diff --git a/docs-cn/02-intro.md b/docs-cn/02-intro.md index 8daea48e3e8e1b083f5cb0c04af0bef8ddb83122..949c21472dd29d51f2703034bd38ab95037e09c6 100644 --- a/docs-cn/02-intro.md +++ b/docs-cn/02-intro.md @@ -62,7 +62,7 @@ TDengine的主要功能如下:
-![TDengine技术生态图](eco_system.png) +![TDengine技术生态图](eco_system.webp)
图 1. TDengine技术生态图
diff --git a/docs-cn/12-taos-sql/08-interval.md b/docs-cn/12-taos-sql/08-interval.md index 7e4ba8374c92390d0b2b45355a01f62d5d3aadbb..7c796e0046c5a740d393d71861828eb30bb3a5cc 100644 --- a/docs-cn/12-taos-sql/08-interval.md +++ b/docs-cn/12-taos-sql/08-interval.md @@ -11,7 +11,7 @@ TDengine 支持按时间段窗口切分方式进行聚合结果查询,比如 INTERVAL 子句用于产生相等时间周期的窗口,SLIDING 用以指定窗口向前滑动的时间。每次执行的查询是一个时间窗口,时间窗口随着时间流动向前滑动。在定义连续查询的时候需要指定时间窗口(time window )大小和每次前向增量时间(forward sliding times)。如图,[t0s, t0e] ,[t1s , t1e], [t2s, t2e] 是分别是执行三次连续查询的时间窗口范围,窗口的前向滑动的时间范围 sliding time 标识 。查询过滤、聚合等操作按照每个时间窗口为独立的单位执行。当 SLIDING 与 INTERVAL 相等的时候,滑动窗口即为翻转窗口。 -![时间窗口示意图](./timewindow-1.png) +![时间窗口示意图](./timewindow-1.webp) INTERVAL 和 SLIDING 子句需要配合聚合和选择函数来使用。以下 SQL 语句非法: @@ -33,7 +33,7 @@ _ 从 2.1.5.0 版本开始,INTERVAL 语句允许的最短时间间隔调整为 使用整数(布尔值)或字符串来标识产生记录时候设备的状态量。产生的记录如果具有相同的状态量数值则归属于同一个状态窗口,数值改变后该窗口关闭。如下图所示,根据状态量确定的状态窗口分别是[2019-04-28 14:22:07,2019-04-28 14:22:10]和[2019-04-28 14:22:11,2019-04-28 14:22:12]两个。(状态窗口暂不支持对超级表使用) -![时间窗口示意图](./timewindow-3.png) +![时间窗口示意图](./timewindow-3.webp) 使用 STATE_WINDOW 来确定状态窗口划分的列。例如: @@ -45,7 +45,7 @@ SELECT COUNT(*), FIRST(ts), status FROM temp_tb_1 STATE_WINDOW(status); 会话窗口根据记录的时间戳主键的值来确定是否属于同一个会话。如下图所示,如果设置时间戳的连续的间隔小于等于 12 秒,则以下 6 条记录构成 2 个会话窗口,分别是:[2019-04-28 14:22:10,2019-04-28 14:22:30]和[2019-04-28 14:23:10,2019-04-28 14:23:30]。因为 2019-04-28 14:22:30 与 2019-04-28 14:23:10 之间的时间间隔是 40 秒,超过了连续时间间隔(12 秒)。 -![时间窗口示意图](./timewindow-2.png) +![时间窗口示意图](./timewindow-2.webp) 在 tol_value 时间间隔范围内的结果都认为归属于同一个窗口,如果连续的两条记录的时间超过 tol_val,则自动开启下一个窗口。(会话窗口暂不支持对超级表使用) diff --git a/docs-cn/14-reference/03-connector/03-connector.mdx b/docs-cn/14-reference/03-connector/03-connector.mdx index 408337a6d7bd184d1e24ea45f82ac7bc0c5542ce..aac358bea0682a9bd0807f10dc0cb2d4ef1d7a7b 100644 --- a/docs-cn/14-reference/03-connector/03-connector.mdx +++ b/docs-cn/14-reference/03-connector/03-connector.mdx @@ -4,7 +4,7 @@ title: 连接器 TDengine 提供了丰富的应用程序开发接口,为了便于用户快速开发自己的应用,TDengine 支持了多种编程语言的连接器,其中官方连接器包括支持 C/C++、Java、Python、Go、Node.js、C# 和 Rust 的连接器。这些连接器支持使用原生接口(taosc)和 REST 接口(部分语言暂不支持)连接 TDengine 集群。社区开发者也贡献了多个非官方连接器,例如 ADO.NET 连接器、Lua 连接器和 PHP 连接器。 -![image-connector](./connector.png) +![image-connector](./connector.webp) ## 支持的平台 diff --git a/docs-cn/14-reference/03-connector/java.mdx b/docs-cn/14-reference/03-connector/java.mdx index 55abf84fd50fe1c4b5b6a07b28731a00d4534a05..813e82e82cd322c5c397e9efc068d01e3f4cf14a 100644 --- a/docs-cn/14-reference/03-connector/java.mdx +++ b/docs-cn/14-reference/03-connector/java.mdx @@ -11,7 +11,7 @@ import TabItem from '@theme/TabItem'; `taos-jdbcdriver` 是 TDengine 的官方 Java 语言连接器,Java 开发人员可以通过它开发存取 TDengine 数据库的应用软件。`taos-jdbcdriver` 实现了 JDBC driver 标准的接口,并提供两种形式的连接器。一种是通过 TDengine 客户端驱动程序(taosc)原生连接 TDengine 实例,支持数据写入、查询、订阅、schemaless 接口和参数绑定接口等功能,一种是通过 taosAdapter 提供的 REST 接口连接 TDengine 实例(2.4.0.0 及更高版本)。REST 连接实现的功能集合和原生连接有少量不同。 -![tdengine-connector](tdengine-jdbc-connector.png) +![tdengine-connector](tdengine-jdbc-connector.webp) 上图显示了两种 Java 应用使用连接器访问 TDengine 的两种方式: diff --git a/docs-cn/14-reference/04-taosadapter.md b/docs-cn/14-reference/04-taosadapter.md index 90a31ec94c94559311e2c91cd34f75af7e87e9a0..5fc9a282815813a87c9c17b84e5ffafc2f4692e7 100644 --- a/docs-cn/14-reference/04-taosadapter.md +++ b/docs-cn/14-reference/04-taosadapter.md @@ -24,7 +24,7 @@ taosAdapter 提供以下功能: ## taosAdapter 架构图 -![taosAdapter Architecture](taosAdapter-architecture.png) +![taosAdapter Architecture](taosAdapter-architecture.webp) ## taosAdapter 部署方法 diff --git a/docs-cn/14-reference/07-tdinsight/index.md b/docs-cn/14-reference/07-tdinsight/index.md index a554d7ee6b36797940282fa8401df2f22c4cf579..d7511fde3b5b92b335d60026e56944b9e2b99398 100644 --- a/docs-cn/14-reference/07-tdinsight/index.md +++ b/docs-cn/14-reference/07-tdinsight/index.md @@ -233,33 +233,33 @@ sudo systemctl enable grafana-server 指向 **Configurations** -> **Data Sources** 菜单,然后点击 **Add data source** 按钮。 -![添加数据源按钮](./assets/howto-add-datasource-button.png) +![添加数据源按钮](./assets/howto-add-datasource-button.webp) 搜索并选择**TDengine**。 -![添加数据源](./assets/howto-add-datasource-tdengine.png) +![添加数据源](./assets/howto-add-datasource-tdengine.webp) 配置 TDengine 数据源。 -![数据源配置](./assets/howto-add-datasource.png) +![数据源配置](./assets/howto-add-datasource.webp) 保存并测试,正常情况下会报告 'TDengine Data source is working'。 -![数据源测试](./assets/howto-add-datasource-test.png) +![数据源测试](./assets/howto-add-datasource-test.webp) ### 导入仪表盘 指向 **+** / **Create** - **import**(或 `/dashboard/import` url)。 -![导入仪表盘和配置](./assets/import_dashboard.png) +![导入仪表盘和配置](./assets/import_dashboard.webp) 在 **Import via grafana.com** 位置键入仪表盘 ID `15167` 并 **Load**。 -![通过 grafana.com 导入](./assets/import-dashboard-15167.png) +![通过 grafana.com 导入](./assets/import-dashboard-15167.webp) 导入完成后,TDinsight 的完整页面视图如下所示。 -![显示](./assets/TDinsight-full.png) +![显示](./assets/TDinsight-full.webp) ## TDinsight 仪表盘详细信息 @@ -269,7 +269,7 @@ TDinsight 仪表盘旨在提供 TDengine 相关资源使用情况[dnodes, mnodes ### 集群状态 -![tdinsight-mnodes-overview](./assets/TDinsight-1-cluster-status.png) +![tdinsight-mnodes-overview](./assets/TDinsight-1-cluster-status.webp) 这部分包括集群当前信息和状态,告警信息也在此处(从左到右,从上到下)。 @@ -289,7 +289,7 @@ TDinsight 仪表盘旨在提供 TDengine 相关资源使用情况[dnodes, mnodes ### DNodes 状态 -![tdinsight-mnodes-overview](./assets/TDinsight-2-dnodes.png) +![tdinsight-mnodes-overview](./assets/TDinsight-2-dnodes.webp) - **DNodes Status**:`show dnodes` 的简单表格视图。 - **DNodes Lifetime**:从创建 dnode 开始经过的时间。 @@ -298,14 +298,14 @@ TDinsight 仪表盘旨在提供 TDengine 相关资源使用情况[dnodes, mnodes ### MNode 概述 -![tdinsight-mnodes-overview](./assets/TDinsight-3-mnodes.png) +![tdinsight-mnodes-overview](./assets/TDinsight-3-mnodes.webp) 1. **MNodes Status**:`show mnodes` 的简单表格视图。 2. **MNodes Number**:类似于`DNodes Number`,MNodes 数量变化。 ### 请求 -![tdinsight-requests](./assets/TDinsight-4-requests.png) +![tdinsight-requests](./assets/TDinsight-4-requests.webp) 1. **Requests Rate(Inserts per Second)**:平均每秒插入次数。 2. **Requests (Selects)**:查询请求数及变化率(count of second)。 @@ -313,7 +313,7 @@ TDinsight 仪表盘旨在提供 TDengine 相关资源使用情况[dnodes, mnodes ### 数据库 -![tdinsight-database](./assets/TDinsight-5-database.png) +![tdinsight-database](./assets/TDinsight-5-database.webp) 数据库使用情况,对变量 `$database` 的每个值即每个数据库进行重复多行展示。 @@ -325,7 +325,7 @@ TDinsight 仪表盘旨在提供 TDengine 相关资源使用情况[dnodes, mnodes ### DNode 资源使用情况 -![dnode-usage](./assets/TDinsight-6-dnode-usage.png) +![dnode-usage](./assets/TDinsight-6-dnode-usage.webp) 数据节点资源使用情况展示,对变量 `$fqdn` 即每个数据节点进行重复多行展示。包括: @@ -346,13 +346,13 @@ TDinsight 仪表盘旨在提供 TDengine 相关资源使用情况[dnodes, mnodes ### 登录历史 -![登录历史](./assets/TDinsight-7-login-history.png) +![登录历史](./assets/TDinsight-7-login-history.webp) 目前只报告每分钟登录次数。 ### 监控 taosAdapter -![taosadapter](./assets/TDinsight-8-taosadapter.png) +![taosadapter](./assets/TDinsight-8-taosadapter.webp) 支持监控 taosAdapter 请求统计和状态详情。包括: diff --git a/docs-cn/20-third-party/01-grafana.mdx b/docs-cn/20-third-party/01-grafana.mdx index 9a75939f7a51055fc90e1b7f243f1bb042fd79f7..f9f7a26aa1632a07406199d76b3ad4ef9f1ec3e0 100644 --- a/docs-cn/20-third-party/01-grafana.mdx +++ b/docs-cn/20-third-party/01-grafana.mdx @@ -64,15 +64,15 @@ GF_PLUGINS_ALLOW_LOADING_UNSIGNED_PLUGINS=tdengine-datasource 用户可以直接通过 http://localhost:3000 的网址,登录 Grafana 服务器(用户名/密码:admin/admin),通过左侧 `Configuration -> Data Sources` 可以添加数据源,如下图所示: -![img](./add_datasource1.jpg) +![img](./add_datasource1.webp) 点击 `Add data source` 可进入新增数据源页面,在查询框中输入 TDengine 可选择添加,如下图所示: -![img](./add_datasource2.jpg) +![img](./add_datasource2.webp) 进入数据源配置页面,按照默认提示修改相应配置即可: -![img](./add_datasource3.jpg) +![img](./add_datasource3.webp) - Host: TDengine 集群中提供 REST 服务 (在 2.4 之前由 taosd 提供, 从 2.4 开始由 taosAdapter 提供)的组件所在服务器的 IP 地址与 TDengine REST 服务的端口号(6041),默认 http://localhost:6041。 - User:TDengine 用户名。 @@ -80,13 +80,13 @@ GF_PLUGINS_ALLOW_LOADING_UNSIGNED_PLUGINS=tdengine-datasource 点击 `Save & Test` 进行测试,成功会有如下提示: -![img](./add_datasource4.jpg) +![img](./add_datasource4.webp) ### 创建 Dashboard 回到主界面创建 Dashboard,点击 Add Query 进入面板查询页面: -![img](./create_dashboard1.jpg) +![img](./create_dashboard1.webp) 如上图所示,在 Query 中选中 `TDengine` 数据源,在下方查询框可输入相应 SQL 进行查询,具体说明如下: @@ -96,7 +96,7 @@ GF_PLUGINS_ALLOW_LOADING_UNSIGNED_PLUGINS=tdengine-datasource 按照默认提示查询当前 TDengine 部署所在服务器指定间隔系统内存平均使用量如下: -![img](./create_dashboard2.jpg) +![img](./create_dashboard2.webp) > 关于如何使用 Grafana 创建相应的监测界面以及更多有关使用 Grafana 的信息,请参考 Grafana 官方的[文档](https://grafana.com/docs/)。 diff --git a/docs-cn/20-third-party/09-emq-broker.md b/docs-cn/20-third-party/09-emq-broker.md index f57ccb20e6517c51b55093d11fa767bef7d0c9a8..b9d099c145d89c4f8e8a3cfaa994bffa0085e280 100644 --- a/docs-cn/20-third-party/09-emq-broker.md +++ b/docs-cn/20-third-party/09-emq-broker.md @@ -45,25 +45,25 @@ MQTT 是流行的物联网数据传输协议,[EMQX](https://github.com/emqx/em 使用浏览器打开网址 http://IP:18083 并登录 EMQX Dashboard。初次安装用户名为 `admin` 密码为:`public` -![img](./emqx/login-dashboard.png) +![img](./emqx/login-dashboard.webp) ### 创建规则(Rule) 选择左侧“规则引擎(Rule Engine)”中的“规则(Rule)”并点击“创建(Create)”按钮: -![img](./emqx/rule-engine.png) +![img](./emqx/rule-engine.webp) ### 编辑 SQL 字段 -![img](./emqx/create-rule.png) +![img](./emqx/create-rule.webp) ### 新增“动作(action handler)” -![img](./emqx/add-action-handler.png) +![img](./emqx/add-action-handler.webp) ### 新增“资源(Resource)” -![img](./emqx/create-resource.png) +![img](./emqx/create-resource.webp) 选择“发送数据到 Web 服务“并点击“新建资源”按钮: @@ -71,13 +71,13 @@ MQTT 是流行的物联网数据传输协议,[EMQX](https://github.com/emqx/em 选择“发送数据到 Web 服务“并填写 请求 URL 为 运行 taosAdapter 的服务器地址和端口(默认为 6041)。其他属性请保持默认值。 -![img](./emqx/edit-resource.png) +![img](./emqx/edit-resource.webp) ### 编辑“动作(action)” 编辑资源配置,增加 Authorization 认证的键/值配对项,相关文档请参考[ TDengine REST API 文档](https://docs.taosdata.com/reference/rest-api/)。在消息体中输入规则引擎替换模板。 -![img](./emqx/edit-action.png) +![img](./emqx/edit-action.webp) ## 编写模拟测试程序 @@ -164,7 +164,7 @@ MQTT 是流行的物联网数据传输协议,[EMQX](https://github.com/emqx/em 注意:代码中 CLIENT_NUM 在开始测试中可以先设置一个较小的值,避免硬件性能不能完全处理较大并发客户端数量。 -![img](./emqx/client-num.png) +![img](./emqx/client-num.webp) ## 执行测试模拟发送 MQTT 数据 @@ -173,19 +173,19 @@ npm install mqtt mockjs --save --registry=https://registry.npm.taobao.org node mock.js ``` -![img](./emqx/run-mock.png) +![img](./emqx/run-mock.webp) ## 验证 EMQX 接收到数据 在 EMQX Dashboard 规则引擎界面进行刷新,可以看到有多少条记录被正确接收到: -![img](./emqx/check-rule-matched.png) +![img](./emqx/check-rule-matched.webp) ## 验证数据写入到 TDengine 使用 TDengine CLI 程序登录并查询相应数据库和表,验证数据是否被正确写入到 TDengine 中: -![img](./emqx/check-result-in-taos.png) +![img](./emqx/check-result-in-taos.webp) TDengine 详细使用方法请参考 [TDengine 官方文档](https://docs.taosdata.com/)。 EMQX 详细使用方法请参考 [EMQX 官方文档](https://www.emqx.io/docs/zh/v4.4/rule/rule-engine.html)。 diff --git a/docs-cn/20-third-party/11-kafka.md b/docs-cn/20-third-party/11-kafka.md index d12d5fab75671d8a1e7356e766d0e8979c6519c2..beb8f1bd6bb24aa2e2e3012c4f137bd00f3deb5c 100644 --- a/docs-cn/20-third-party/11-kafka.md +++ b/docs-cn/20-third-party/11-kafka.md @@ -9,11 +9,11 @@ TDengine Kafka Connector 包含两个插件: TDengine Source Connector 和 TDeng Kafka Connect 是 Apache Kafka 的一个组件,用于使其它系统,比如数据库、云服务、文件系统等能方便地连接到 Kafka。数据既可以通过 Kafka Connect 从其它系统流向 Kafka, 也可以通过 Kafka Connect 从 Kafka 流向其它系统。从其它系统读数据的插件称为 Source Connector, 写数据到其它系统的插件称为 Sink Connector。