pObj->next->prev = pObj->prev;
bool taosTmrReset(TAOS_TMR_CALLBACK fp, int mseconds, void* param, void* handle, tmr_h* pTmrId) {
tmr_ctrl_t* ctrl = (tmr_ctrl_t*)handle;
if (ctrl == NULL || ctrl->label[0] == 0) {
return NULL;
}
pList->count--;
pObj->timerId = NULL;
pCtrl->numOfTmrs--;
uintptr_t id = (uintptr_t)*pTmrId;
bool stopped = false;
tmr_obj_t* timer = findTimer(id);
if (timer == NULL) {
tmrTrace("timer[id=%lld] does not exist", id);
} else {
// timer not there, or already expired
pObj = (tmr_obj_t *)tmrMemPoolMalloc(pCtrl->poolHandle);
*pTmrId = pObj;
if (pObj == NULL) {
tmrError("%s failed to allocate timer, max:%d allocated:%d", pCtrl->label, pCtrl->maxNumOfTmrs, pCtrl->numOfTmrs);
pthread_mutex_unlock(&pCtrl->mutex);
return;
uint8_t state = __sync_val_compare_and_swap_8(&timer->state, TIMER_STATE_WAITING, TIMER_STATE_CANCELED);
if (!doStopTimer(timer, state)) {
timerDecRef(timer);
timer = NULL;
}
stopped = state == TIMER_STATE_WAITING;
}
pObj->cycle = period / pCtrl->numOfPeriods;
pObj->param1 = param1;
pObj->fp = fp;
pObj->timerId = pObj;
pObj->pCtrl = pCtrl;
index = (period + pCtrl->periodsFromStart) % pCtrl->numOfPeriods;
pList = &(pCtrl->tmrList[index]);
pObj->index = index;
cNode = pList->head;
pNode = NULL;
while (cNode != NULL) {
if (cNode->cycle < pObj->cycle) {
pNode = cNode;
cNode = cNode->next;
} else {
break;
}
if (timer == NULL) {
*pTmrId = taosTmrStart(fp, mseconds, param, handle);
return stopped;
}
pObj->next = cNode;
pObj->prev = pNode;
tmrTrace("timer[id=%lld] is reused", timer->id);
if (cNode != NULL) {
cNode->prev = pObj;
// wait until there's no other reference to this timer,
// so that we can reuse this timer safely.
for (int i = 1; atomic_load_8(&timer->refCount) > 1; ++i) {
if (i % 1000 == 0) {
sched_yield();
}
if (pNode != NULL) {
pNode->next = pObj;
} else {
pList->head = pObj;
}
pList->count++;
pCtrl->numOfTmrs++;
if (pthread_mutex_unlock(&pCtrl->mutex) != 0)
tmrError("%s mutex unlock failed, reason:%s", pCtrl->label, strerror(errno));
tmrTrace("%s %p, timer is reset, fp:%p, tmr_h:%p, index:%d, total:%d numOfFree:%d", pCtrl->label, param1, fp, pObj,
index, pCtrl->numOfTmrs, ((pool_t *)pCtrl->poolHandle)->numOfFree);
assert(timer->refCount == 1);
memset(timer, 0, sizeof(*timer));
*pTmrId = (tmr_h)doStartTimer(timer, fp, mseconds, param, ctrl);
return;
return stopped;
}
void taosTmrList(void *handle) {
int i;
tmr_list_t *pList;
tmr_obj_t * pObj;
tmr_ctrl_t *pCtrl = (tmr_ctrl_t *)handle;
for (i = 0; i < pCtrl->numOfPeriods; ++i) {
pList = &(pCtrl->tmrList[i]);
pObj = pList->head;
if (!pObj) continue;
printf("\nindex=%d count:%d\n", i, pList->count);
while (pObj) {
pObj = pObj->next;
static void taosTmrModuleInit(void) {
for (int i = 0; i < tListLen(tmrCtrls) - 1; ++i) {
tmr_ctrl_t* ctrl = tmrCtrls + i;
ctrl->next = ctrl + 1;
}
}
}
unusedTmrCtrl = tmrCtrls;
mpool_h tmrMemPoolInit(int numOfBlock, int blockSize) {
int i;
pool_t *pool_p;
pthread_mutex_init(&tmrCtrlMutex, NULL);
if (numOfBlock <= 1 || blockSize <= 1) {
tmrError("invalid parameter in memPoolInit\n");
return NULL;
int64_t now = taosGetTimestampMs();
for (int i = 0; i < tListLen(wheels); i++) {
time_wheel_t* wheel = wheels + i;
if (pthread_mutex_init(&wheel->mutex, NULL) != 0) {
tmrError("failed to create the mutex for wheel, reason:%s", strerror(errno));
return;
}
pool_p = (pool_t *)malloc(sizeof(pool_t));
if (pool_p == NULL) {
