提交 26b9d09a 编写于 作者: P plum-lihui

Merge branch '3.0' of github.com:taosdata/TDengine into 3.0

...@@ -14,7 +14,7 @@ description: "TDengine 支持的数据类型: 时间戳、浮点型、JSON 类 ...@@ -14,7 +14,7 @@ description: "TDengine 支持的数据类型: 时间戳、浮点型、JSON 类
- Epoch Time:时间戳也可以是一个长整数,表示从格林威治时间 1970-01-01 00:00:00.000 (UTC/GMT) 开始的毫秒数(相应地,如果所在 Database 的时间精度设置为“微秒”,则长整型格式的时间戳含义也就对应于从格林威治时间 1970-01-01 00:00:00.000 (UTC/GMT) 开始的微秒数;纳秒精度逻辑类似。) - Epoch Time:时间戳也可以是一个长整数,表示从格林威治时间 1970-01-01 00:00:00.000 (UTC/GMT) 开始的毫秒数(相应地,如果所在 Database 的时间精度设置为“微秒”,则长整型格式的时间戳含义也就对应于从格林威治时间 1970-01-01 00:00:00.000 (UTC/GMT) 开始的微秒数;纳秒精度逻辑类似。)
- 时间可以加减,比如 now-2h,表明查询时刻向前推 2 个小时(最近 2 小时)。数字后面的时间单位可以是 b(纳秒)、u(微秒)、a(毫秒)、s(秒)、m(分)、h(小时)、d(天)、w(周)。 比如 `select * from t1 where ts > now-2w and ts <= now-1w`,表示查询两周前整整一周的数据。在指定降采样操作(down sampling)的时间窗口(interval)时,时间单位还可以使用 n (自然月) 和 y (自然年)。 - 时间可以加减,比如 now-2h,表明查询时刻向前推 2 个小时(最近 2 小时)。数字后面的时间单位可以是 b(纳秒)、u(微秒)、a(毫秒)、s(秒)、m(分)、h(小时)、d(天)、w(周)。 比如 `select * from t1 where ts > now-2w and ts <= now-1w`,表示查询两周前整整一周的数据。在指定降采样操作(down sampling)的时间窗口(interval)时,时间单位还可以使用 n (自然月) 和 y (自然年)。
TDengine 缺省的时间戳精度是毫秒,但通过在 `CREATE DATABASE` 时传递的 PRECISION 参数也可以支持微秒和纳秒。(从 2.1.5.0 版本开始支持纳秒精度) TDengine 缺省的时间戳精度是毫秒,但通过在 `CREATE DATABASE` 时传递的 PRECISION 参数也可以支持微秒和纳秒。
```sql ```sql
CREATE DATABASE db_name PRECISION 'ns'; CREATE DATABASE db_name PRECISION 'ns';
...@@ -25,14 +25,14 @@ CREATE DATABASE db_name PRECISION 'ns'; ...@@ -25,14 +25,14 @@ CREATE DATABASE db_name PRECISION 'ns';
| # | **类型** | **Bytes** | **说明** | | # | **类型** | **Bytes** | **说明** |
| --- | :-------: | --------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | --- | :-------: | --------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| 1 | TIMESTAMP | 8 | 时间戳。缺省精度毫秒,可支持微秒和纳秒。从格林威治时间 1970-01-01 00:00:00.000 (UTC/GMT) 开始,计时不能早于该时间。(从 2.0.18.0 版本开始,已经去除了这一时间范围限制)(从 2.1.5.0 版本开始支持纳秒精度) | | 1 | TIMESTAMP | 8 | 时间戳。缺省精度毫秒,可支持微秒和纳秒,详细说明见上节。 |
| 2 | INT | 4 | 整型,范围 [-2^31, 2^31-1] | | 2 | INT | 4 | 整型,范围 [-2^31, 2^31-1] |
| 3 | INT UNSIGNED| 4| 无符号整数,[0, 2^32-1] | 3 | INT UNSIGNED| 4| 无符号整数,[0, 2^32-1]
| 4 | BIGINT | 8 | 长整型,范围 [-2^63, 2^63-1] | | 4 | BIGINT | 8 | 长整型,范围 [-2^63, 2^63-1] |
| 5 | BIGINT UNSIGNED | 8 | 长整型,范围 [0, 2^64-1] | | 5 | BIGINT UNSIGNED | 8 | 长整型,范围 [0, 2^64-1] |