Source Connector 和 Sink Connector 都不会直接连接 Kafka Broker,Source Connector 把数据转交给 Kafka Connect。Sink Connector 从 Kafka Connect 接收数据。 -![](kafka/Kafka_Connect.png) +![](kafka/Kafka_Connect.webp) TDengine Source Connector 用于把数据实时地从 TDengine 读出来发送给 Kafka Connect。TDengine Sink Connector 用于 从 Kafka Connect 接收数据并写入 TDengine。 -![](kafka/streaming-integration-with-kafka-connect.png) +![](kafka/streaming-integration-with-kafka-connect.webp) ## 什么是 Confluent? @@ -26,7 +26,7 @@ Confluent 在 Kafka 的基础上增加很多扩展功能。包括: 5. 管理和监控 Kafka 的 GUI —— Confluent 控制中心 这些扩展功能有的包含在社区版本的 Confluent 中,有的只有企业版能用。 -![](kafka/confluentPlatform.png) +![](kafka/confluentPlatform.webp) Confluent 企业版提供了 `confluent` 命令行工具管理各个组件。 diff --git a/docs-cn/21-tdinternal/01-arch.md b/docs-cn/21-tdinternal/01-arch.md index 8577309744de14ae43aedee9e754214d8656ab86..456d4bea910fab46965600639cc3dd634daa15b9 100644 --- a/docs-cn/21-tdinternal/01-arch.md +++ b/docs-cn/21-tdinternal/01-arch.md @@ -11,7 +11,7 @@ TDengine 的设计是基于单个硬件、软件系统不可靠,基于任何 TDengine 分布式架构的逻辑结构图如下: -![TDengine架构示意图](./structure.png) +![TDengine架构示意图](./structure.webp)
图 1 TDengine架构示意图
@@ -63,7 +63,7 @@ TDengine 分布式架构的逻辑结构图如下: 为解释 vnode、mnode、taosc 和应用之间的关系以及各自扮演的角色,下面对写入数据这个典型操作的流程进行剖析。 -![TDengine典型的操作流程](./message.png) +![TDengine典型的操作流程](./message.webp)
图 2 TDengine 典型的操作流程
@@ -135,7 +135,7 @@ TDengine 除 vnode 分片之外,还对时序数据按照时间段进行分区 Master Vnode 遵循下面的写入流程: -![TDengine Master写入流程](./write_master.png) +![TDengine Master写入流程](./write_master.webp)
图 3 TDengine Master 写入流程
@@ -150,7 +150,7 @@ Master Vnode 遵循下面的写入流程: 对于 slave vnode,写入流程是: -![TDengine Slave 写入流程](./write_slave.png) +![TDengine Slave 写入流程](./write_slave.webp)
图 4 TDengine Slave 写入流程
@@ -284,7 +284,7 @@ SELECT COUNT(*) FROM d1001 WHERE ts >= '2017-7-14 00:00:00' AND ts < '2017-7-14 TDengine 对每个数据采集点单独建表,但在实际应用中经常需要对不同的采集点数据进行聚合。为高效的进行聚合操作,TDengine 引入超级表(STable)的概念。超级表用来代表一特定类型的数据采集点,它是包含多张表的表集合,集合里每张表的模式(schema)完全一致,但每张表都带有自己的静态标签,标签可以有多个,可以随时增加、删除和修改。应用可通过指定标签的过滤条件,对一个 STable 下的全部或部分表进行聚合或统计操作,这样大大简化应用的开发。其具体流程如下图所示: -![多表聚合查询原理图](./multi_tables.png) +![多表聚合查询原理图](./multi_tables.webp)
图 5 多表聚合查询原理图
diff --git a/docs-cn/21-tdinternal/02-replica.md b/docs-cn/21-tdinternal/02-replica.md index 33c4f5e55f83d3de846c5b9512a19b866ee3d3c5..a0e3437c164b04b81c6e0009dfc69f5c44a602a9 100644 --- a/docs-cn/21-tdinternal/02-replica.md +++ b/docs-cn/21-tdinternal/02-replica.md @@ -93,7 +93,7 @@ TDengine采取的是Master-Slave模式进行同步,与流行的RAFT一致性 具体的流程图如下: -![replica-master.png](./replica-master.png) +![replica-master.webp](./replica-master.webp) 选择Master的具体规则如下: @@ -108,7 +108,7 @@ TDengine采取的是Master-Slave模式进行同步,与流行的RAFT一致性 如果vnode A是master, vnode B是slave, vnode A能接受客户端的写请求,而vnode B不能。当vnode A收到写的请求后,遵循下面的流程: -![replica-forward.png](./replica-forward.png) +![replica-forward.webp](./replica-forward.webp) 1. 应用对写请求做基本的合法性检查,通过,则给该请求包打上一个版本号(version, 单调递增) 2. 应用将打上版本号的写请求封装一个WAL Head, 写入WAL(Write Ahead Log) @@ -143,7 +143,7 @@ TDengine采取的是Master-Slave模式进行同步,与流行的RAFT一致性 整个数据恢复流程分为两大步骤,第一步,先恢复archived data(file), 然后恢复wal。具体流程如下: -![replica-restore.png](./replica-restore.png) +![replica-restore.webp](./replica-restore.webp) 1. 通过已经建立的TCP连接,发送sync req给master节点 2. master收到sync req后,以client的身份,向vnode B主动建立一新的专用于同步的TCP连接(syncFd) diff --git a/docs-cn/21-tdinternal/03-taosd.md b/docs-cn/21-tdinternal/03-taosd.md index db096d74441d44e67e254d216b44ecf60f791d8d..40959406b4e6f7b47808de7acca821278fd6cf37 100644 --- a/docs-cn/21-tdinternal/03-taosd.md +++ b/docs-cn/21-tdinternal/03-taosd.md @@ -9,7 +9,7 @@ title: taosd的设计 taosd 包含 rpc,dnode,vnode,tsdb,query,cq,sync,wal,mnode,http,monitor 等模块,具体如下图: -![modules.png](./modules.png) +![modules.webp](./modules.webp) taosd 的启动入口是 dnode 模块,dnode 然后启动其他模块,包括可选配置的 http,monitor 模块。taosc 或 dnode 之间交互的消息都是通过 rpc 模块进行,dnode 模块根据接收到的消息类型,将消息分发到 vnode 或 mnode 的消息队列,或由 dnode 模块自己消费。dnode 的工作线程(worker)消费消息队列里的消息,交给 mnode 或 vnode 进行处理。下面对各个模块做简要说明。 @@ -44,13 +44,13 @@ RPC 模块还提供数据压缩功能,如果数据包的字节数超过系统 taosd 的消息消费由 dnode 通过读写线程池进行控制,是系统的中枢。该模块内的结构体图如下: -![dnode.png](./dnode.png) +![dnode.webp](./dnode.webp) ## VNODE 模块 vnode 是一独立的数据存储查询逻辑单元,但因为一个 vnode 只能容许一个 DB ,因此 vnode 内部没有 account,DB,user 等概念。为实现更好的模块化、封装以及未来的扩展,它有很多子模块,包括负责存储的 TSDB,负责查询的 query,负责数据复制的 sync,负责数据库日志的的 WAL,负责连续查询的 cq(continuous query),负责事件触发的流计算的 event 等模块,这些子模块只与 vnode 模块发生关系,与其他模块没有任何调用关系。模块图如下: -![vnode.png](./vnode.png) +![vnode.webp](./vnode.webp) vnode 模块向下,与 dnodeVRead,dnodeVWrite 发生互动,向上,与子模块发生互动。它主要的功能有: diff --git a/docs-cn/25-application/01-telegraf.md b/docs-cn/25-application/01-telegraf.md index 447568cbbdae3bef6e227f696bd35c8e7a7a147f..5bfc94c53410f6142b3bc24f696334c334cde933 100644 --- a/docs-cn/25-application/01-telegraf.md +++ b/docs-cn/25-application/01-telegraf.md @@ -16,7 +16,7 @@ IT 运维监测数据通常都是对时间特性比较敏感的数据,例如 本文介绍不需要写一行代码,通过简单修改几行配置文件,就可以快速搭建一个基于 TDengine + Telegraf + Grafana 的 IT 运维系统。架构如下图: -![IT-DevOps-Solutions-Telegraf.png](./IT-DevOps-Solutions-Telegraf.png) +![IT-DevOps-Solutions-Telegraf.webp](./IT-DevOps-Solutions-Telegraf.webp) ## 安装步骤 @@ -75,7 +75,7 @@ sudo systemctl start telegraf 点击左侧齿轮图标并选择 `Plugins`,应该可以找到 TDengine data source 插件图标。 点击左侧加号图标并选择 `Import`,从 `https://github.com/taosdata/grafanaplugin/blob/master/examples/telegraf/grafana/dashboards/telegraf-dashboard-v0.1.0.json` 下载 dashboard JSON 文件后导入。之后可以看到如下界面的仪表盘: -![IT-DevOps-Solutions-telegraf-dashboard.png]./IT-DevOps-Solutions-telegraf-dashboard.png) +![IT-DevOps-Solutions-telegraf-dashboard.webp]./IT-DevOps-Solutions-telegraf-dashboard.webp) ## 总结 diff --git a/docs-cn/25-application/02-collectd.md b/docs-cn/25-application/02-collectd.md index 920e2de3a56632370d4b8b90a773453475deca93..5966f2d6544c78adb806d51e8a4157ba7dc420e9 100644 --- a/docs-cn/25-application/02-collectd.md +++ b/docs-cn/25-application/02-collectd.md @@ -16,7 +16,7 @@ IT 运维监测数据通常都是对时间特性比较敏感的数据,例如 本文介绍不需要写一行代码,通过简单修改几行配置文件,就可以快速搭建一个基于 TDengine + collectd / statsD + Grafana 的 IT 运维系统。