diff --git a/docs-en/14-reference/04-taosadapter.md b/docs-en/14-reference/04-taosadapter.md index 55d964c14a091109d82d67f0060e846d7e513c0c..3264124655e7040e1d94b43500a0b582d95cb5a1 100644 --- a/docs-en/14-reference/04-taosadapter.md +++ b/docs-en/14-reference/04-taosadapter.md @@ -30,7 +30,7 @@ taosAdapter provides the following features. ### Install taosAdapter -taosAdapter has been part of TDengine server software since TDengine v2.4.0.0. If you use the TDengine server, you don't need additional steps to install taosAdapter. You can download taosAdapter from [TDengine official website](https://tdengine.com/all-downloads/) to download the TDengine server installation package (taosAdapter is included in v2.4.0.0 and later version). If you need to deploy taosAdapter separately on another server other than the TDengine server, you should install the full TDengine on that server to install taosAdapter. If you need to build taosAdapter from source code, you can refer to the [Building taosAdapter]( https://github.com/taosdata/taosadapter/blob/develop/BUILD.md) documentation. +taosAdapter has been part of TDengine server software since TDengine v2.4.0.0. If you use the TDengine server, you don't need additional steps to install taosAdapter. You can download taosAdapter from [TDengine official website](https://tdengine.com/all-downloads/) to download the TDengine server installation package (taosAdapter is included in v2.4.0.0 and later version). If you need to deploy taosAdapter separately on another server other than the TDengine server, you should install the full TDengine server package on that server to install taosAdapter. If you need to build taosAdapter from source code, you can refer to the [Building taosAdapter]( https://github.com/taosdata/taosadapter/blob/develop/BUILD.md) documentation. ### Start/Stop taosAdapter @@ -38,7 +38,7 @@ On Linux systems, the taosAdapter service is managed by `systemd` by default. Yo ### Remove taosAdapter -Use the command `rmtaos` to remove the TDengine server software if you use tar.gz package or use package management command like rpm or apt to remove the TDengine server, including taosAdapter. +Use the command `rmtaos` to remove the TDengine server software if you use tar.gz package. If you installed using a .deb or .rpm package, use the corresponding command, for your package manager, like apt or rpm to remove the TDengine server, including taosAdapter. ### Upgrade taosAdapter @@ -240,7 +240,7 @@ node_export is an exporter of hardware and OS metrics exposed by the \*NIX kerne ## Memory usage optimization methods -taosAdapter will monitor its memory usage during operation and adjust it with two thresholds. Valid values range from -1 to 100 integers in percent of the system's physical memory. +taosAdapter will monitor its memory usage during operation and adjust it with two thresholds. Valid values are integers between 1 to 100, and represent a percentage of the system's physical memory. - pauseQueryMemoryThreshold - pauseAllMemoryThreshold @@ -276,7 +276,7 @@ Corresponding configuration parameter monitor.pauseQueryMemoryThreshold memory threshold for no more queries Environment variable `TAOS_MONITOR_PAUSE_QUERY_MEMORY_THRESHOLD` (default 70) ``` -You can adjust it according to the specific application scenario and operation strategy, and it is recommended to use operation monitoring software to monitor system memory status timely. The load balancer can also check the taosAdapter running status through this interface. +You should adjust this parameter based on your specific application scenario and operation strategy. We recommend using monitoring software to monitor system memory status. The load balancer can also check the taosAdapter running status through this interface. ## taosAdapter Monitoring Metrics @@ -325,7 +325,7 @@ You can also adjust the level of the taosAdapter log output by setting the `--lo ## How to migrate from older TDengine versions to taosAdapter -In TDengine server 2.2.x.x or earlier, the TDengine server process (taosd) contains an embedded HTTP service. As mentioned earlier, taosAdapter is a standalone software managed using `systemd` and has its process ID. And there are some configuration parameters and behaviors that are different between the two. See the following table for details. +In TDengine server 2.2.x.x or earlier, the TDengine server process (taosd) contains an embedded HTTP service. As mentioned earlier, taosAdapter is a standalone software managed using `systemd` and has its own process ID. There are some configuration parameters and behaviors that are different between the two. See the following table for details. | **#** | **embedded httpd** | **taosAdapter** | **comment** | | ----- | ------------------- | ------------------------------------ | ------------------------------------------------------------------ ------------------------------------------------------------------------ | diff --git a/docs-en/14-reference/05-taosbenchmark.md b/docs-en/14-reference/05-taosbenchmark.md index 1e2b0b99f652bca0d775bebe28378600470f8661..b029f3d3eea0b010354dac1eb3ffecbc872e597f 100644 --- a/docs-en/14-reference/05-taosbenchmark.md +++ b/docs-en/14-reference/05-taosbenchmark.md @@ -7,7 +7,7 @@ description: "taosBenchmark (once called taosdemo ) is a tool for testing the pe ## Introduction -taosBenchmark (formerly taosdemo ) is a tool for testing the performance of TDengine products. taosBenchmark can test the performance of TDengine's insert, query, and subscription functions and simulate large amounts of data generated by many devices. taosBenchmark can flexibly control the number and type of databases, supertables, tag columns, number and type of data columns, and sub-tables, and types of databases, super tables, the number and types of data columns, the number of sub-tables, the amount of data per sub-table, the time interval for inserting data, the number of working threads, whether and how to insert disordered data, and so on. The installer provides taosdemo as a soft link to taosBenchmark for compatibility with past users. +taosBenchmark (formerly taosdemo ) is a tool for testing the performance of TDengine products. taosBenchmark can test the performance of TDengine's insert, query, and subscription functions and simulate large amounts of data generated by many devices. taosBenchmark can flexibly control the number and type of databases, supertables, tag columns, number and type of data columns, and sub-tables, and types of databases, super tables, the number and types of data columns, the number of sub-tables, the amount of data per sub-table, the time interval for inserting data, the number of working threads, whether and how to insert disordered data, and so on. The installer provides taosdemo as a soft link to taosBenchmark for compatibility and for the convenience of past users. ## Installation @@ -21,7 +21,7 @@ There are two ways to install taosBenchmark: ### Configuration and running methods -taosBenchmark supports two configuration methods: [Command-line arguments](#Command-line arguments in detailed) and [JSON configuration file](#Configuration file arguments in detailed). These two methods are mutually exclusive, and with only one command-line parameter, users can use `-f ` to specify a configuration file when using a configuration file. When running taosBenchmark with command-line arguments and controlling its behavior, users should use other parameters for configuration rather than `-f` parameter. In addition, taosBenchmark offers a special way of running without parameters. +taosBenchmark supports two configuration methods: [Command-line arguments](#Command-line arguments in detailed) and [JSON configuration file](#Configuration file arguments in detailed). These two methods are mutually exclusive. Users can use `-f ` to specify a configuration file. When running taosBenchmark with command-line arguments to control its behavior, users should use other parameters for configuration, but not the `-f` parameter. In addition, taosBenchmark offers a special way of running without parameters. taosBenchmark supports complete performance testing of TDengine. taosBenchmark supports the TDengine functions in three categories: write, query, and subscribe. These three functions are mutually exclusive, and users can select only one of them each time taosBenchmark runs. It is important to note that the type of functionality to be tested is not configurable when using the command-line configuration method, which can only test writing performance. To test the query and subscription performance of the TDengine, you must use the configuration file method and specify the function type to test via the parameter `filetype` in the configuration file. @@ -35,7 +35,7 @@ Execute the following commands to quickly experience taosBenchmark's default con taosBenchmark ``` -When run without parameters, taosBenchmark connects to the TDengine cluster specified in `/etc/taos` by default and creates a database named test in TDengine, a super table named `meters` under the test database, and 10,000 tables under the super table with 10,000 records written to each table. Note that if there is already a test database, this table is not used. Note that if there is already a test database, this command will delete it first and create a new test database. +When run without parameters, taosBenchmark connects to the TDengine cluster specified in `/etc/taos` by default and creates a database named `test`, a super table named `meters` under the test database, and 10,000 tables under the super table with 10,000 records written to each table. Note that if there is already a database named "test" this command will delete it first and create a new database. ### Run with command-line configuration parameters @@ -45,7 +45,7 @@ The `-f ` argument cannot be used when running taosBenchmark with com taosBenchmark -I stmt -n 200 -t 100 ``` -The above command, `taosBenchmark` will create a database named `test`, create a super table `meters` in it, create 100 sub-tables in the super table and insert 200 records for each sub-table using parameter binding. +Using the above command, `taosBenchmark` will create a database named `test`, create a super table `meters` in it, create 100 sub-tables in the super table and insert 200 records for each sub-table using parameter binding. ### Run with the configuration file @@ -95,10 +95,10 @@ taosBenchmark -f ## Command-line argument in detailed - **-f/--file ** : - specify the configuration file to use. This file includes All parameters. And users should not use this parameter with other parameters on the command-line. There is no default value. + specify the configuration file to use. This file includes All parameters. Users should not use this parameter with other parameters on the command-line. There is no default value. - **-c/--config-dir ** : - specify the directory where the TDengine cluster configuration file. the default path is `/etc/taos`. + specify the directory where the TDengine cluster configuration file. The default path is `/etc/taos`. - **-h/--host ** : Specify the FQDN of the TDengine server to connect to. The default value is localhost. @@ -272,13 +272,13 @@ The parameters for creating super tables are configured in `super_tables` in the - **child_table_prefix** : The prefix of the child table name, mandatory configuration item, no default value. -- **escape_character**: specify the super table and child table names containing escape characters. By default is "no". The value can be "yes" or "no". +- **escape_character**: specify the super table and child table names containing escape characters. The value can be "yes" or "no". The default is "no". - **auto_create_table**: only when insert_mode is taosc, rest, stmt, and childtable_exists is "no". "yes" means taosBenchmark will automatically create non-existent tables when inserting data; "no" means that taosBenchmark will create all tables before inserting. -- **batch_create_tbl_num** : the number of tables per batch when creating sub-tables, default is 10. Note: the actual number of batches may not be the same as this value when the executed SQL statement is larger than the maximum length supported, it will be automatically truncated and re-executed to continue creating. +- **batch_create_tbl_num** : the number of tables per batch when creating sub-tables, default is 10. Note: the actual number of batches may not be the same as this value. If the executed SQL statement is larger than the maximum length supported, it will be automatically truncated and re-executed to continue creating. -- **data_source**: specify the source of data-generating. Default is taosBenchmark randomly generated. Users can configure it as "rand" and "sample". When "sample" is used, taosBenchmark will use the data in the file specified by the `sample_file` parameter. +- **data_source**: specify the source of data-generation. Default is taosBenchmark randomly generated. Users can configure it as "rand" and "sample". When "sample" is used, taosBenchmark will use the data in the file specified by the `sample_file` parameter. - **insert_mode**: insertion mode with options taosc, rest, stmt, sml, sml-rest, corresponding to normal write, restful interface write, parameter binding interface write, schemaless interface write, restful schemaless interface write (provided by taosAdapter). The default value is taosc. @@ -300,15 +300,15 @@ The parameters for creating super tables are configured in `super_tables` in the - **partial_col_num**: If this value is a positive number n, only the first n columns are written to, only if insert_mode is taosc and rest, or all columns if n is 0. -- **disorder_ratio** : Specifies the percentage probability of disordered data in the value range [0,50]. The default is 0, which means there is no disorder data. +- **disorder_ratio** : Specifies the percentage probability of disordered (i.e. out-of-order) data in the value range [0,50]. The default is 0, which means there is no disorder data. -- **disorder_range** : Specifies the timestamp fallback range for the disordered data. The generated disorder timestamp is the timestamp that should be used in the non-disorder case minus a random value in this range. Valid only if the percentage of disordered data specified by `-O/--disorder` is greater than 0. +- **disorder_range** : Specifies the timestamp fallback range for the disordered data. The disordered timestamp is generated by subtracting a random value in this range, from the timestamp that would be used in the non-disorder case. Valid only if the percentage of disordered data