| 6 | FLOAT | 4 | 浮点型,有效位数 6-7,范围 [-3.4E38, 3.4E38] | | 6 | FLOAT | 4 | 浮点型,有效位数 6-7,范围 [-3.4E38, 3.4E38] |
| 7 | DOUBLE | 8 | 双精度浮点型,有效位数 15-16,范围 [-1.7E308, 1.7E308] | | 7 | DOUBLE | 8 | 双精度浮点型,有效位数 15-16,范围 [-1.7E308, 1.7E308] |
| 8 | BINARY | 自定义 | 记录单字节字符串,建议只用于处理 ASCII 可见字符,中文等多字节字符需使用 nchar。理论上,最长可以有 16374 字节。binary 仅支持字符串输入,字符串两端需使用单引号引用。使用时须指定大小,如 binary(20) 定义了最长为 20 个单字节字符的字符串,每个字符占 1 byte 的存储空间,总共固定占用 20 bytes 的空间,此时如果用户字符串超出 20 字节将会报错。对于字符串内的单引号,可以用转义字符反斜线加单引号来表示,即 `\’` | | 8 | BINARY | 自定义 | 记录单字节字符串,建议只用于处理 ASCII 可见字符,中文等多字节字符需使用 nchar。 |
| 9 | SMALLINT | 2 | 短整型, 范围 [-32768, 32767] | | 9 | SMALLINT | 2 | 短整型, 范围 [-32768, 32767] |
| 10 | SMALLINT UNSIGNED | 2| 无符号短整型,范围 [0, 655357] | | 10 | SMALLINT UNSIGNED | 2| 无符号短整型,范围 [0, 655357] |
| 11 | TINYINT | 1 | 单字节整型,范围 [-128, 127] | | 11 | TINYINT | 1 | 单字节整型,范围 [-128, 127] |
...@@ -42,20 +42,15 @@ CREATE DATABASE db_name PRECISION 'ns'; ...@@ -42,20 +42,15 @@ CREATE DATABASE db_name PRECISION 'ns';
| 15 | JSON | | json 数据类型, 只有 tag 可以是 json 格式 | | 15 | JSON | | json 数据类型, 只有 tag 可以是 json 格式 |
| 16 | VARCHAR | 自定义 | BINARY类型的别名 | | 16 | VARCHAR | 自定义 | BINARY类型的别名 |
:::tip
TDengine 对 SQL 语句中的英文字符不区分大小写,自动转化为小写执行。因此用户大小写敏感的字符串及密码,需要使用单引号将字符串引起来。
:::
:::note :::note
虽然 BINARY 类型在底层存储上支持字节型的二进制字符,但不同编程语言对二进制数据的处理方式并不保证一致,因此建议在 BINARY 类型中只存储 ASCII 可见字符,而避免存储不可见字符。多字节的数据,例如中文字符,则需要使用 NCHAR 类型进行保存。如果强行使用 BINARY 类型保存中文字符,虽然有时也能正常读写,但并不带有字符集信息,很容易出现数据乱码甚至数据损坏等情况。 - TDengine 对 SQL 语句中的英文字符不区分大小写,自动转化为小写执行。因此用户大小写敏感的字符串及密码,需要使用单引号将字符串引起来。
- 虽然 BINARY 类型在底层存储上支持字节型的二进制字符,但不同编程语言对二进制数据的处理方式并不保证一致,因此建议在 BINARY 类型中只存储 ASCII 可见字符,而避免存储不可见字符。多字节的数据,例如中文字符,则需要使用 NCHAR 类型进行保存。如果强行使用 BINARY 类型保存中文字符,虽然有时也能正常读写,但并不带有字符集信息,很容易出现数据乱码甚至数据损坏等情况。
- BINARY 类型理论上最长可以有 16374 字节。binary 仅支持字符串输入,字符串两端需使用单引号引用。使用时须指定大小,如 binary(20) 定义了最长为 20 个单字节字符的字符串,每个字符占 1 byte 的存储空间,总共固定占用 20 bytes 的空间,此时如果用户字符串超出 20 字节将会报错。对于字符串内的单引号,可以用转义字符反斜线加单引号来表示,即 `\’`
- SQL 语句中的数值类型将依据是否存在小数点,或使用科学计数法表示,来判断数值类型是否为整型或者浮点型,因此在使用时要注意相应类型越界的情况。例如,9999999999999999999 会认为超过长整型的上边界而溢出,而 9999999999999999999.0 会被认为是有效的浮点数。
::: :::
:::note
SQL 语句中的数值类型将依据是否存在小数点,或使用科学计数法表示,来判断数值类型是否为整型或者浮点型,因此在使用时要注意相应类型越界的情况。例如,9999999999999999999 会认为超过长整型的上边界而溢出,而 9999999999999999999.0 会被认为是有效的浮点数。
:::
## 常量 ## 常量
TDengine支持多个类型的常量,细节如下表: TDengine支持多个类型的常量,细节如下表:
......