架构如下图: -![IT-DevOps-Solutions-Collectd-StatsD.png](./IT-DevOps-Solutions-Collectd-StatsD.png) +![IT-DevOps-Solutions-Collectd-StatsD.webp](./IT-DevOps-Solutions-Collectd-StatsD.webp) ## 安装步骤 @@ -81,12 +81,12 @@ repeater 部分添加 { host:'', port: Figure 1. TDengine Technical Ecosystem diff --git a/docs-en/12-taos-sql/08-interval.md b/docs-en/12-taos-sql/08-interval.md index 86cac5553a45c0d38609f414a73569c8c4dfece6..2044ff4f61d9da6bdc1c07b5361b89050193aa96 100644 --- a/docs-en/12-taos-sql/08-interval.md +++ b/docs-en/12-taos-sql/08-interval.md @@ -10,7 +10,7 @@ Window related clauses are used to divide the data set to be queried into subset `INTERVAL` clause is used to generate time windows of same time interval, `SLIDING` is used to specify the time step for which the time window moves forward. The query is performed on one time window each time, and the time window moves forward with time. When defining continuous query both the size of time window and the step of forward sliding time need to be specified. As shown in the figure blow, [t0s, t0e] ,[t1s , t1e], [t2s, t2e] are respectively the time range of three time windows on which continuous queries are executed. The time step for which time window moves forward is marked by `sliding time`. Query, filter and aggregate operations are executed on each time window respectively. When the time step specified by `SLIDING` is same as the time interval specified by `INTERVAL`, the sliding time window is actually a flip time window. -![Time Window](./timewindow-1.png) +![Time Window](./timewindow-1.webp) `INTERVAL` and `SLIDING` should be used with aggregate functions and selection functions. Below SQL statement is illegal because no aggregate or selection function is used with `INTERVAL`. @@ -30,7 +30,7 @@ When the time length specified by `SLIDING` is same as that specified by `INTERV In case of using integer, bool, or string to represent the device status at a moment, the continuous rows with same status belong to same status window. Once the status changes, the status window closes. As shown in the following figure,there are two status windows according to status, [2019-04-28 14:22:07,2019-04-28 14:22:10] and [2019-04-28 14:22:11,2019-04-28 14:22:12]. Status window is not applicable to STable for now. -![Status Window](./timewindow-3.png) +![Status Window](./timewindow-3.webp) `STATE_WINDOW` is used to specify the column based on which to define status window, for example: @@ -46,7 +46,7 @@ SELECT COUNT(*), FIRST(ts) FROM temp_tb_1 SESSION(ts, tol_val); The primary key, i.e. timestamp, is used to determine which session window the row belongs to. If the time interval between two adjacent rows is within the time range specified by `tol_val`, they belong to same session window; otherwise they belong to two different time windows. As shown in the figure below, if the limit of time interval for session window is specified as 12 seconds, then the 6 rows in the figure constitutes 2 time windows, [2019-04-28 14:22:10,2019-04-28 14:22:30] and [2019-04-28 14:23:10,2019-04-28 14:23:30], because the time difference between 2019-04-28 14:22:30 and 2019-04-28 14:23:10 is 40 seconds, which exceeds the time interval limit of 12 seconds. -![Session Window](./timewindow-2.png) +![Session Window](./timewindow-2.webp) If the time interval between two continuous rows are within the time interval specified by `tol_value` they belong to the same session window; otherwise a new session window is started automatically. Session window is not supported on STable for now. diff --git a/docs-en/14-reference/03-connector/03-connector.mdx b/docs-en/14-reference/03-connector/03-connector.mdx index 90be1bac978563c551901983452ac083d9620d6f..38eba73d0983951901a26eee3962e89007f6d30a 100644 --- a/docs-en/14-reference/03-connector/03-connector.mdx +++ b/docs-en/14-reference/03-connector/03-connector.mdx @@ -4,7 +4,7 @@ title: Connector TDengine provides a rich set of APIs (application development interface). To facilitate users to develop their applications quickly, TDengine supports connectors for multiple programming languages, including official connectors for C/C++, Java, Python, Go, Node.js, C#, and Rust. These connectors support connecting to TDengine clusters using both native interfaces (taosc) and REST interfaces (not supported in a few languages yet). Community developers have also contributed several unofficial connectors, such as the ADO.NET connector, the Lua connector, and the PHP connector. -![image-connector](./connector.png) +![image-connector](./connector.webp) ## Supported platforms diff --git a/docs-en/14-reference/03-connector/java.mdx b/docs-en/14-reference/03-connector/java.mdx index 328907c4d781bdea8d30623e01d431cedbf8d0fa..0a1960be51145ebcab10b56243413549135f1c03 100644 --- a/docs-en/14-reference/03-connector/java.mdx +++ b/docs-en/14-reference/03-connector/java.mdx @@ -11,7 +11,7 @@ import TabItem from '@theme/TabItem'; 'taos-jdbcdriver' is TDengine's official Java language connector, which allows Java developers to develop applications that access the TDengine database. 