specified by `-O/--disorder` is greater than 0. -- **timestamp_step**: The timestamp step for inserting data in each child table, in units consistent with the `precision` of the database, the default value is 1. +- **timestamp_step**: The timestamp step for inserting data in each child table, in units consistent with the `precision` of the database. For e.g. if the `precision` is milliseconds, the timestamp step will be in milliseconds. The default value is 1. - **start_timestamp** : The timestamp start value of each sub-table, the default value is now. -- **sample_format**: The type of the sample data file, now only "csv" is supported. +- **sample_format**: The type of the sample data file; for now only "csv" is supported. - **sample_file**: Specify a CSV format file as the data source. It only works when data_source is a sample. If the number of rows in the CSV file is less than or equal to prepared_rand, then taosBenchmark will read the CSV file data cyclically until it is the same as prepared_rand; otherwise, taosBenchmark will read only the rows with the number of prepared_rand. The final number of rows of data generated is the smaller of the two. @@ -341,7 +341,7 @@ The configuration parameters for specifying super table tag columns and data col - **create_table_thread_count** : The number of threads to build the table, default is 8. -- **connection_pool_size** : The number of pre-established connections to the TDengine server. If not configured, it is the same number of threads specified. +- **connection_pool_size** : The number of pre-established connections to the TDengine server. If not configured, it is the same as number of threads specified. - **result_file** : The path to the result output file, the default value is . /output.txt. diff --git a/docs-en/14-reference/06-taosdump.md b/docs-en/14-reference/06-taosdump.md index a7e216398a183a096678d8d70c429606d4e5f809..5403e40925f633ce62795cc6037fc8c8f7aad07a 100644 --- a/docs-en/14-reference/06-taosdump.md +++ b/docs-en/14-reference/06-taosdump.md @@ -1,16 +1,17 @@ --- title: taosdump -description: "taosdump is a tool application that supports backing up data from a running TDengine cluster and restoring the backed up data to the same or another running TDengine cluster." +description: "taosdump is a tool that supports backing up data from a running TDengine cluster and restoring the backed up data to the same, or another running TDengine cluster." --- ## Introduction -taosdump is a tool application that supports backing up data from a running TDengine cluster and restoring the backed up data to the same or another running TDengine cluster. +taosdump is a tool that supports backing up data from a running TDengine cluster and restoring the backed up data to the same, or another running TDengine cluster. taosdump can back up a database, a super table, or a normal table as a logical data unit or backup data records in the database, super tables, and normal tables. When using taosdump, you can specify the directory path for data backup. If you do not specify a directory, taosdump will back up the data to the current directory by default. -Suppose the specified location already has data files. In that case, taosdump will prompt the user and exit immediately to avoid data overwriting which means that the same path can only be used for one backup. -Please be careful if you see a prompt for this. +If the specified location already has data files, taosdump will prompt the user and exit immediately to avoid data overwriting. This means that the same path can only be used for one backup. + +Please be careful if you see a prompt for this and please ensure that you follow best practices and relevant SOPs for data integrity, backup and data security. Users should not use taosdump to back up raw data, environment settings, hardware information, server configuration, or cluster topology. taosdump uses [Apache AVRO](https://avro.apache.org/) as the data file format to store backup data. @@ -30,7 +31,7 @@ There are two ways to install taosdump: 2. backup multiple specified databases: use `-D db1,db2,... ` parameters; 3. back up some super or normal tables in the specified database: use `-dbname stbname1 stbname2 tbname1 tbname2 ... ` parameters. Note that the first parameter of this input sequence is the database name, and only one database is supported. The second and subsequent parameters are the names of super or normal tables in that database, separated by spaces. 4. back up the system log database: TDengine clusters usually contain a system database named `log`. The data in this database is the data that TDengine runs itself, and the taosdump will not back up the log database by default. If users need to back up the log database, users can use the `-a` or `-allow-sys` command-line parameter. -5. Loose mode backup: taosdump version 1.4.1 onwards provides `-n` and `-L` parameters for backing up data without using escape characters and "loose" mode, which can reduce the number of backups if table names, column names, tag names do not use This can reduce the backup data time and backup data footprint if table names, column names, and tag names do not use `escape character`. If you are unsure about using `-n` and `-L` conditions, please use the default parameters for "strict" mode backup. See the [official documentation](/taos-sql/escape) for a description of escaped characters. +5. Loose mode backup: taosdump version 1.4.1 onwards provides `-n` and `-L` parameters for backing up data without using escape characters and "loose" mode, which can reduce the number of backups if table names, column names, tag names do not use escape characters. This can also reduce the backup data time and backup data footprint. If you are unsure about using `-n` and `-L` conditions, please use the default parameters for "strict" mode backup. See the [official documentation](/taos-sql/escape) for a description of escaped characters. :::tip - taosdump versions after 1.4.1 provide the `-I` argument for parsing Avro file schema and data. If users specify `-s` then only taosdump will parse schema. @@ -58,7 +59,7 @@ Usage: taosdump [OPTION...] dbname [tbname ...] or: taosdump [OPTION...] -i inpath or: taosdump [OPTION...] -o outpath - -h, --host=HOST Server host dumping data from. Default is + -h, --host=HOST Server host from which to dump data. Default is localhost. -p, --password User password to connect to server. Default is taosdata. @@ -71,10 +72,10 @@ Usage: taosdump [OPTION...] dbname [tbname ...] -r, --resultFile=RESULTFILE DumpOut/In Result file path and name. -a, --allow-sys Allow to dump system database -A, --all-databases Dump all databases. - -D, --databases=DATABASES Dump inputted databases. Use comma to separate - databases' name. + -D, --databases=DATABASES Dump listed databases. Use comma to separate + database names. -N, --without-property Dump database without its properties. - -s, --schemaonly Only dump tables' schema. + -s, --schemaonly Only dump table schemas. -y, --answer-yes Input yes for prompt. It will skip data file checking! -d, --avro-codec=snappy Choose an avro codec among null, deflate, snappy, @@ -97,7 +98,7 @@ Usage: taosdump [OPTION...] dbname [tbname ...] and try. The workable value is related to the length of the row and type of table schema. -I, --inspect inspect avro file content and print on screen - -L, --loose-mode Using loose mode if the table name and column name + -L, --loose-mode Use loose mode if the table name and column name use letter and number only. Default is NOT. -n, --no-escape No escape char '`'. Default is using it. -T, --thread-num=THREAD_NUM Number of thread for dump in file. Default is diff --git a/docs-en/14-reference/07-tdinsight/index.md b/docs-en/14-reference/07-tdinsight/index.md index 16bae615c04ab92e4934418d6c0a3aaf1e1ccde8..cebfafa225e6e8de75ff84bb51fa664784177910 100644 --- a/docs-en/14-reference/07-tdinsight/index.md +++ b/docs-en/14-reference/07-tdinsight/index.md @@ -5,11 +5,11 @@ sidebar_label: TDinsight TDinsight is a solution for monitoring TDengine using the builtin native monitoring database and [Grafana]. -After TDengine starts, it will automatically create a monitoring database `log`. TDengine will automatically write many metrics in specific intervals into the `log` database. The metrics may include the server's CPU, memory, hard disk space, network bandwidth, number of requests, disk read/write speed, slow queries, other information like important system operations (user login, database creation, database deletion, etc.), and error alarms. With [Grafana] and [TDengine Data Source Plugin](https://github.com/taosdata/grafanaplugin/releases), TDinsight can visualize cluster status, node information, insertion and query requests, resource usage, etc., and also vnode, dnode, and mnode status, and exception alerts. Developers monitoring TDengine cluster operation status in real-time can be very convinient. This article will guide users to install the Grafana server, automatically install the TDengine data source plug-in, and deploy the TDinsight visualization panel through `TDinsight.sh` installation script. +After TDengine starts, it will automatically create a monitoring database `log`. TDengine will automatically write many metrics in specific intervals into the `log` database. The metrics may include the server's CPU, memory, hard disk space, network bandwidth, number of requests, disk read/write speed, slow queries, other information like important system operations (user login, database creation, database deletion, etc.), and error alarms. With [Grafana] and [TDengine Data Source Plugin](https://github.com/taosdata/grafanaplugin/releases), TDinsight can visualize cluster status, node information, insertion and query requests, resource usage, vnode, dnode, and mnode status, exception alerts and many other metrics. This is very convenient for developers who want to monitor TDengine cluster status in real-time. This article will guide users to install the Grafana server, automatically install the TDengine data source plug-in, and deploy the TDinsight visualization panel using the `TDinsight.sh` installation script. ## System Requirements -To deploy TDinsight, a single-node TDengine server or a multi-nodes TDengine cluster and a [Grafana] server are required. This dashboard requires TDengine 2.3.3.0 and above, with the `log` database enabled (`monitor = 1`). +To deploy TDinsight, a single-node TDengine server or a multi-node TDengine cluster and a [Grafana] server are required. This dashboard requires TDengine 2.3.3.0 and above, with the `log` database enabled (`monitor = 1`). ## Installing Grafana @@ -17,7 +17,7 @@ We recommend using the latest [Grafana] version 7 or 8 here. You can install Gra ### Installing Grafana on Debian or Ubuntu -For Debian or Ubuntu operating systems, we recommend the Grafana image repository and Use the following command to install from scratch. +For Debian or Ubuntu operating systems, we recommend the Grafana image repository and using the following command to install from scratch. ```bash sudo apt-get install -y apt-transport-https @@ -71,7 +71,7 @@ chmod +x TDinsight.sh ./TDinsight.sh ``` -This script will automatically download the latest [Grafana TDengine data source plugin](https://github.com/taosdata/grafanaplugin/releases/latest) and [TDinsight dashboard](https://grafana.com/grafana/dashboards/15167) with configurable parameters from the command-line options to the [Grafana Provisioning](https://grafana.com/docs/grafana/latest/administration/provisioning/) configuration file to automate deployment and updates, etc. With the alert setting options provided by this script, you can also get built-in support for AliCloud SMS alert notifications. +This script will automatically download the latest [Grafana TDengine data source plugin](https://github.com/taosdata/grafanaplugin/releases/latest) and [TDinsight dashboard](https://grafana.com/grafana/dashboards/15167) with configurable parameters for command-line options to the [Grafana Provisioning](https://grafana.com/docs/grafana/latest/administration/provisioning/) configuration file to automate deployment and updates, etc. With the alert setting options provided by this script, you can also get built-in support for AliCloud SMS alert notifications. Assume you use TDengine and Grafana's default services on the same host. Run `. /TDinsight.sh` and open the Grafana browser window to see the TDinsight dashboard. diff --git a/docs-en/14-reference/11-docker/index.md b/docs-en/14-reference/11-docker/index.md index f532a263d88def21bd8b0fe9c59adaf982ee2404..b7e60ab3e7f04a6078950977a563382a3524ebaa 100644 --- a/docs-en/14-reference/11-docker/index.md +++ b/docs-en/14-reference/11-docker/index.md @@ -13,7 +13,7 @@ The TDengine image starts with the HTTP service activated by default, using the docker run -d --name tdengine -p 6041:6041 tdengine/tdengine ``` -The above command starts a container named "tdengine" and maps the HTTP service end 6041 to the host port 6041. You can verify that the HTTP service provided in this container is available using the following command. +The above command starts a container named "tdengine" and maps the HTTP service port 6041 to the host port 6041. You can verify that the HTTP service provided in this container is available using the following command. ```shell curl -u root:taosdata -d "show databases" localhost:6041/rest/sql @@ -34,7 +34,7 @@ taos> show databases; Query OK, 1 row(s) in set (0.002843s) ``` -The TDengine server running in the container uses the container's hostname to establish a connection. Using TDengine CLI or various connectors (such as JDBC-JNI) to access the TDengine inside the container from outside the container is more complicated. So the above is the simplest way to access the TDengine service in the container and is suitable for some simple scenarios. Please refer to the next section if you want to access the TDengine service in the container from containerized using TDengine CLI or various connectors in some complex scenarios. +The TDengine server running in the container uses the container's hostname to establish a connection. Using TDengine CLI or various connectors (such as JDBC-JNI) to access the TDengine inside the container from outside the container is more complicated. So the above is the simplest way to access the TDengine service in the container and is suitable for some simple scenarios. Please refer to the next section if you want to access the TDengine service in the container from outside the container using TDengine CLI or various connectors for complex scenarios. ## Start