...@@ -5,7 +5,9 @@ target_link_libraries( ...@@ -5,7 +5,9 @@ target_link_libraries(
PUBLIC sut PUBLIC sut
) )
add_test( if(NOT TD_WINDOWS)
add_test(
NAME dbTest NAME dbTest
COMMAND dbTest COMMAND dbTest
) )
endif(NOT TD_WINDOWS)
...@@ -5,7 +5,9 @@ target_link_libraries( ...@@ -5,7 +5,9 @@ target_link_libraries(
PUBLIC sut PUBLIC sut
) )
add_test( if(NOT TD_WINDOWS)
add_test(
NAME smaTest NAME smaTest
COMMAND smaTest COMMAND smaTest
) )
endif(NOT TD_WINDOWS)
...@@ -5,7 +5,9 @@ target_link_libraries( ...@@ -5,7 +5,9 @@ target_link_libraries(
PUBLIC sut PUBLIC sut
) )
add_test( if(NOT TD_WINDOWS)
add_test(
NAME stbTest NAME stbTest
COMMAND stbTest COMMAND stbTest
) )
endif(NOT TD_WINDOWS)
\ No newline at end of file
...@@ -17,9 +17,7 @@ TARGET_INCLUDE_DIRECTORIES( ...@@ -17,9 +17,7 @@ TARGET_INCLUDE_DIRECTORIES(
PUBLIC "${TD_SOURCE_DIR}/source/libs/parser/inc" PUBLIC "${TD_SOURCE_DIR}/source/libs/parser/inc"
PRIVATE "${TD_SOURCE_DIR}/source/libs/scalar/inc" PRIVATE "${TD_SOURCE_DIR}/source/libs/scalar/inc"
) )
if(NOT TD_WINDOWS) add_test(
add_test(
NAME scalarTest NAME scalarTest
COMMAND scalarTest COMMAND scalarTest
) )
endif(NOT TD_WINDOWS)
...@@ -2498,7 +2498,7 @@ TEST(ScalarFunctionTest, tanFunction_column) { ...@@ -2498,7 +2498,7 @@ TEST(ScalarFunctionTest, tanFunction_column) {
code = tanFunction(pInput, 1, pOutput); code = tanFunction(pInput, 1, pOutput);
ASSERT_EQ(code, TSDB_CODE_SUCCESS); ASSERT_EQ(code, TSDB_CODE_SUCCESS);
for (int32_t i = 0; i < rowNum; ++i) { for (int32_t i = 0; i < rowNum; ++i) {
ASSERT_EQ(*((double *)colDataGetData(pOutput->columnData, i)), result[i]); ASSERT_NEAR(*((double *)colDataGetData(pOutput->columnData, i)), result[i], 1e-15);
PRINTF("tiny_int after TAN:%f\n", *((double *)colDataGetData(pOutput->columnData, i))); PRINTF("tiny_int after TAN:%f\n", *((double *)colDataGetData(pOutput->columnData, i)));
} }
scltDestroyDataBlock(pInput); scltDestroyDataBlock(pInput);
...@@ -2517,7 +2517,7 @@ TEST(ScalarFunctionTest, tanFunction_column) { ...@@ -2517,7 +2517,7 @@ TEST(ScalarFunctionTest, tanFunction_column) {
code = tanFunction(pInput, 1, pOutput); code = tanFunction(pInput, 1, pOutput);
ASSERT_EQ(code, TSDB_CODE_SUCCESS); ASSERT_EQ(code, TSDB_CODE_SUCCESS);
for (int32_t i = 0; i < rowNum; ++i) { for (int32_t i = 0; i < rowNum; ++i) {
ASSERT_EQ(*((double *)colDataGetData(pOutput->columnData, i)), result[i]); ASSERT_NEAR(*((double *)colDataGetData(pOutput->columnData, i)), result[i], 1e-15);
PRINTF("float after TAN:%f\n", *((double *)colDataGetData(pOutput->columnData, i))); PRINTF("float after TAN:%f\n", *((double *)colDataGetData(pOutput->columnData, i)));
} }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册