'taos-jdbcdriver' implements the interface of the JDBC driver standard and provides two forms of connectors. One is to connect to a TDengine instance natively through the TDengine client driver (taosc), which supports functions including data writing, querying, subscription, schemaless writing, and bind interface. And the other is to connect to a TDengine instance through the REST interface provided by taosAdapter (2.4.0.0 and later). REST connections implement has a slight differences to compare the set of features implemented and native connections. -![tdengine-connector](tdengine-jdbc-connector.png) +![tdengine-connector](tdengine-jdbc-connector.webp) The preceding diagram shows two ways for a Java app to access TDengine via connector: diff --git a/docs-en/14-reference/04-taosadapter.md b/docs-en/14-reference/04-taosadapter.md index 85fd2923b02189d6f3cfd73efff784d12c3bb69a..de42e8a883d8b195b9d342f761e39458e557dfac 100644 --- a/docs-en/14-reference/04-taosadapter.md +++ b/docs-en/14-reference/04-taosadapter.md @@ -24,7 +24,7 @@ taosAdapter provides the following features. ## taosAdapter architecture diagram -![taosAdapter Architecture](taosAdapter-architecture.png) +![taosAdapter Architecture](taosAdapter-architecture.webp) ## taosAdapter Deployment Method diff --git a/docs-en/14-reference/07-tdinsight/index.md b/docs-en/14-reference/07-tdinsight/index.md index 4850cecb334ff24cc9fcf3b9a6e394827730111c..dc337bf9fff2a9b60ea2f1c5110185a8ac683098 100644 --- a/docs-en/14-reference/07-tdinsight/index.md +++ b/docs-en/14-reference/07-tdinsight/index.md @@ -233,33 +233,33 @@ The default username/password is `admin`. Grafana will require a password change Point to the **Configurations** -> **Data Sources** menu, and click the **Add data source** button. -![Add data source button](./assets/howto-add-datasource-button.png) +![Add data source button](./assets/howto-add-datasource-button.webp) Search for and select **TDengine**. -![Add datasource](./assets/howto-add-datasource-tdengine.png) +![Add datasource](./assets/howto-add-datasource-tdengine.webp) Configure the TDengine datasource. -![Datasource Configuration](./assets/howto-add-datasource.png) +![Datasource Configuration](./assets/howto-add-datasource.webp) Save and test. It will report 'TDengine Data source is working' under normal circumstances. -![datasource test](./assets/howto-add-datasource-test.png) +![datasource test](./assets/howto-add-datasource-test.webp) ### Importing dashboards Point to **+** / **Create** - **import** (or `/dashboard/import` url). -![Import Dashboard and Configuration](./assets/import_dashboard.png) +![Import Dashboard and Configuration](./assets/import_dashboard.webp) Type the dashboard ID `15167` in the **Import via grafana.com** location and **Load**. -![Import via grafana.com](./assets/import-dashboard-15167.png) +![Import via grafana.com](./assets/import-dashboard-15167.webp) Once the import is complete, the full page view of TDinsight is shown below. -![show](./assets/TDinsight-full.png) +![show](./assets/TDinsight-full.webp) ## TDinsight dashboard details @@ -269,7 +269,7 @@ Details of the metrics are as follows. ### Cluster Status -![tdinsight-mnodes-overview](./assets/TDinsight-1-cluster-status.png) +![tdinsight-mnodes-overview](./assets/TDinsight-1-cluster-status.webp) This section contains the current information and status of the cluster, the alert information is also here (from left to right, top to bottom). @@ -289,7 +289,7 @@ This section contains the current information and status of the cluster, the ale ### DNodes Status -![tdinsight-mnodes-overview](./assets/TDinsight-2-dnodes.png) +![tdinsight-mnodes-overview](./assets/TDinsight-2-dnodes.webp) - **DNodes Status**: simple table view of `show dnodes`. - **DNodes Lifetime**: the time elapsed since the dnode was created. @@ -298,14 +298,14 @@ This section contains the current information and status of the cluster, the ale ### MNode Overview -![tdinsight-mnodes-overview](./assets/TDinsight-3-mnodes.png) +![tdinsight-mnodes-overview](./assets/TDinsight-3-mnodes.webp) 1. **MNodes Status**: a simple table view of `show mnodes`. 2. 2. **MNodes Number**: similar to `DNodes Number`, the number of MNodes changes. ### Request -![tdinsight-requests](./assets/TDinsight-4-requests.png) +![tdinsight-requests](./assets/TDinsight-4-requests.webp) 1. **Requests Rate(Inserts per Second)**: average number of inserts per second. 2. **Requests (Selects)**: number of query requests and change rate (count of second). @@ -313,7 +313,7 @@ This section contains the current information and status of the cluster, the ale ### Database -![tdinsight-database](./assets/TDinsight-5-database.png) +![tdinsight-database](./assets/TDinsight-5-database.webp) Database usage, repeated for each value of the variable `$database` i.e. multiple rows per database. @@ -325,7 +325,7 @@ Database usage, repeated for each value of the variable `$database` i.e. multipl ### DNode Resource Usage -![dnode-usage](./assets/TDinsight-6-dnode-usage.png) +![dnode-usage](./assets/TDinsight-6-dnode-usage.webp) Data node resource usage display with repeated multiple rows for the variable `$fqdn` i.e., each data node. Includes. @@ -346,13 +346,13 @@ Data node resource usage display with repeated multiple rows for the variable `$ ### Login History -![Login History](./assets/TDinsight-7-login-history.png) +![Login History](./assets/TDinsight-7-login-history.webp) Currently, only the number of logins per minute is reported. ### Monitoring taosAdapter -![taosadapter](./assets/TDinsight-8-taosadapter.png) +![taosadapter](./assets/TDinsight-8-taosadapter.webp) Support monitoring taosAdapter request statistics and status details. Includes. diff --git a/docs-en/20-third-party/01-grafana.mdx b/docs-en/20-third-party/01-grafana.mdx index c1bfd4a96a4576df8570d8b480d5c2afe47e20b8..7239710e0aebdd95977d9b73a5a1a9fccd656542 100644 --- a/docs-en/20-third-party/01-grafana.mdx +++ b/docs-en/20-third-party/01-grafana.mdx @@ -62,15 +62,15 @@ GF_PLUGINS_ALLOW_LOADING_UNSIGNED_PLUGINS=tdengine-datasource Users can log in to the Grafana server (username/password: admin/admin) directly through the URL `http://localhost:3000` and add a datasource through `Configuration -> Data Sources` on the left side, as shown in the following figure. -![img](./grafana/add_datasource1.jpg) +![img](./grafana/add_datasource1.webp) Click `Add data source` to enter the Add data source page, and enter TDengine in the query box to add it, as shown in the following figure. -![img](./grafana/add_datasource2.jpg) +![img](./grafana/add_datasource2.webp) Enter the datasource configuration page, and follow the default prompts to modify the corresponding configuration. -![img](./grafana/add_datasource3.jpg) +![img](./grafana/add_datasource3.webp) - Host: IP address of the server where the components of the TDengine cluster provide REST service (offered by taosd before 2.4 and by taosAdapter since 2.4) and the port number of the TDengine REST service (6041), by default use `http://localhost:6041`. - User: TDengine user name. @@ -78,13 +78,13 @@ Enter the datasource configuration page, and follow the default prompts to modif Click `Save & Test` to test. Follows are a success. -![img](./grafana/add_datasource4.jpg) +![img](./grafana/add_datasource4.webp) ### Create Dashboard Go back to the main interface to create the Dashboard, click Add Query to enter the panel query page: -![img](./grafana/create_dashboard1.jpg) +![img](./grafana/create_dashboard1.webp) As shown above, select the `TDengine` data source in the `Query` and enter the corresponding SQL in the query box below for query. @@ -94,7 +94,7 @@ As shown above, select the `TDengine` data source in the `Query` and enter the c Follow the default prompt to query the average system memory usage for the specified interval on the server where the current TDengine deployment is located as follows. -![img](./grafana/create_dashboard2.jpg) +![img](./grafana/create_dashboard2.webp) > For more information on how to use Grafana to create the appropriate monitoring interface and for more details on using Grafana, refer to the official Grafana [documentation](https://grafana.com/docs/). diff --git a/docs-en/20-third-party/09-emq-broker.md b/docs-en/20-third-party/09-emq-broker.md index 13562ba7f720499c23771437c5c6ba0f61819456..560c6463b59b00a362023d6cfa44cf833419a9ea 100644 --- a/docs-en/20-third-party/09-emq-broker.md +++ b/docs-en/20-third-party/09-emq-broker.md @@ -44,25 +44,25 @@ Since the configuration interface of EMQX differs from version to version, here Use your browser to open the URL `http://IP:18083` and log in to EMQX Dashboard. The initial installation username is `admin` and the password is: `public`. -![img](./emqx/login-dashboard.png) +![img](./emqx/login-dashboard.webp) ### Creating Rule Select "Rule" in the "Rule Engine" on the left and click the "Create" button: ! -![img](./emqx/rule-engine.png) +![img](./emqx/rule-engine.webp) ### Edit SQL fields -![img](./emqx/create-rule.png) +![img](./emqx/create-rule.webp) ### Add "action handler" -![img](./emqx/add-action-handler.png) +![img](./emqx/add-action-handler.webp) ### Add "Resource" -![img](./emqx/create-resource.png) +![img](./emqx/create-resource.webp) Select "Data to Web Service" and click the "New Resource" button. @@ -70,13 +70,13 @@ Select "Data to Web Service" and click the "New Resource" button. Select "Data to Web Service" and fill in the request URL as the address and port of the server running taosAdapter (default is 6041). Leave the other properties at their default values. -![img](./emqx/edit-resource.png) +![img](./emqx/edit-resource.webp) ### Edit "action" Edit the resource configuration to add the key/value pairing for Authorization. Please refer to the [ TDengine REST API documentation ](https://docs.taosdata.com/reference/rest-api/) for the authorization in details. Enter the rule engine replacement template in the message body. -![img](./emqx/edit-action.png) +![img](./emqx/edit-action.webp) ## Compose program to mock data @@ -163,7 +163,7 @@ Edit the resource configuration to add the key/value pairing for Authorization. Note: `CLIENT_NUM` in the code can be set to a smaller value at the beginning of the test to avoid hardware performance be not capable to handle a more significant number of concurrent clients. -![img](./emqx/client-num.png) +![img](./emqx/client-num.webp) ## Execute tests to simulate sending MQTT data @@ -172,19 +172,19 @@ npm install mqtt mockjs --save ---registry=https://registry.npm.taobao.org node mock.js ``` -![img](./emqx/run-mock.png) +![img](./emqx/run-mock.webp) ## Verify that EMQX is receiving data Refresh the EMQX Dashboard rules engine interface to see how many records were received correctly: -![img](./emqx/check-rule-matched.png) +![img](./emqx/check-rule-matched.webp) ## Verify that data writing to TDengine Use the TDengine CLI program to log in and query the appropriate databases and tables to verify that the data is being written to TDengine correctly: -![img](./emqx/check-result-in-taos.png) +![img](./emqx/check-result-in-taos.webp) Please refer to the [TDengine official documentation](https://docs.taosdata.com/) for more details on how to use TDengine. EMQX Please refer to the [EMQX official documentation](https://www.emqx.io/docs/en/v4.4/rule/rule-engine.html) for details on how to use EMQX. diff --git a/docs-en/20-third-party/11-kafka.md b/docs-en/20-third-party/11-kafka.md index b9c7a3814a75a066b498438b6e632690697ae7ca..5aee6e044dcec77a9904f2ccfe5cb577eaa4d0ad 100644 --- a/docs-en/20-third-party/11-kafka.md +++ b/docs-en/20-third-party/11-kafka.md @@ -9,11 +9,11 @@ TDengine Kafka Connector contains two plugins: TDengine Source Connector and TDe Kafka Connect is a component of Apache Kafka that enables other systems, such as databases, cloud services, file systems, etc., to connect to Kafka