TDengine on the host network @@ -42,7 +42,7 @@ The TDengine server running in the container uses the container's hostname to es docker run -d --name tdengine --network host tdengine/tdengine ``` -The above command starts TDengine on the host network and uses the host's FQDN to establish a connection instead of the container's hostname. It works too, like using `systemctl` to start TDengine on the host. If the TDengine client is already installed on the host, you can access it directly with the following command. +The above command starts TDengine on the host network and uses the host's FQDN to establish a connection instead of the container's hostname. It is the equivalent of using `systemctl` to start TDengine on the host. If the TDengine client is already installed on the host, you can access it directly with the following command. ```shell $ taos @@ -382,7 +382,7 @@ password: taosdata Suppose you want to deploy multiple taosAdapters to improve throughput and provide high availability. In that case, the recommended configuration method uses a reverse proxy such as Nginx to offer a unified access entry. For specific configuration methods, please refer to the official documentation of Nginx. Here is an example: ```docker - ersion: "3" + version: "3" networks: inter: diff --git a/docs-en/14-reference/12-config/index.md b/docs-en/14-reference/12-config/index.md index 10e23bbdb85c1aa65ffa021d3d7a7fdaf7b77b09..8ad9a474a02c5cc52559ccdc5910ad9d7b6264ae 100644 --- a/docs-en/14-reference/12-config/index.md +++ b/docs-en/14-reference/12-config/index.md @@ -78,7 +78,7 @@ taos --dump-config | Note | REST service is provided by `taosd` before 2.4.0.0 but by `taosAdapter` after 2.4.0.0, the default port of REST service is 6041 | :::note -TDengine uses continuous 13 ports, both TCP and UDP, from the port specified by `serverPort`. These ports need to be kept open if firewall is enabled. Below table describes the ports used by TDengine in details. +TDengine uses 13 continuous ports, both TCP and UDP, starting with the port specified by `serverPort`. You should ensure, in your firewall rules, that these ports are kept open. Below table describes the ports used by TDengine in details. ::: @@ -197,7 +197,7 @@ TDengine uses continuous 13 ports, both TCP and UDP, from the port specified by | Default Value | TimeZone configured in the host | :::info -To handle the data insertion and data query from multiple timezones, Unix Timestamp is used and stored TDengine. The timestamp generated from any timezones at same time is same in Unix timestamp. To make sure the time on client side can be converted to Unix timestamp correctly, the timezone must be set properly. +To handle the data insertion and data query from multiple timezones, Unix Timestamp is used and stored in TDengine. The timestamp generated from any timezones at same time is same in Unix timestamp. To make sure the time on client side can be converted to Unix timestamp correctly, the timezone must be set properly. On Linux system, TDengine clients automatically obtain timezone from the host. Alternatively, the timezone can be configured explicitly in configuration file `taos.cfg` like below. @@ -209,7 +209,7 @@ timezone Asia/Shanghai The above examples are all proper configuration for the timezone of UTC+8. On Windows system, however, `timezone Asia/Shanghai` is not supported, it must be set as `timezone UTC-8`. -The setting for timezone impacts the strings not in Unix timestamp, keywords or functions related to date/time, for example +The setting for timezone impacts strings that are not in Unix timestamp format and keywords or functions related to date/time. For example: ```sql SELECT count(*) FROM table_name WHERE TS<'2019-04-11 12:01:08'; @@ -227,7 +227,7 @@ If the timezone is UTC, it's equal to SELECT count(*) FROM table_name WHERE TS<1554984068000; ``` -To avoid the problems of using time strings, Unix timestamp can be used directly. Furthermore, time strings with timezone can be used in SQL statement, for example "2013-04-12T15:52:01.123+08:00" in RFC3339 format or "2013-04-12T15:52:01.123+0800" in ISO-8601 format, they are not influenced by timezone setting when converted to Unix timestamp. +To avoid the problems of using time strings, Unix timestamp can be used directly. Furthermore, time strings with timezone can be used in SQL statements. For example "2013-04-12T15:52:01.123+08:00" in RFC3339 format or "2013-04-12T15:52:01.123+0800" in ISO-8601 format are not influenced by timezone setting when converted to Unix timestamp. ::: @@ -244,7 +244,7 @@ A specific type "nchar" is provided in TDengine to store non-ASCII characters su The characters input on the client side are encoded using the default system encoding, which is UTF-8 on Linux, or GB18030 or GBK on some systems in Chinese, POSIX in docker, CP936 on Windows in Chinese. The encoding of the operating system in use must be set correctly so that the characters in nchar type can be converted to UCS4-LE. -The locale definition standard on Linux is: \_., for example, in "zh_CN.UTF-8", "zh" means Chinese, "CN" means China mainland, "UTF-8" means charset. On Linux andMac OSX, the charset can be set by locale in the system. On Windows system another configuration parameter `charset` must be used to configure charset because the locale used on Windows is not POSIX standard. Of course, `charset` can also be used on Linux to specify the charset. +The locale definition standard on Linux is: \_., for example, in "zh_CN.UTF-8", "zh" means Chinese, "CN" means China mainland, "UTF-8" means charset. On Linux and Mac OSX, the charset can be set by locale in the system. On Windows system another configuration parameter `charset` must be used to configure charset because the locale used on Windows is not POSIX standard. Of course, `charset` can also be used on Linux to specify the charset. ::: @@ -263,7 +263,7 @@ On Linux, if `charset` is not set in `taos.cfg`, when `taos` is started, the cha locale zh_CN.UTF-8 ``` -Besides, on Linux system, if the charset contained in `locale` is not consistent with that set by `charset`, the one who comes later in the configuration file is used. +On a Linux system, if the charset contained in `locale` is not consistent with that set by `charset`, the later setting in the configuration file takes precedence. ```title="Effective charset is GBK" locale zh_CN.UTF-8 @@ -778,7 +778,7 @@ To prevent system resource from being exhausted by multiple concurrent streams, ## HTTP Parameters :::note -HTTP server had been provided by `taosd` prior to version 2.4.0.0, now is provided by `taosAdapter` after version 2.4.0.0. +HTTP service was provided by `taosd` prior to version 2.4.0.0 and is provided by `taosAdapter` after version 2.4.0.0. The parameters described in this section are only application in versions prior to 2.4.0.0. If you are using any version from 2.4.0.0, please refer to [taosAdapter](/reference/taosadapter/). ::: diff --git a/docs-en/14-reference/13-schemaless/13-schemaless.md b/docs-en/14-reference/13-schemaless/13-schemaless.md index 2393cbe346dc5c50f19d36e8a6e3f49015a9e259..acbbb1cd3c5a7c50e226644f2de9e0e77274c6dd 100644 --- a/docs-en/14-reference/13-schemaless/13-schemaless.md +++ b/docs-en/14-reference/13-schemaless/13-schemaless.md @@ -1,11 +1,11 @@ --- title: Schemaless Writing -description: "The Schemaless write method eliminates the need to create super tables/sub tables in advance and automatically creates the storage structure corresponding to the data as it is written to the interface." +description: "The Schemaless write method eliminates the need to create super tables/sub tables in advance and automatically creates the storage structure corresponding to the data, as it is written to the interface." --- -In IoT applications, many data items are often collected for intelligent control, business analysis, device monitoring, etc. Due to the version upgrades of the application logic, or the hardware adjustment of the devices themselves, the data collection items may change frequently. To facilitate the data logging work in such cases, TDengine starting from version 2.2.0.0 provides a series of interfaces to the schemaless writing method, which eliminate the need to create super tables and subtables in advance by automatically creating the storage structure corresponding to the data as the data is written to the interface. And when necessary, schemaless writing will automatically add the required columns to ensure that the data written by the user is stored correctly. +In IoT applications, data is collected for many purposes such as intelligent control, business analysis, device monitoring and so on. Due to changes in business or functional requirements or changes in device hardware, the application logic and even the data collected may change. To provide the flexibility needed in such cases and in a rapidly changing IoT landscape, TDengine starting from version 2.2.0.0, provides a series of interfaces for the schemaless writing method. These interfaces eliminate the need to create super tables and subtables in advance by automatically creating the storage structure corresponding to the data as the data is written to the interface. When necessary, schemaless writing will automatically add the required columns to ensure that the data written by the user is stored correctly. -The schemaless writing method creates super tables and their corresponding subtables completely indistinguishable from the super tables and subtables created directly via SQL. You can write data directly to them via SQL statements. Note that the names of tables created by schemaless writing are based on fixed mapping rules for tag values, so they are not explicitly ideographic and lack readability. +The schemaless writing method creates super tables and their corresponding subtables. These are completely indistinguishable from the super tables and subtables created directly via SQL. You can write data directly to them via SQL statements. Note that the names of tables created by schemaless writing are based on fixed mapping rules for tag values, so they are not explicitly ideographic and they lack readability. ## Schemaless Writing Line Protocol @@ -76,8 +76,7 @@ If the subtable obtained by the parse line protocol does not exist, Schemaless c 8. Errors encountered throughout the processing will interrupt the writing process and return an error code. :::tip -All processing logic of schemaless will still follow TDengine's underlying restrictions on data structures, such as the total length of each row of data cannot exceed -48k bytes. See [TAOS SQL Boundary Limits](/taos-sql/limit) for specific constraints in this area. +All processing logic of schemaless will still follow TDengine's underlying restrictions on data structures, such as the total length of each row of data cannot exceed 48k bytes. See [TAOS SQL Boundary Limits](/taos-sql/limit) for specific constraints in this area. ::: ## Time resolution recognition @@ -87,7 +86,7 @@ Three specified modes are supported in the schemaless writing process, as follow | **Serial** | **Value** | **Description** | | -------- | ------------------- | ------------------------------- | | 1 | SML_LINE_PROTOCOL | InfluxDB Line Protocol | -| 2 | SML_TELNET_PROTOCOL | OpenTSDB Text Line Protocol | | 2 | SML_TELNET_PROTOCOL | OpenTSDB Text Line Protocol +| 2 | SML_TELNET_PROTOCOL | OpenTSDB Text Line Protocol | | 3 | SML_JSON_PROTOCOL | JSON protocol format | In the SML_LINE_PROTOCOL parsing mode, the user is required to specify the time resolution of the input timestamp. The available time resolutions are shown in the following table. @@ -106,8 +105,11 @@ In SML_TELNET_PROTOCOL and SML_JSON_PROTOCOL modes, the time precision is determ ## Data schema mapping rules -This section describes how data for line protocols are mapped to data with a schema. The data measurement in each line protocol is mapped to -The tag name in tag_set is the name of the tag in the data schema, and the name in field_set is the column's name. The following data is used as an example to illustrate the mapping rules. +This section describes how data for line protocols are mapped to data with a schema. The data measurement in each line protocol is mapped as follows: +- The tag name in tag_set is the name of the tag in the data schema +- The name in field_set is the column's name. + +The following data is used as an example to illustrate the mapping rules. ```json st,t1=3,t2=4,t3=t3 c1=3i64,c3="passit",c2=false,c4=4f64 1626006833639000000 @@ -139,7 +141,7 @@ st,t1=3,t2=4,t3=t3 c1=3i64,c5="pass" 1626006833639000000 st,t1=3,t2=4,t3=t3 c1=3i64,c5="passit" 1626006833640000000 ``` -The first line of the line protocol parsing will declare column c5 is a BINARY(4) field, the second line data write will extract column c5 is still a BINARY column. Still, its width is 6, then you need to increase the width of the BINARY field to be able to accommodate the new string. +The first line of the line protocol parsing will declare column c5 is a BINARY(4) field. The second line data write will parse column c5 as a BINARY column. But in the second line, c5's width is 6 so you need to increase the width of the BINARY field to be able to accommodate the new string. ```json st,t1=3,t2=4,t3=t3 c1=3i64 1626006833639000000 diff --git a/docs-en/14-reference/_collectd.mdx b/docs-en/14-reference/_collectd.mdx index 1f57d883eec9feadc3cc460bf968b0dd43fedfe8..ce88328098a181de48dcaa080ef45f228b20bf1c 100644 --- a/docs-en/14-reference/_collectd.mdx +++ b/docs-en/14-reference/_collectd.mdx @@ -25,7 +25,7 @@ The default database name written by taosAdapter is `collectd`. You can also mod #collectd collectd uses a plugin mechanism to write the collected monitoring data to different data storage software in various forms. tdengine supports both direct collection plugins and write_tsdb plugins. -#### is configured to receive data from the direct collection plugin +#### Configure the direct collection plugin Modify the relevant configuration items in the collectd configuration file (default location /etc/collectd/collectd.conf). @@ -62,7 +62,7 @@ LoadPlugin write_tsdb ``` -Where fills in the server's domain name or IP address running taosAdapter. Fill in the data that taosAdapter uses to receive the collectd write_tsdb plugin (default is 6047). +Where is the domain name or IP address of the server running taosAdapter. Fill in the data that taosAdapter uses to receive the collectd write_tsdb plugin (default is 6047). ```text LoadPlugin write_tsdb diff --git a/docs-en/14-reference/_tcollector.mdx b/docs-en/14-reference/_tcollector.mdx index 