tmrError("mempool malloc failed\n");
return NULL;
} else {
memset(pool_p, 0, sizeof(pool_t));
wheel->nextScanAt = now + wheel->resolution;
wheel->index = 0;
wheel->slots = (tmr_obj_t**)calloc(wheel->size, sizeof(tmr_obj_t*));
if (wheel->slots == NULL) {
tmrError("failed to allocate wheel slots");
return;
}
pool_p->blockSize = blockSize;
pool_p->numOfBlock = numOfBlock;
pool_p->pool = (char *)malloc(blockSize * numOfBlock);
pool_p->freeList = (int *)malloc(sizeof(int) * numOfBlock);
if (pool_p->pool == NULL || pool_p->freeList == NULL) {
tmrError("failed to allocate memory\n");
tfree(pool_p->freeList);
tfree(pool_p->pool);
free(pool_p);
return NULL;
timerMap.size += wheel->size;
}
memset(pool_p->pool, 0, blockSize * numOfBlock);
for (i = 0; i < pool_p->numOfBlock; ++i) pool_p->freeList[i] = i;
timerMap.count = 0;
timerMap.slots = (timer_list_t*)calloc(timerMap.size, sizeof(timer_list_t));
if (timerMap.slots == NULL) {
tmrError("failed to allocate hash map");
return;
}
pool_p->first = 0;
pool_p->numOfFree = pool_p->numOfBlock;
tmrQhandle = taosInitScheduler(10000, taosTmrThreads, "tmr");
taosInitTimer(taosTimerLoopFunc, MSECONDS_PER_TICK);
return (mpool_h)pool_p;
tmrTrace("timer module is initialized, number of threads: %d", taosTmrThreads);
}
char *tmrMemPoolMalloc(mpool_h handle) {
char * pos = NULL;
pool_t *pool_p = (pool_t *)handle;
void* taosTmrInit(int maxNumOfTmrs, int resolution, int longest, const char* label) {
pthread_once(&tmrModuleInit, taosTmrModuleInit);
if (pool_p->numOfFree <= 0 || pool_p->numOfFree > pool_p->numOfBlock) {
tmrError("mempool: out of memory, numOfFree:%d, numOfBlock:%d", pool_p->numOfFree, pool_p->numOfBlock);
} else {
pos = pool_p->pool + pool_p->blockSize * (pool_p->freeList[pool_p->first]);
pool_p->first++;
pool_p->first = pool_p->first % pool_p->numOfBlock;
pool_p->numOfFree--;
pthread_mutex_lock(&tmrCtrlMutex);
tmr_ctrl_t* ctrl = unusedTmrCtrl;
if (ctrl != NULL) {
unusedTmrCtrl = ctrl->next;
}
pthread_mutex_unlock(&tmrCtrlMutex);
return pos;
}
void tmrMemPoolFree(mpool_h handle, char *pMem) {
int index;
pool_t *pool_p = (pool_t *)handle;
if (pMem == NULL) return;
index = (int)(pMem - pool_p->pool) / pool_p->blockSize;
if (index < 0 || index >= pool_p->numOfBlock) {
tmrError("tmr mempool: error, invalid address:%p\n", pMem);
} else {
memset(pMem, 0, pool_p->blockSize);
pool_p->freeList[(pool_p->first + pool_p->numOfFree) % pool_p->numOfBlock] = index;
pool_p->numOfFree++;
if (ctrl == NULL) {
tmrError("too many timer controllers, failed to create timer controller[label=%s].", label);
return NULL;
}
strncpy(ctrl->label, label, sizeof(ctrl->label));
ctrl->label[sizeof(ctrl->label) - 1] = 0;
tmrTrace("timer controller[label=%s] is initialized.", label);
return ctrl;
}
void tmrMemPoolCleanUp(mpool_h handle) {
pool_t *pool_p = (pool_t *)handle;
if (pool_p == NULL) return;
void taosTmrCleanUp(void* handle) {
tmr_ctrl_t* ctrl = (tmr_ctrl_t*)handle;
assert(ctrl != NULL && ctrl->label[0] != 0);
tmrTrace("timer controller[label=%s] is cleaned up.", ctrl->label);
ctrl->label[0] = 0;
if (pool_p->pool) free(pool_p->pool);
if (pool_p->freeList) free(pool_p->freeList);
memset(&pool_p, 0, sizeof(pool_p));
free(pool_p);
pthread_mutex_lock(&tmrCtrlMutex);
ctrl->next = unusedTmrCtrl;
unusedTmrCtrl = ctrl;
pthread_mutex_unlock(&tmrCtrlMutex);
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册