easily. Data can flow from other software to Kafka via Kafka Connect and Kafka to other systems via Kafka Connect. Plugins that read data from other software are called Source Connectors, and plugins that write data to other software are called Sink Connectors. Neither Source Connector nor Sink Connector will directly connect to Kafka Broker, and Source Connector transfers data to Kafka Connect. Sink Connector receives data from Kafka Connect. -![](kafka/Kafka_Connect.png) +![](kafka/Kafka_Connect.webp) TDengine Source Connector is used to read data from TDengine in real-time and send it to Kafka Connect. Users can use The TDengine Sink Connector to receive data from Kafka Connect and write it to TDengine. -![](kafka/streaming-integration-with-kafka-connect.png) +![](kafka/streaming-integration-with-kafka-connect.webp) ## What is Confluent? @@ -26,7 +26,7 @@ Confluent adds many extensions to Kafka. include: 5. GUI for managing and monitoring Kafka - Confluent Control Center Some of these extensions are available in the community version of Confluent. Some are only available in the enterprise version. -![](kafka/confluentPlatform.png) +![](kafka/confluentPlatform.webp) Confluent Enterprise Edition provides the `confluent` command-line tool to manage various components. diff --git a/docs-en/21-tdinternal/01-arch.md b/docs-en/21-tdinternal/01-arch.md index 9607c9b38709f6a320f82a8ee250afb407492627..2c430908e410c7ae8e6f09a3f7e2d059f906fda5 100644 --- a/docs-en/21-tdinternal/01-arch.md +++ b/docs-en/21-tdinternal/01-arch.md @@ -11,7 +11,7 @@ The design of TDengine is based on the assumption that any hardware or software Logical structure diagram of TDengine distributed architecture as following: -![TDengine architecture diagram](structure.png) +![TDengine architecture diagram](structure.webp)
Figure 1: TDengine architecture diagram
A complete TDengine system runs on one or more physical nodes. Logically, it includes data node (dnode), TDengine client driver (TAOSC) and application (app). There are one or more data nodes in the system, which form a cluster. The application interacts with the TDengine cluster through TAOSC's API. The following is a brief introduction to each logical unit. @@ -54,7 +54,7 @@ A complete TDengine system runs on one or more physical nodes. Logically, it inc To explain the relationship between vnode, mnode, TAOSC and application and their respective roles, the following is an analysis of a typical data writing process. -![typical process of TDengine](message.png) +![typical process of TDengine](message.webp)
Figure 2: Typical process of TDengine
1. Application initiates a request to insert data through JDBC, ODBC, or other APIs. @@ -123,7 +123,7 @@ If a database has N replicas, thus a virtual node group has N virtual nodes, but Master Vnode uses a writing process as follows: -![TDengine Master Writing Process](write_master.png) +![TDengine Master Writing Process](write_master.webp)
Figure 3: TDengine Master writing process
1. Master vnode receives the application data insertion request, verifies, and moves to next step; @@ -137,7 +137,7 @@ Master Vnode uses a writing process as follows: For a slave vnode, the write process as follows: -![TDengine Slave Writing Process](write_slave.png) +![TDengine Slave Writing Process](write_slave.webp)
Figure 4: TDengine Slave Writing Process
1. Slave vnode receives a data insertion request forwarded by Master vnode; @@ -267,7 +267,7 @@ For the data collected by device D1001, the number of records per hour is counte TDengine creates a separate table for each data collection point, but in practical applications, it is often necessary to aggregate data from different data collection points. In order to perform aggregation operations efficiently, TDengine introduces the concept of STable. STable is used to represent a specific type of data collection point. It is a table set containing multiple tables. The schema of each table in the set is the same, but each table has its own static tag. The tags can be multiple and be added, deleted and modified at any time. Applications can aggregate or statistically operate all or a subset of tables under a STABLE by specifying tag filters, thus greatly simplifying the development of applications. The process is shown in the following figure: -![Diagram of multi-table aggregation query](multi_tables.png) +![Diagram of multi-table aggregation query](multi_tables.webp)
Figure 5: Diagram of multi-table aggregation query
1. Application sends a query condition to system; diff --git a/docs-en/25-application/01-telegraf.md b/docs-en/25-application/01-telegraf.md index 4af7df310fe52b599f0b48d031606f5199bde4e1..07ab289ac2bbf44c219535fe128db69b34465c01 100644 --- a/docs-en/25-application/01-telegraf.md +++ b/docs-en/25-application/01-telegraf.md @@ -16,7 +16,7 @@ Current mainstream IT DevOps system usually include a data collection module, a This article introduces how to quickly build a TDengine + Telegraf + Grafana based IT DevOps visualization system without writing even a single line of code and by simply modifying a few lines of configuration files. The architecture is as follows. -![IT-DevOps-Solutions-Telegraf.png](./IT-DevOps-Solutions-Telegraf.png) +![IT-DevOps-Solutions-Telegraf.webp](./IT-DevOps-Solutions-Telegraf.webp) ## Installation steps @@ -75,7 +75,7 @@ Log in to the Grafana interface using a web browser at `IP:3000`, with the syste Click on the gear icon on the left and select `Plugins`, you should find the TDengine data source plugin icon. Click on the plus icon on the left and select `Import` to get the data from `https://github.com/taosdata/grafanaplugin/blob/master/examples/telegraf/grafana/dashboards/telegraf-dashboard- v0.1.0.json`, download