85794d54007b70acf205b1bbc897cec1d0c4f824..42b021410e3862c4fa328d8dae40dcac1456e929 100644 --- a/docs-en/14-reference/_tcollector.mdx +++ b/docs-en/14-reference/_tcollector.mdx @@ -17,7 +17,7 @@ password = "taosdata" ... ``` -The taosAdapter writes to the database with the default name `tcollector`. You can also modify the taosAdapter configuration file dbs entry to specify a different name. user and password fill in the actual TDengine configuration values. After changing the configuration file, you need to restart the taosAdapter. +The taosAdapter writes to the database with the default name `tcollector`. You can also modify the taosAdapter configuration file dbs entry to specify a different name. Fill in the actual user and password for TDengine. After changing the configuration file, you need to restart the taosAdapter. - You can also enable taosAdapter to receive tcollector data by using the taosAdapter command-line parameters or setting environment variables. @@ -25,7 +25,7 @@ The taosAdapter writes to the database with the default name `tcollector`. You c To use TCollector, you need to download its [source code](https://github.com/OpenTSDB/tcollector). Its configuration items are in its source code. Note: TCollector differs significantly from version to version, so here is an example of the latest code for the current master branch (git commit: 37ae920). -Modify the contents of the `collectors/etc/config.py` and `tcollector.py` files. Change the address of the OpenTSDB host to the domain name or IP address of the server where taosAdapter is deployed, and change the port to the port that taosAdapter supports TCollector on (default is 6049). +Modify the contents of the `collectors/etc/config.py` and `tcollector.py` files. Change the address of the OpenTSDB host to the domain name or IP address of the server where taosAdapter is deployed, and change the port to the port on which taosAdapter supports TCollector (default is 6049). Example of git diff output of source code changes. diff --git a/docs-en/20-third-party/01-grafana.mdx b/docs-en/20-third-party/01-grafana.mdx index dc2033ae6f789908d4d9f9ecd96c9396748c4400..b3cab6271001feb56714f808906cb78ba1098593 100644 --- a/docs-en/20-third-party/01-grafana.mdx +++ b/docs-en/20-third-party/01-grafana.mdx @@ -3,13 +3,13 @@ sidebar_label: Grafana title: Grafana --- -TDengine can be quickly integrated with the open-source data visualization system [Grafana](https://www.grafana.com/) to build a data monitoring and alerting system. The whole process does not require any code development. And you can visualize the contents of the data tables in TDengine on a DashBoard. +TDengine can be quickly integrated with the open-source data visualization system [Grafana](https://www.grafana.com/) to build a data monitoring and alerting system. The whole process does not require any code development. And you can visualize the contents of the data tables in TDengine on a dashboard. You can learn more about using the TDengine plugin on [GitHub](https://github.com/taosdata/grafanaplugin/blob/master/README.md). ## Prerequisites -In order for Grafana to add the TDengine data source successfully, the following preparations are required: +In order for Grafana to add the TDengine data source successfully, the following preparation is required: 1. The TDengine cluster is deployed and functioning properly 2. taosAdapter is installed and running properly. Please refer to the taosAdapter manual for details. @@ -36,7 +36,7 @@ GF_VERSION=3.1.4 wget https://github.com/taosdata/grafanaplugin/releases/download/v$GF_VERSION/tdengine-datasource-$GF_VERSION.zip ``` -Take CentOS 7.2 for example, extract the plugin package to /var/lib/grafana/plugins directory, and restart grafana. +In CentOS 7.2 for example, extract the plugin package to /var/lib/grafana/plugins directory, and restart grafana. ```bash sudo unzip tdengine-datasource-$GF_VERSION.zip -d /var/lib/grafana/plugins/ @@ -76,13 +76,13 @@ Enter the datasource configuration page, and follow the default prompts to modif - User: TDengine user name. - Password: TDengine user password. -Click `Save & Test` to test. Follows are a success. +Click `Save & Test` to test. You should see a success message if the test worked. ![TDengine Database TDinsight plugin add database 4](./grafana/add_datasource4.webp) ### Create Dashboard -Go back to the main interface to create the Dashboard, click Add Query to enter the panel query page: +Go back to the main interface to create a dashboard and click Add Query to enter the panel query page: ![TDengine Database TDinsight plugin create dashboard 1](./grafana/create_dashboard1.webp) diff --git a/docs-en/20-third-party/03-telegraf.md b/docs-en/20-third-party/03-telegraf.md index 0d563c9ff36268ac27e18e21fefed789789dc1a7..6a7aac322f9def880f58d7ed0adcc4a8f3687ed1 100644 --- a/docs-en/20-third-party/03-telegraf.md +++ b/docs-en/20-third-party/03-telegraf.md @@ -5,7 +5,7 @@ title: Telegraf writing import Telegraf from "../14-reference/_telegraf.mdx" -Telegraf is a viral metrics collection open-source software. Telegraf can collect the operation information of various components without writing any scripts to collect regularly, reducing the difficulty of data acquisition. +Telegraf is a viral, open-source, metrics collection software. Telegraf can collect the operation information of various components without having to write any scripts to collect regularly, reducing the difficulty of data acquisition. Telegraf's data can be written to TDengine by simply adding the output configuration of Telegraf to the URL corresponding to taosAdapter and modifying several configuration items. The presence of Telegraf data in TDengine can take advantage of TDengine's efficient storage query performance and clustering capabilities for time-series data. diff --git a/docs-en/20-third-party/05-collectd.md b/docs-en/20-third-party/05-collectd.md index 609e55842ab35cdc2d394663f5450f908e49f7f7..db62f2ecd1afb4936466ca0243a7e14ff294f8b6 100644 --- a/docs-en/20-third-party/05-collectd.md +++ b/docs-en/20-third-party/05-collectd.md @@ -6,7 +6,7 @@ title: collectd writing import CollectD from "../14-reference/_collectd.mdx" -collectd is a daemon used to collect system performance metric data. collectd provides various storage mechanisms to store different values. It periodically counts system performance statistics number while the system is running and storing information. You can use this information to help identify current system performance bottlenecks and predict future system load. +collectd is a daemon used to collect system performance metric data. collectd provides various storage mechanisms to store different values. It periodically counts system performance statistics while the system is running and storing information. You can use this information to help identify current system performance bottlenecks and predict future system load. You can write the data collected by collectd to TDengine by simply modifying the configuration of collectd to the domain name (or IP address) and corresponding port of the server running taosAdapter. It can take full advantage of TDengine's efficient storage query performance and clustering capability for time-series data. diff --git a/docs-en/20-third-party/06-statsd.md b/docs-en/20-third-party/06-statsd.md index bf4b6c7ab5dac4114cad0d650b2aeb026a67581c..40e927b9fd1d2eca9d454a987ac51d533eb75005 100644 --- a/docs-en/20-third-party/06-statsd.md +++ b/docs-en/20-third-party/06-statsd.md @@ -7,7 +7,7 @@ import StatsD from "../14-reference/_statsd.mdx" StatsD is a simple daemon for aggregating application metrics, which has evolved rapidly in recent years into a unified protocol for collecting application performance metrics. -You can write StatsD data to TDengine by simply modifying in the configuration file of StatsD with the domain name (or IP address) of the server running taosAdapter and the corresponding port. It can take full advantage of TDengine's efficient storage query performance and clustering capabilities for time-series data. +You can write StatsD data to TDengine by simply modifying the configuration file of StatsD with the domain name (or IP address) of the server running taosAdapter and the corresponding port. It can take full advantage of TDengine's efficient storage query performance and clustering capabilities for time-series data. ## Prerequisites diff --git a/docs-en/20-third-party/07-icinga2.md b/docs-en/20-third-party/07-icinga2.md index ba9cde8cea7504ac9df871d5f6aa42cc5c94d895..b27196dfe313b468eeb73ff4b114d9d955618c3e 100644 --- a/docs-en/20-third-party/07-icinga2.md +++ b/docs-en/20-third-party/07-icinga2.md @@ -5,7 +5,7 @@ title: icinga2 writing import Icinga2 from "../14-reference/_icinga2.mdx" -icinga2 is an open-source software monitoring host and network initially developed from the Nagios network monitoring application. Currently, icinga2 is distributed under the GNU GPL v2 license. +icinga2 is an open-source, host and network monitoring software initially developed from the Nagios network monitoring application. Currently, icinga2 is distributed under the GNU GPL v2 license. You can write the data collected by icinga2 to TDengine by simply modifying the icinga2 configuration to point to the taosAdapter server and the corresponding port, taking advantage of TDengine's efficient storage and query performance and clustering capabilities for time-series data. diff --git a/docs-en/20-third-party/09-emq-broker.md b/docs-en/20-third-party/09-emq-broker.md index 738372cabd736c0be47b4080cc2c984e5110236c..d3eafebc14e8ddc29b03abf8785a6c0a013ef014 100644 --- a/docs-en/20-third-party/09-emq-broker.md +++ b/docs-en/20-third-party/09-emq-broker.md @@ -3,7 +3,7 @@ sidebar_label: EMQX Broker title: EMQX Broker writing --- -MQTT is a popular IoT data transfer protocol, [EMQX](https://github.com/emqx/emqx) is an open-source MQTT Broker software, you can write MQTT data directly to TDengine without any code, you only need to use "rules" in EMQX Dashboard to create a simple configuration. EMQX supports saving data to TDengine by sending it to web services and provides a native TDengine driver for direct saving in the Enterprise Edition. Please refer to the [EMQX official documentation](https://www.emqx.io/docs/en/v4.4/rule/rule-engine.html) for details on how to use it.). +MQTT is a popular IoT data transfer protocol. [EMQX](https://github.com/emqx/emqx) is an open-source MQTT Broker software. You can write MQTT data directly to TDengine without any code. You only need to setup "rules" in EMQX Dashboard to create a simple configuration. EMQX supports saving data to TDengine by sending data to a web service and provides a native TDengine driver for direct saving in the Enterprise Edition. Please refer to the [EMQX official documentation](https://www.emqx.io/docs/en/v4.4/rule/rule-engine.html) for details on how to use it.). ## Prerequisites diff --git a/docs-en/21-tdinternal/01-arch.md b/docs-en/21-tdinternal/01-arch.md index 16d4b7afe26107e251a542ee24b644c1d372def0..4d8bed4d2d6b3a0404e10213aeab599767325cc2 100644 --- a/docs-en/21-tdinternal/01-arch.md +++ b/docs-en/21-tdinternal/01-arch.md @@ -5,11 +5,11 @@ title: Architecture ## Cluster and Primary Logic Unit -The design of TDengine is based on the assumption that any hardware or software system is not 100% reliable and that no single node can provide sufficient computing and storage resources to process massive data. Therefore, TDengine has been designed in a distributed and high-reliability architecture since day one of the development, so that hardware failure or software failure of any single even multiple servers will not affect the availability and reliability of the system. At the same time, through node virtualization and automatic load-balancing technology, TDengine can make the most efficient use of computing and storage resources in heterogeneous clusters to reduce hardware resources significantly. +The design of TDengine is based on the assumption that any hardware or software system is not 100% reliable and that no single node can provide sufficient computing and storage resources to process massive data. Therefore, since day one, TDengine has been designed as a natively distributed system, with high-reliability architecture. Hardware failure or software failure of a single, or even multiple servers will not affect the availability and reliability of the system. At the same time, through node virtualization and automatic load-balancing technology, TDengine can make the most efficient use of computing and storage resources in heterogeneous clusters to reduce hardware resource needs, significantly. ### Primary Logic Unit -Logical structure diagram of TDengine distributed architecture as following: +Logical structure diagram of TDengine's distributed architecture is as follows: ![TDengine Database architecture diagram](structure.webp)
Figure 1: TDengine architecture diagram
@@ -18,25 +18,25 @@ A complete TDengine system runs on one or more physical nodes. Logically, it inc **Physical node (pnode)**: A pnode is a computer that runs independently and has its own computing, storage and network capabilities. It can be a physical machine, virtual machine, or Docker container installed with OS. The physical node is identified by its configured FQDN (Fully Qualified Domain Name). TDengine relies entirely on FQDN for network communication. If you don't know about FQDN, please check [wikipedia](https://en.wikipedia.org/wiki/Fully_qualified_domain_name). -**Data node (dnode):** A dnode is a running instance of the TDengine server-side execution code taosd on a physical node. A working system must have at least one data node. A dnode contains zero to multiple logical virtual nodes (VNODE), zero or at most one logical management node (mnode). The unique identification of a dnode in the system is determined by the instance's End Point (EP). EP is a combination of FQDN (Fully Qualified Domain Name) of the physical node where the dnode is located and the network port number (Port) configured by the system. By configuring different ports, a physical node (a physical machine, virtual machine or container) can run multiple instances or have multiple data nodes. +**Data node (dnode):** A dnode is a running instance of the TDengine server-side execution code taosd on a physical node (pnode). A working system must have at least one data node. A dnode contains zero to multiple logical virtual nodes (VNODE) and zero or at most one logical management node (mnode). The unique identification of a dnode in the system is determined by the instance's End Point (EP). EP is a combination of FQDN (Fully Qualified Domain Name) of the physical node where the dnode is located and the network port number (Port) configured by the system. By configuring different ports, a physical node (a physical machine, virtual machine or container) can run multiple instances or have multiple data nodes. -**Virtual node (vnode)**: To better support data sharding, load balancing and prevent data from overheating or skewing, data nodes are virtualized into multiple virtual nodes (vnode, V2, V3, V4, etc. in the figure). Each vnode is a relatively independent work unit, which is the basic unit of time-series data storage and has independent running threads, memory space and persistent storage path. A vnode contains a certain number of tables (data collection points). When a new table is created, the system checks whether a new vnode needs to be created. The number of vnodes that can be created on a data node depends on the hardware capacities of the physical node where the data node is located. A vnode belongs to only one DB, but a DB can have multiple vnodes. In addition to the stored time-series data, a vnode also stores the schema and tag values of the included tables. A virtual node is uniquely identified in the system by the EP of the data node and the VGroup ID to which it belongs and is created and managed by the management node. +**Virtual node (vnode)**: To better support data sharding, load balancing and prevent data from overheating or skewing, data nodes are virtualized into multiple virtual nodes (vnode, V2, V3, V4, etc. in the figure). Each vnode is a relatively independent work unit, which is the basic unit of time-series data storage and has independent running threads, memory space and persistent storage path. A vnode contains a certain number of tables (data collection points). When a new table is created, the system checks whether a new vnode needs to be created. The number of vnodes that can be created on a data node depends on the capacity of the hardware of the physical node where the data node is located. A vnode belongs to only one DB, but a DB can have multiple vnodes. In addition to the stored time-series data, a vnode also stores the schema and tag values of the included tables. A virtual node is uniquely identified in the system by the EP of the data node and the VGroup ID to which it belongs and is created and managed by the management node. -**Management node (mnode)**: A virtual logical unit responsible for monitoring and maintaining the running status of all data nodes and load balancing among nodes (M in the figure). At the same time, the management node is also responsible for the storage and management of metadata (including users, databases, tables, static tags, etc.), so it is also called Meta Node. Multiple (up to 5) mnodes can be configured in a TDengine cluster, and they are automatically constructed into a virtual management node group (M0, M1, M2 in the figure). The master/slave mechanism is adopted for the mnode group and the data synchronization is carried out in a strongly consistent way. Any data update operation can only be executed on the master. The creation of mnode cluster is completed automatically by the system without manual intervention. There is at most one mnode on each dnode, which is uniquely identified by the EP of the data node to which it belongs. Each dnode automatically obtains the EP of the dnode where all mnodes in the whole cluster are located through internal messaging interaction. +**Management node (mnode)**: A virtual logical unit responsible for monitoring and maintaining the running status of all data nodes and load balancing among nodes (M in the figure). At the same time, the management node is also responsible for the storage and management of metadata (including users, databases, tables, static tags, etc.), so it is also called Meta Node. Multiple (up to 5) mnodes can be configured in a TDengine cluster, and they are automatically constructed into a virtual management node group (M0, M1, M2 in the figure). The master/slave mechanism is adopted for the mnode group and the data synchronization is carried out in a strongly consistent way. Any data update operation can only be executed on the master. The creation of mnode cluster is completed automatically by the system without manual intervention. There is at most one mnode on each dnode, which is uniquely identified by the EP of the data node to which it belongs. Each dnode automatically obtains the EP of the dnode where all mnodes in the whole cluster are located, through internal messaging interaction. -**Virtual node group (VGroup)**: Vnodes on different data nodes can form a virtual node group to ensure the high availability of the system. The virtual node group is managed in a master/slave mechanism. Write operations can only be performed on the master vnode, and then replicated to slave vnodes, thus ensuring that one single replica of data is copied on multiple physical nodes. The number of virtual nodes in a vgroup equals the number of data replicas. If the number of replicas of a DB is N, the system must have at least N data nodes. The number of replicas can be specified by the parameter `“replica”` when creating DB, and the default is 1. Using the multi-replication feature of TDengine, the same high data reliability can be achieved without the need for expensive storage devices such as disk arrays. Virtual node group is created and managed by the management node, and the management node assigns a system unique ID, aka VGroup ID. If two virtual nodes have the same vnode group ID, means that they belong to the same group and the data is backed up to each other. The number of virtual nodes in a virtual node group can be dynamically changed, allowing only one, that is, no data replication. VGroup ID is never changed. Even if a virtual node group is deleted, its ID will not be reused. +**Virtual node group (VGroup)**: Vnodes on different data nodes can form a virtual node group to ensure the high availability of the system. The virtual node group is managed in a master/slave mechanism. Write operations can only be performed on the master vnode, and then replicated to slave vnodes, thus ensuring that one single replica of data is copied on multiple physical nodes. The number of virtual nodes in a vgroup equals the number of data replicas. If the number of replicas of a DB is N, the system must have at least N data nodes. The number of replicas can be specified by the parameter `“replica”` when creating a DB, and the default is 1. Using the multi-replication feature of TDengine, the same high data reliability can be achieved without the need for expensive storage devices such as disk arrays. Virtual node groups are created and managed by the management node, and the management node assigns a system unique ID, aka VGroup ID. If two virtual nodes have the same vnode group ID, it means that they belong to the same group and the data is backed up to each other. The number of virtual nodes in a virtual node group can be dynamically changed, allowing only one, that is, no data replication. VGroup ID is never changed. Even if a virtual node group is deleted, its ID will not be reused. -**TAOSC**: TAOSC is the driver provided by TDengine to applications, which is responsible for dealing with the interaction between application and cluster, and provides the native interface of C/C++ language, which is embedded in JDBC, C #, Python, Go, Node.js language connection libraries. Applications interact with the whole cluster through TAOSC instead of directly connecting to data nodes in the cluster. This module is responsible for obtaining and caching metadata; forwarding requests for insertion, query, etc. to the correct data node; when returning the results to the application, TAOSC also needs to be responsible for the final level of aggregation, sorting, filtering and other operations. For JDBC, C/C++/C #/Python/Go/Node.js interfaces, this module runs on the physical node where the application is located. At the same time, in order to support the fully distributed RESTful interface, TAOSC has a running instance on each dnode of TDengine cluster. +**TAOSC**: TAOSC is the driver provided by TDengine to applications. It is responsible for dealing with the interaction between application and cluster, and provides the native interface for the C/C++ language. It is also embedded in the JDBC, C #, Python, Go, Node.js language connection libraries. Applications interact with the whole cluster through TAOSC instead of directly connecting to data nodes in the cluster. This module is responsible for obtaining and caching metadata; forwarding requests for insertion, query, etc. to the correct data node; when returning the results to the application, TAOSC also needs to be responsible for the final level of aggregation, sorting, filtering and other operations. For JDBC, C/C++/C#/Python/Go/Node.js interfaces, this module runs on the physical node where the application is located. At the same time, in order to support the fully distributed RESTful interface, TAOSC has a running instance on each dnode of TDengine cluster. ### Node Communication -**Communication mode**: The communication among each data node of TDengine system, and among the client driver and each data node is carried out through TCP/UDP. Considering an IoT scenario, the data writing packets are generally not large, so TDengine uses UDP in addition to TCP for transmission, because UDP is more efficient and is not limited by the number of connections. TDengine implements its own timeout, retransmission, confirmation and other mechanisms to ensure reliable transmission of UDP. For packets with a data volume of less than 15K, UDP is adopted for transmission, and TCP is automatically adopted for transmission of packets with a data volume of more than 15K or query operations. At the same time, TDengine will automatically compress/decompress the data, digital sign/authenticate the data according to the configuration and data packet. For data replication among data nodes, only TCP is used for data transportation. +**Communication mode**: The communication among each data node of TDengine system, and among the client driver and each data node is carried out through TCP/UDP. Considering an IoT scenario, the data writing packets are generally not large, so TDengine uses UDP in addition to TCP for transmission, because UDP is more efficient and is not limited by the number of connections. TDengine implements its own timeout, retransmission, confirmation and other mechanisms to ensure reliable transmission of UDP. For packets with a data volume of less than 15K, UDP is adopted for transmission, and TCP is automatically adopted for transmission of packets with a data volume of more than 15K or query operations. At the same time, TDengine will automatically compress/decompress the data, digitally sign/authenticate the data according to the configuration and data packet. For data replication among data nodes, only TCP is used for data transportation. **FQDN configuration:** A data node has one or more FQDNs, which can be specified in the system configuration file taos.cfg with the parameter “fqdn”. If it is not specified, the system will automatically use the hostname of the computer as its FQDN. If the node is not configured with FQDN, you can directly set the configuration parameter “fqdn” of the node to its IP address. However, IP is not recommended because IP address may be changed, and once it changes, the cluster will not work properly. The EP (End Point) of a data node consists of FQDN + Port. With FQDN, it is necessary to ensure the DNS service is running, or hosts files on nodes are configured properly. **Port configuration**: The external port of a data node is determined by the system configuration parameter “serverPort” in TDengine, and the port for internal communication of cluster is serverPort+5. The data replication operation among data nodes in the cluster also occupies a TCP port, which is serverPort+10. In order to support multithreading and efficient processing of UDP data, each internal and external UDP connection needs to occupy 5 consecutive ports. Therefore, the total port range of a data node will be serverPort to serverPort + 10, for a total of 11 TCP/UDP ports. To run the system, make sure that the firewall keeps these ports open. Each data node can be configured with a different serverPort. -**Cluster external connection**: TDengine cluster can accommodate one single, multiple or even thousands of data nodes. The application only needs to initiate a connection to any data node in the cluster. The network parameter required for connection is the End Point (FQDN plus configured port number) of a data node. When starting the application taos through CLI, the FQDN of the data node can be specified through the option `-h`, and the configured port number can be specified through `-p`. If the port is not configured, the system configuration parameter “serverPort” of TDengine will be adopted. +**Cluster external connection**: TDengine cluster can accommodate a single, multiple or even thousands of data nodes. The application only needs to initiate a connection to any data node in the cluster. The network parameter required for connection is the End Point (FQDN plus configured port number) of a data node. When starting the application taos through CLI, the FQDN of the data node can be specified through the option `-h`, and the configured port number can be specified through `-p`. If the port is not configured, the system configuration parameter “serverPort” of TDengine will be adopted. **Inter-cluster communication**: Data nodes connect with each other through TCP/UDP. When a data node starts, it will obtain the EP information of the dnode where the mnode is located, and then establish a connection with the mnode in the system to exchange information. There are three steps to obtain EP information of the mnode: @@ -44,11 +44,13 @@ A complete TDengine system runs on one or more physical nodes. Logically, it inc 2. Check the system configuration file taos.cfg to obtain node configuration parameters “firstEp” and “secondEp” (the node specified by these two parameters can be a normal node without mnode, in this case, the node will try to redirect to the mnode node when connected). If these two configuration parameters do not exist or do not exist in taos.cfg, or are invalid, skip to the third step; 3. Set your own EP as a mnode EP and run it independently. After obtaining the mnode EP list, the data node initiates the connection. It