the dashboard JSON file and import it. You will then see the dashboard in the following screen. -![IT-DevOps-Solutions-telegraf-dashboard.png](./IT-DevOps-Solutions-telegraf-dashboard.png) +![IT-DevOps-Solutions-telegraf-dashboard.webp](./IT-DevOps-Solutions-telegraf-dashboard.webp) ## Wrap-up diff --git a/docs-en/25-application/02-collectd.md b/docs-en/25-application/02-collectd.md index 1a3c8c9b058adb567a992cddfe93a6381cdce38e..0ddea2855497f1dfdfce7a2aa6749e0c5ba1b9ff 100644 --- a/docs-en/25-application/02-collectd.md +++ b/docs-en/25-application/02-collectd.md @@ -17,7 +17,7 @@ The new version of TDengine supports multiple data protocols and can accept data This article introduces how to quickly build an IT DevOps visualization system based on TDengine + collectd / StatsD + Grafana without writing even a single line of code but by simply modifying a few lines of configuration files. The architecture is shown in the following figure. -![IT-DevOps-Solutions-Collectd-StatsD.png](./IT-DevOps-Solutions-Collectd-StatsD.png) +![IT-DevOps-Solutions-Collectd-StatsD.webp](./IT-DevOps-Solutions-Collectd-StatsD.webp) ## Installation Steps @@ -83,19 +83,19 @@ Click on the gear icon on the left and select `Plugins`, you should find the TDe Download the dashboard json from `https://github.com/taosdata/grafanaplugin/blob/master/examples/collectd/grafana/dashboards/collect-metrics-with-tdengine-v0.1.0.json`, click the plus icon on the left and select Import, follow the instructions to import the JSON file. After that, you can see The dashboard can be seen in the following screen. -![IT-DevOps-Solutions-collectd-dashboard.png](./IT-DevOps-Solutions-collectd-dashboard.png) +![IT-DevOps-Solutions-collectd-dashboard.webp](./IT-DevOps-Solutions-collectd-dashboard.webp) #### import collectd dashboard Download the dashboard json file from `https://github.com/taosdata/grafanaplugin/blob/master/examples/collectd/grafana/dashboards/collect-metrics-with-tdengine-v0.1.0.json`. Download the dashboard json file, click the plus icon on the left side and select `Import`, and follow the interface prompts to select the JSON file to import. After that, you can see dashboard with the following interface. -![IT-DevOps-Solutions-collectd-dashboard.png](./IT-DevOps-Solutions-collectd-dashboard.png) +![IT-DevOps-Solutions-collectd-dashboard.webp](./IT-DevOps-Solutions-collectd-dashboard.webp) #### Importing the StatsD dashboard Download the dashboard json from `https://github.com/taosdata/grafanaplugin/blob/master/examples/statsd/dashboards/statsd-with-tdengine-v0.1.0.json`. Click on the plus icon on the left and select `Import`, and follow the interface prompts to import the JSON file. You will then see the dashboard in the following screen. -![IT-DevOps-Solutions-statsd-dashboard.png](./IT-DevOps-Solutions-statsd-dashboard.png) +![IT-DevOps-Solutions-statsd-dashboard.webp](./IT-DevOps-Solutions-statsd-dashboard.webp) ## Wrap-up diff --git a/docs-en/25-application/03-immigrate.md b/docs-en/25-application/03-immigrate.md index b595e09556c8aac76cd8e9177ec51a09020d6552..68d8a2b8cc25c80b8a647332df66874bee344715 100644 --- a/docs-en/25-application/03-immigrate.md +++ b/docs-en/25-application/03-immigrate.md @@ -32,7 +32,7 @@ We will explain how to migrate OpenTSDB applications to TDengine quickly, secure The following figure (Figure 1) shows the system's overall architecture for a typical DevOps application scenario. **Figure 1. Typical architecture in a DevOps scenario** -![IT-DevOps-Solutions-Immigrate-OpenTSDB-Arch](./IT-DevOps-Solutions-Immigrate-OpenTSDB-Arch.jpg "Figure 1. Typical architecture in a DevOps scenario") +![IT-DevOps-Solutions-Immigrate-OpenTSDB-Arch](./IT-DevOps-Solutions-Immigrate-OpenTSDB-Arch.webp "Figure 1. Typical architecture in a DevOps scenario") In this application scenario, there are Agent tools deployed in the application environment to collect machine metrics, network metrics, and application metrics. Data collectors to aggregate information collected by agents, systems for persistent data storage and management, and tools for monitoring data visualization (e.g., Grafana, etc.). @@ -75,7 +75,7 @@ After writing the data to TDengine properly, you can adapt Grafana to visualize TDengine provides two sets of Dashboard templates by default, and users only need to import the templates from the Grafana directory into Grafana to activate their use. **Importing Grafana Templates** Figure 2. -![](./IT-DevOps-Solutions-Immigrate-OpenTSDB-Dashboard.jpg "Figure 2. Importing a Grafana Template") +![](./IT-DevOps-Solutions-Immigrate-OpenTSDB-Dashboard.webp "Figure 2. Importing a Grafana Template") After the above steps, you completed the migration to replace OpenTSDB with TDengine. You can see that the whole process is straightforward, there is no need to write any code, and only some configuration files need to be adjusted to meet the migration work. @@ -88,7 +88,7 @@ In most DevOps scenarios, if you have a small OpenTSDB cluster (3 or fewer nodes Suppose your application is particularly complex, or the application domain is not a DevOps scenario. You can continue reading subsequent chapters for a more comprehensive and in-depth look at the advanced topics of migrating an OpenTSDB application to TDengine. **Figure 3. System architecture after migration** -![IT-DevOps-Solutions-Immigrate-TDengine-Arch](./IT-DevOps-Solutions-Immigrate-TDengine-Arch.jpg "Figure 3. System architecture after migration completion") +![IT-DevOps-Solutions-Immigrate-TDengine-Arch](./IT-DevOps-Solutions-Immigrate-TDengine-Arch.webp "Figure 3. System architecture after migration completion") ## Migration evaluation and strategy for other scenarios