will successfully join the working cluster after connection. If not successful, it will try the next item in the mnode EP list. If all attempts are made, but the connection still fails, sleep for a few seconds before trying again. -**The choice of MNODE**: TDengine logically has a management node, but there is no separated execution code. The server-side only has a set of execution code taosd. So which data node will be the management node? This is determined automatically by the system without any manual intervention. The principle is as follows: when a data node starts, it will check its End Point and compare it with the obtained mnode EP List. If its EP exists in it, the data node shall start the mnode module and become a mnode. If your own EP is not in the mnode EP List, the mnode module will not start. During the system operation, due to load balancing, downtime and other reasons, mnode may migrate to the new dnode, while totally transparent without manual intervention. The modification of configuration parameters is the decision made by mnode itself according to resources usage. +**The choice of MNODE**: TDengine logically has a management node, but there is no separate execution code. The server-side only has one set of execution code, taosd. So which data node will be the management node? This is determined automatically by the system without any manual intervention. The principle is as follows: when a data node starts, it will check its End Point and compare it with the obtained mnode EP List. If its EP exists in it, the data node shall start the mnode module and become a mnode. If your own EP is not in the mnode EP List, the mnode module will not start. During the system operation, due to load balancing, downtime and other reasons, mnode may migrate to the new dnode, totally transparently and without manual intervention. The modification of configuration parameters is the decision made by mnode itself according to resources usage. -**Add new data nodes:** After the system has a data node, it has become a working system. There are two steps to add a new node into the cluster. Step1: Connect to the existing working data node using TDengine CLI, and then add the End Point of the new data node with the command "create dnode"; Step 2: In the system configuration parameter file taos.cfg of the new data node, set the “firstEp” and “secondEp” parameters to the EP of any two data nodes in the existing cluster. Please refer to the detailed user tutorial for detailed steps. In this way, the cluster will be established step by step. +**Add new data nodes:** After the system has a data node, it has become a working system. There are two steps to add a new node into the cluster. +- Step1: Connect to the existing working data node using TDengine CLI, and then add the End Point of the new data node with the command "create dnode" +- Step 2: In the system configuration parameter file taos.cfg of the new data node, set the “firstEp” and “secondEp” parameters to the EP of any two data nodes in the existing cluster. Please refer to the user tutorial for detailed steps. In this way, the cluster will be established step by step. -**Redirection**: No matter about dnode or TAOSC, the connection to the mnode shall be initiated first, but the mnode is automatically created and maintained by the system, so the user does not know which dnode is running the mnode. TDengine only requires a connection to any working dnode in the system. Because any running dnode maintains the currently running mnode EP List, when receiving a connecting request from the newly started dnode or TAOSC, if it’s not a mnode by self, it will reply to the mnode EP List back. After receiving this list, TAOSC or the newly started dnode will try to establish the connection again. When the mnode EP List changes, each data node quickly obtains the latest list and notifies TAOSC through messaging interaction among nodes. +**Redirection**: Regardless of dnode or TAOSC, the connection to the mnode is initiated first. The mnode is automatically created and maintained by the system, so the user does not know which dnode is running the mnode. TDengine only requires a connection to any working dnode in the system. Because any running dnode maintains the currently running mnode EP List, when receiving a connecting request from the newly started dnode or TAOSC, if it’s not an mnode itself, it will reply to the mnode with the EP List. After receiving this list, TAOSC or the newly started dnode will try to establish the connection again. When the mnode EP List changes, each data node quickly obtains the latest list and notifies TAOSC through messaging interaction among nodes. ### A Typical Data Writing Process @@ -58,17 +60,17 @@ To explain the relationship between vnode, mnode, TAOSC and application and thei
Figure 2: Typical process of TDengine
1. Application initiates a request to insert data through JDBC, ODBC, or other APIs. -2. TAOSC checks if meta data existing for the table in the cache. If so, go straight to Step 4. If not, TAOSC sends a get meta-data request to mnode. +2. TAOSC checks the cache to see if meta data exists for the table. If it does, it goes straight to Step 4. If not, TAOSC sends a get meta-data request to mnode. 3. Mnode returns the meta-data of the table to TAOSC. Meta-data contains the schema of the table, and also the vgroup information to which the table belongs (the vnode ID and the End Point of the dnode where the table belongs. If the number of replicas is N, there will be N groups of End Points). If TAOSC does not receive a response from the mnode for a long time, and there are multiple mnodes, TAOSC will send a request to the next mnode. 4. TAOSC initiates an insert request to master vnode. 5. After vnode inserts the data, it gives a reply to TAOSC, indicating that the insertion is successful. If TAOSC doesn't get a response from vnode for a long time, TAOSC will treat this node as offline. In this case, if there are multiple replicas of the inserted database, TAOSC will issue an insert request to the next vnode in vgroup. 6. TAOSC notifies APP that writing is successful. -For Step 2 and 3, when TAOSC starts, it does not know the End Point of mnode, so it will directly initiate a request to the configured serving End Point of the cluster. If the dnode that receives the request does not have a mnode configured, it will inform the mnode EP list in a reply message, so that TAOSC will re-issue a request to obtain meta-data to the EP of another new mnode. +For Step 2 and 3, when TAOSC starts, it does not know the End Point of mnode, so it will directly initiate a request to the configured serving End Point of the cluster. If the dnode that receives the request does not have a mnode configured, it will reply with the mnode EP list, so that TAOSC will re-issue a request to obtain meta-data to the EP of another mnode. -For Step 4 and 5, without caching, TAOSC can't recognize the master in the virtual node group, so assumes that the first vnode is the master and sends a request to it. If this vnode is not the master, it will reply to the actual master as a new target where TAOSC shall send a request to. Once the reply of successful insertion is obtained, TAOSC will cache the information of master node. +For Step 4 and 5, without caching, TAOSC can't recognize the master in the virtual node group, so assumes that the first vnode is the master and sends a request to it. If this vnode is not the master, it will reply to the actual master as a new target to which TAOSC shall send a request. Once a response of successful insertion is obtained, TAOSC will cache the information of master node. -The above is the process of inserting data, and the processes of querying and computing are the same. TAOSC encapsulates and hides all these complicated processes, and it is transparent to applications. +The above describes the process of inserting data. The processes of querying and computing are the same. TAOSC encapsulates and hides all these complicated processes, and it is transparent to applications. Through TAOSC caching mechanism, mnode needs to be accessed only when a table is accessed for the first time, so mnode will not become a system bottleneck. However, because schema and vgroup may change (such as load balancing), TAOSC will interact with mnode regularly to automatically update the cache. @@ -76,24 +78,24 @@ Through TAOSC caching mechanism, mnode needs to be accessed only when a table is ### Storage Model -The data stored by TDengine include collected time-series data, metadata related to database and tables, tag data, etc. These data are specifically divided into three parts: +The data stored by TDengine includes collected time-series data, metadata related to database and tables, tag data, etc. All of the data is specifically divided into three parts: -- Time-series data: stored in vnode and composed of data, head and last files. The amount of data is large and query amount depends on the application scenario. Out-of-order writing is allowed, but delete operation is not supported for the time being, and update operation is only allowed when database “update” parameter is set to 1. By adopting the model with **one table for each data collection point**, the data of a given time period is continuously stored, and the writing against one single table is a simple appending operation. Multiple records can be read at one time, thus ensuring the insert and query operation of a single data collection point with the best performance. -- Tag data: meta files stored in vnode. Four standard operations of create, read, update and delete are supported. The amount of data is not large. If there are N tables, there are N records, so all can be stored in memory. To make tag filtering efficient, TDengine supports multi-core and multi-threaded concurrent queries. As long as the computing resources are sufficient, even in face of millions of tables, the tag filtering results will return in milliseconds. -- Metadata: stored in mnode, including system node, user, DB, Table Schema and other information. Four standard operations of create, delete, update and read are supported. The amount of these data are not large and can be stored in memory, moreover, the query amount is not large because of the client cache. Therefore, TDengine uses centralized storage management, however, there will be no performance bottleneck. +- Time-series data: stored in vnode and composed of data, head and last files. The amount of data is large and query amount depends on the application scenario. Out-of-order writing is allowed, but delete operation is not supported for the time being, and update operation is only allowed when database “update” parameter is set to 1. By adopting the model with **one table for each data collection point**, the data of a given time period is continuously stored, and the writing against one single table is a simple appending operation. Multiple records can be read at one time, thus ensuring the best performance for both insert and query operations of a single data collection point. +- Tag data: meta files stored in vnode. Four standard operations of create, read, update and delete are supported. The amount of data is not large. If there are N tables, there are N records, so all can be stored in memory. To make tag filtering efficient, TDengine supports multi-core and multi-threaded concurrent queries. As long as the computing resources are sufficient, even with millions of tables, the tag filtering results will return in milliseconds. +- Metadata: stored in mnode and includes system node, user, DB, table schema and other information. Four standard operations of create, delete, update and read are supported. The amount of this data is not large and can be stored in memory. Moreover, the number of queries is not large because of client cache. Even though TDengine uses centralized storage management, because of the architecture, there is no performance bottleneck. -Compared with the typical NoSQL storage model, TDengine stores tag data and time-series data completely separately, which has two major advantages: +Compared with the typical NoSQL storage model, TDengine stores tag data and time-series data completely separately. This has two major advantages: -- Reduce the redundancy of tag data storage significantly: general NoSQL database or time-series database adopts K-V storage, in which Key includes a timestamp, a device ID and various tags. Each record carries these duplicated tags, so storage space is wasted. Moreover, if the application needs to add, modify or delete tags on historical data, it has to traverse the data and rewrite them again, which is extremely expensive to operate. -- Aggregate data efficiently between multiple tables: when aggregating data between multiple tables, it first finds out the tables which satisfy the filtering conditions, and then find out the corresponding data blocks of these tables to greatly reduce the data sets to be scanned, thus greatly improving the aggregation efficiency. Moreover, tag data is managed and maintained in a full-memory structure, and tag data queries in tens of millions can return in milliseconds. +- Reduces the redundancy of tag data storage significantly. General NoSQL database or time-series database adopts K-V (key-value) storage, in which the key includes a timestamp, a device ID and various tags. Each record carries these duplicated tags, so storage space is wasted. Moreover, if the application needs to add, modify or delete tags on historical data, it has to traverse the data and rewrite them again, which is an extremely expensive operation. +- Aggregate data efficiently between multiple tables: when aggregating data between multiple tables, it first finds the tables which satisfy the filtering conditions, and then finds the corresponding data blocks of these tables. This greatly reduces the data sets to be scanned which in turn improves the aggregation efficiency. Moreover, tag data is managed and maintained in a full-memory structure, and tag data queries in tens of millions can return in milliseconds. ### Data Sharding -For large-scale data management, to achieve scale-out, it is generally necessary to adopt the Partitioning or Sharding strategy. TDengine implements data sharding via vnode, and time-series data partitioning via one data file for a time range. +For large-scale data management, to achieve scale-out, it is generally necessary to adopt a Partitioning or Sharding strategy. TDengine implements data sharding via vnode, and time-series data partitioning via one data file for a time range. VNode (Virtual Data Node) is responsible for providing writing, query and computing functions for collected time-series data. To facilitate load balancing, data recovery and support heterogeneous environments, TDengine splits a data node into multiple vnodes according to its computing and storage resources. The management of these vnodes is done automatically by TDengine and is completely transparent to the application. -For a single data collection point, regardless of the amount of data, a vnode (or vnode group, if the number of replicas is greater than 1) has enough computing resource and storage resource to process (if a 16-byte record is generated per second, the original data generated in one year will be less than 0.5 G), so TDengine stores all the data of a table (a data collection point) in one vnode instead of distributing the data to two or more dnodes. Moreover, a vnode can store data from multiple data collection points (tables), and the upper limit of the tables’ quantity for a vnode is one million. By design, all tables in a vnode belong to the same DB. On a data node, unless specially configured, the number of vnodes owned by a DB will not exceed the number of system cores. +For a single data collection point, regardless of the amount of data, a vnode (or vnode group, if the number of replicas is greater than 1) has enough computing resource and storage resource to process (if a 16-byte record is generated per second, the original data generated in one year will be less than 0.5 G). So TDengine stores all the data of a table (a data collection point) in one vnode instead of distributing the data to two or more dnodes. Moreover, a vnode can store data from multiple data collection points (tables), and the upper limit of the tables’ quantity for a vnode is one million. By design, all tables in a vnode belong to the same DB. On a data node, unless specially configured, the number of vnodes owned by a DB will not exceed the number of system cores. When creating a DB, the system does not allocate resources immediately. However, when creating a table, the system will check if there is an allocated vnode with free tablespace. If so, the table will be created in the vacant vnode immediately. If not, the system will create a new vnode on a dnode from the cluster according to the current workload, and then a table. If there are multiple replicas of a DB, the system does not create only one vnode, but a vgroup (virtual data node group). The system has no limit on the number of vnodes, which is just limited by the computing and storage resources of physical nodes. @@ -101,23 +103,23 @@ The meta data of each table (including schema, tags, etc.) is also stored in vno ### Data Partitioning -In addition to vnode sharding, TDengine partitions the time-series data by time range. Each data file contains only one time range of time-series data, and the length of the time range is determined by DB's configuration parameter `“days”`. This method of partitioning by time rang is also convenient to efficiently implement the data retention policy. As long as the data file exceeds the specified number of days (system configuration parameter `“keep”`), it will be automatically deleted. Moreover, different time ranges can be stored in different paths and storage media, so as to facilitate the tiered-storage. Cold/hot data can be stored in different storage media to reduce the storage cost. +In addition to vnode sharding, TDengine partitions the time-series data by time range. Each data file contains only one time range of time-series data, and the length of the time range is determined by the database configuration parameter `“days”`. This method of partitioning by time range is also convenient to efficiently implement data retention policies. As long as the data file exceeds the specified number of days (system configuration parameter `“keep”`), it will be automatically deleted. Moreover, different time ranges can be stored in different paths and storage media, so as to facilitate tiered-storage. Cold/hot data can be stored in different storage media to significantly reduce storage costs. In general, **TDengine splits big data by vnode and time range in two dimensions** to manage the data efficiently with horizontal scalability. ### Load Balancing -Each dnode regularly reports its status (including hard disk space, memory size, CPU, network, number of virtual nodes, etc.) to the mnode (virtual management node), so mnode knows the status of the entire cluster. Based on the overall status, when the mnode finds a dnode is overloaded, it will migrate one or more vnodes to other dnodes. During the process, TDengine services keep running and the data insertion, query and computing operations are not affected. +Each dnode regularly reports its status (including hard disk space, memory size, CPU, network, number of virtual nodes, etc.) to the mnode (virtual management node) so that the mnode knows the status of the entire cluster. Based on the overall status, when the mnode finds a dnode is overloaded, it will migrate one or more vnodes to other dnodes. During the process, TDengine services keep running and the data insertion, query and computing operations are not affected. -If the mnode has not received the dnode status for a period of time, the dnode will be treated as offline. When offline lasts a certain period of time (configured by parameter `“offlineThreshold”`), the dnode will be forcibly removed from the cluster by mnode. If the number of replicas of vnodes on this dnode is greater than one, the system will automatically create new replicas on other dnodes to ensure the replica number. If there are other mnodes on this dnode and the number of mnodes replicas is greater than one, the system will automatically create new mnodes on other dnodes to ensure the replica number. +If the mnode has not received the dnode status for a period of time, the dnode will be treated as offline. If the dnode stays offline beyond the time configured by parameter `“offlineThreshold”`, the dnode will be forcibly removed from the cluster by mnode. If the number of replicas of vnodes on this dnode is greater than one, the system will automatically create new replicas on other dnodes to ensure the replica number. If there are other mnodes on this dnode and the number of mnodes replicas is greater than one, the system will automatically create new mnodes on other dnodes to ensure the replica number. -When new data nodes are added to the cluster, with new computing and storage resources are added, the system will automatically start the load balancing process. +When new data nodes are added to the cluster, with new computing and storage resources, the system will automatically start the load balancing process. The load balancing process does not require any manual intervention, and it is transparent to the application. **Note: load balancing is controlled by parameter “balance”, which determines to turn on/off automatic load balancing.** ## Data Writing and Replication Process -If a database has N replicas, thus a virtual node group has N virtual nodes, but only one as Master and all others are slaves. When the application writes a new record to system, only the Master vnode can accept the writing request. If a slave vnode receives a writing request, the system will notifies TAOSC to redirect. +If a database has N replicas, a virtual node group has N virtual nodes. But only one is the Master and all others are slaves. When the application writes a new record to system, only the Master vnode can accept the writing request. If a slave vnode receives a writing request, the system will notifies TAOSC to redirect. ### Master vnode Writing Process @@ -130,7 +132,7 @@ Master Vnode uses a writing process as follows: 2. If the system configuration parameter `“walLevel”` is greater than 0, vnode will write the original request packet into database log file WAL. If walLevel is set to 2 and fsync is set to 0, TDengine will make WAL data written immediately to ensure that even system goes down, all data can be recovered from database log file; 3. If there are multiple replicas, vnode will forward data packet to slave vnodes in the same virtual node group, and the forwarded packet has a version number with data; 4. Write into memory and add the record to “skip list”; -5. Master vnode returns a confirmation message to the application, indicating a successful writing. +5. Master vnode returns a confirmation message to the application, indicating a successful write. 6. If any of Step 2, 3 or 4 fails, the error will directly return to the application. ### Slave vnode Writing Process @@ -146,19 +148,19 @@ For a slave vnode, the write process as follows: Compared with Master vnode, slave vnode has no forwarding or reply confirmation step, means two steps less. But writing into memory and WAL is exactly the same. -### Remote Disaster Recovery and IDC Migration +### Remote Disaster Recovery and IDC (Internet Data Center) Migration -As above Master and Slave processes discussed, TDengine adopts asynchronous replication for data synchronization. This method can greatly improve the writing performance, with no obvious impact from network delay. By configuring IDC and rack number for each physical node, it can be ensured that for a virtual node group, virtual nodes are composed of physical nodes from different IDC and different racks, thus implementing remote disaster recovery without other tools. +As discussed above, TDengine writes using Master and Slave processes. TDengine adopts asynchronous replication for data synchronization. This method can greatly improve write performance, with no obvious impact from network delay. By configuring IDC and rack number for each physical node, it can be ensured that for a virtual node group, virtual nodes are composed of physical nodes from different IDC and different racks, thus implementing remote disaster recovery without other tools. -On the other hand, TDengine supports dynamic modification of the replicas number. Once the number of replicas increases, the newly added virtual nodes will immediately enter the data synchronization process. After synchronization completed, added virtual nodes can provide services. In the synchronization process, master and other synchronized virtual nodes keep serving. With this feature, TDengine can provide IDC migration without service interruption. It is only necessary to add new physical nodes to the existing IDC cluster, and then remove old physical nodes after the data synchronization is completed. +On the other hand, TDengine supports dynamic modification of the replica number. Once the number of replicas increases, the newly added virtual nodes will immediately enter the data synchronization process. After synchronization is complete, added virtual nodes can provide services. In the synchronization process, master and other synchronized virtual nodes keep serving. With this feature, TDengine can provide IDC migration without service interruption. It is only necessary to add new physical nodes to the existing IDC cluster, and then remove old physical nodes after the data synchronization is completed. -However, the asynchronous replication has a tiny time window where data can be lost. The specific scenario is as follows: +However, the asynchronous replication has a very low probability scenario where data may be lost. The specific scenario is as follows: -1. Master vnode has finished its 5-step operations, confirmed the success of writing to APP, and then went down; +1. Master vnode has finished its 5-step operations, confirmed the success of writing to APP, and then goes down; 2. Slave vnode receives the write request, then processing fails before writing to the log in Step 2; 3. Slave vnode will become the new master, thus losing one record. -In theory, for asynchronous replication, there is no guarantee to prevent data loss. However, this window is extremely small, only if mater and slave fail at the same time, and just confirm the successful write to the application before. +In theory, for asynchronous replication, there is no guarantee to prevent data loss. However, this is an extremely low probability scenario as described above. Note: Remote disaster recovery and no-downtime IDC migration are only supported by Enterprise Edition. **Hint: This function is not available yet** @@ -171,43 +173,43 @@ When a vnode starts, the roles (master, slave) are uncertain, and the data is in 1. If there’s only one replica, it’s always master 2. When all replicas are online, the one with latest version is master 3. Over half of online nodes are virtual nodes, and some virtual node is slave, it will automatically become master -4. For 2 and 3, if multiple virtual nodes meet the requirement, the first vnode in virtual node group list will be selected as master +4. For 2 and 3, if multiple virtual nodes meet the requirement, the first vnode in virtual node group list will be selected as master. ### Synchronous Replication For scenarios with strong data consistency requirements, asynchronous data replication is not applicable, because there is a small probability of data loss. So, TDengine provides a synchronous replication mechanism for users. When creating a database, in addition to specifying the number of replicas, user also needs to specify a new parameter “quorum”. If quorum is greater than one, it means that every time the Master forwards a message to the replica, it needs to wait for “quorum-1” reply confirms before informing the application that data has been successfully written in slave. If “quorum-1” reply confirms are not received within a certain period of time, the master vnode will return an error to the application. -With synchronous replication, performance of system will decrease and latency will increase. Because metadata needs strong consistent, the default for data synchronization between mnodes is synchronous replication. +With synchronous replication, performance of system will decrease and latency will increase. Because metadata needs strong consistency, the default for data synchronization between mnodes is synchronous replication. ## Caching and Persistence ### Caching -TDengine adopts a time-driven cache management strategy (First-In-First-Out, FIFO), also known as a Write-driven Cache Management Mechanism. This strategy is different from the read-driven data caching mode (Least-Recent-Used, LRU), which directly put the most recently written data in the system buffer. When the buffer reaches a threshold, the earliest data are written to disk in batches. Generally speaking, for the use of IoT data, users are most concerned about the newly generated data, that is, the current status. TDengine takes full advantage of this feature to put the most recently arrived (current state) data in the buffer. +TDengine adopts a time-driven cache management strategy (First-In-First-Out, FIFO), also known as a Write-driven Cache Management Mechanism. This strategy is different from the read-driven data caching mode (Least-Recent-Used, LRU), which directly puts the most recently written data in the system buffer. When the buffer reaches a threshold, the earliest data are written to disk in batches. Generally speaking, for the use of IoT data, users are most concerned about the most recently generated data, that is, the current status. TDengine takes full advantage of this feature to put the most recently arrived (current state) data in the buffer. -TDengine provides millisecond-level data collecting capability to users through query functions. Putting the recently arrived data directly in the buffer can respond to users' analysis query for the latest piece or batch of data more quickly, and provide faster database query response capability as a whole. In this sense, **TDengine can be used as a data cache by setting appropriate configuration parameters without deploying Redis or other additional cache systems**, which can effectively simplify the system architecture and reduce the operation costs. It should be noted that after the TDengine is restarted, the buffer of the system will be emptied, the previously cached data will be written to disk in batches, and the previously cached data will not be reloaded into the buffer as so in a proprietary key-value cache system. +TDengine provides millisecond-level data collecting capability to users through query functions. Putting the recently arrived data directly in the buffer can respond to users' analysis query for the latest piece or batch of data more quickly, and provide faster database query response capability as a whole. In this sense, **TDengine can be used as a data cache by setting appropriate configuration parameters without deploying Redis or other additional cache systems**. This can effectively simplify the system architecture and reduce operational costs. It should be noted that after TDengine is restarted, the buffer of the system will be emptied, the previously cached data will be written to disk in batches, and the previously cached data will not be reloaded into the buffer. In this sense, TDengine's cache differs from proprietary key-value cache systems. Each vnode has its own independent memory, and it is composed of multiple memory blocks of fixed size, and different vnodes are completely isolated. When writing data, similar to the writing of logs, data is sequentially added to memory, but each vnode maintains its own skip list for quick search. When more than one third of the memory block are used, the disk writing operation will start, and the subsequent writing operation is carried out in a new memory block. By this design, one third of the memory blocks in a vnode keep the latest data, so as to achieve the purpose of caching and quick search. The number of memory blocks of a vnode is determined by the configuration parameter “blocks”, and the size of memory blocks is determined by the configuration parameter “cache”. ### Persistent Storage -TDengine uses a data-driven method to write the data from buffer into hard disk for persistent storage. When the cached data in vnode reaches a certain volume, TDengine will also pull up the disk-writing thread to write the cached data into persistent storage in order not to block subsequent data writing. TDengine will open a new database log file when the data is written, and delete the old database log file after written successfully to avoid unlimited log growth. +TDengine uses a data-driven method to write the data from buffer into hard disk for persistent storage. When the cached data in vnode reaches a certain volume, TDengine will pull up the disk-writing thread to write the cached data into persistent storage so that subsequent data writing is not blocked. TDengine will open a new database log file when the data is written, and delete the old database log file after successfull persistence, to avoid unlimited log growth. -To make full use of the characteristics of time-series data, TDengine splits the data stored in persistent storage by a vnode into multiple files, each file only saves data for a fixed number of days, which is determined by the system configuration parameter `“days”`. By so, for the given start and end date of a query, you can locate the data files to open immediately without any index, thus greatly speeding up reading operations. +To make full use of the characteristics of time-series data, TDengine splits the data stored in persistent storage by a vnode into multiple files, each file only saves data for a fixed number of days, which is determined by the system configuration parameter `“days”`. Thus for given start and end dates of a query, you can locate the data files to open immediately without any index. This greatly speeds up read operations. For time-series data, there is generally a retention policy, which is determined by the system configuration parameter `“keep”`. Data files exceeding this set number of days will be automatically deleted by the system to free up storage space. Given “days” and “keep” parameters, the total number of data files in a vnode is: keep/days. The total number of data files should not be too large or too small. 10 to 100 is appropriate. Based on this principle, reasonable days can be set. In the current version, parameter “keep” can be modified, but parameter “days” cannot be modified once it is set. -In each data file, the data of a table is stored by blocks. A table can have one or more data file blocks. In a file block, data is stored in columns, occupying a continuous storage space, thus greatly improving the reading speed. The size of file block is determined by the system parameter `“maxRows”` (the maximum number of records per block), and the default value is 4096. This value should not be too large or too small. If it is too large, the data locating in search will cost longer; if too small, the index of data block is too large, and the compression efficiency will be low with slower reading speed. +In each data file, the data of a table is stored in blocks. A table can have one or more data file blocks. In a file block, data is stored in columns, occupying a continuous storage space, thus greatly improving the reading speed. The size of file block is determined by the system parameter `“maxRows”` (the maximum number of records per block), and the default value is 4096. This value should not be too large or too small. If it is too large, data location for queries will take a longer tim. If it is too small, the index of data block is too large, and the compression efficiency will be low with slower reading speed. -Each data file (with a .data postfix) has a corresponding index file (with a .head postfix). The index file has summary information of a data block for each table, recording the offset of each data block in the data file, start and end time of data and other information, so as to lead system quickly locate the data to be found. Each data file also has a corresponding last file (with a .last postfix), which is designed to prevent data block fragmentation when written in disk. If the number of written records from a table does not reach the system configuration parameter `“minRows”` (minimum number of records per block), it will be stored in the last file first. When write to disk next time, the newly written records will be merged with the records in last file and then written into data file. +Each data file (with a .data postfix) has a corresponding index file (with a .head postfix). The index file has summary information of a data block for each table, recording the offset of each data block in the data file, start and end time of data and other information which allows the system to locate the data to be found very quickly. Each data file also has a corresponding last file (with a .last postfix), which is designed to prevent data block fragmentation when written in disk. If the number of written records from a table does not reach the system configuration parameter `“minRows”` (minimum number of records per block), it will be stored in the last file first. At the next write operation to the disk, the newly written records will be merged with the records in last file and then written into data file. -When data is written to disk, it is decided whether to compress the data according to system configuration parameter `“comp”`. TDengine provides three compression options: no compression, one-stage compression and two-stage compression, corresponding to comp values of 0, 1 and 2 respectively. One-stage compression is carried out according to the type of data. Compression algorithms include delta-delta coding, simple 8B method, zig-zag coding, LZ4 and other algorithms. Two-stage compression is based on one-stage compression and compressed by general compression algorithm, which has higher compression ratio. +When data is written to disk, the system decideswhether to compress the data based on the system configuration parameter `“comp”`. TDengine provides three compression options: no compression, one-stage compression and two-stage compression, corresponding to comp values of 0, 1 and 2 respectively. One-stage compression is carried out according to the type of data. Compression algorithms include delta-delta coding, simple 8B method, zig-zag coding, LZ4 and other algorithms. Two-stage compression is based on one-stage compression and compressed by general compression algorithm, which has higher compression ratio. ### Tiered Storage -By default, TDengine saves all data in /var/lib/taos directory, and the data files of each vnode are saved in a different directory under this directory. In order to expand the storage space, minimize the bottleneck of file reading and improve the data throughput rate, TDengine can configure the system parameter “dataDir” to allow multiple mounted hard disks to be used by system at the same time. In addition, TDengine also provides the function of tiered data storage, i.e. storage on different storage media according to the time stamps of data files. For example, the latest data is stored on SSD, the data for more than one week is stored on local hard disk, and the data for more than four weeks is stored on network storage device, thus reducing the storage cost and ensuring efficient data access. The movement of data on different storage media is automatically done by the system and completely transparent to applications. Tiered storage of data is also configured through the system parameter “dataDir”. +By default, TDengine saves all data in /var/lib/taos directory, and the data files of each vnode are saved in a different directory under this directory. In order to expand the storage space, minimize the bottleneck of file reading and improve the data throughput rate, TDengine can configure the system parameter “dataDir” to allow multiple mounted hard disks to be used by system at the same time. In addition, TDengine also provides the function of tiered data storage, i.e. storage on different storage media according to the time stamps of data files. For example, the latest data is stored on SSD, the data older than a week is stored on local hard disk, and data older than four weeks is stored on network storage device. This reduces storage costs and ensures efficient data access. The movement of data on different storage media is automatically done by the system and is completely transparent to applications. Tiered storage of data is also configured through the system parameter “dataDir”. dataDir format is as follows: ``` @@ -216,7 +218,7 @@ dataDir data_path [tier_level] Where data_path is the folder path of mount point and tier_level is the media storage-tier. The higher the media storage-tier, means the older the data file. Multiple hard disks can be mounted at the same storage-tier, and data files on the same storage-tier are distributed on all hard disks within the tier. TDengine supports up to 3 tiers of storage, so tier_level values are 0, 1, and 2. When configuring dataDir, there must be only one mount path without specifying tier_level, which is called special mount disk (path). The mount path defaults to level 0 storage media and contains special file links, which cannot be removed, otherwise it will have a devastating impact on the written data. -Suppose a physical node with six mountable hard disks/mnt/disk1,/mnt/disk2, …,/mnt/disk6, where disk1 and disk2 need to be designated as level 0 storage media, disk3 and disk4 are level 1 storage media, and disk5 and disk6 are level 2 storage media. Disk1 is a special mount disk, you can configure it in/etc/taos/taos.cfg as follows: +Suppose there is a physical node with six mountable hard disks/mnt/disk1,/mnt/disk2, …,/mnt/disk6, where disk1 and disk2 need to be designated as level 0 storage media, disk3 and disk4 are level 1 storage media, and disk5 and disk6 are level 2 storage media. Disk1 is a special mount disk, you can configure it in/etc/taos/taos.cfg as follows: ``` dataDir /mnt/disk1/taos @@ -233,11 +235,11 @@ Note: Tiered Storage is only supported in Enterprise Edition ## Data Query -TDengine provides a variety of query processing functions for tables and STables. In addition to common aggregation queries, TDengine also provides window queries and statistical aggregation functions for time-series data. The query processing of TDengine needs the collaboration of client, vnode and mnode. +TDengine provides a variety of query processing functions for tables and STables. In addition to common aggregation queries, TDengine also provides window queries and statistical aggregation functions for time-series data. Query processing in TDengine needs the collaboration of client, vnode and mnode. ### Single Table Query -The parsing and verification of SQL statements are completed on the client side. SQL statements are parsed and generate an Abstract Syntax Tree (AST), which is then checksummed. Then request metadata information (table metadata) for the table specified in the query from management node (mnode). +The parsing and verification of SQL statements are completed on the client side. SQL statements are parsed and generate an Abstract Syntax Tree (AST), which is then checksummed. Then metadata information (table metadata) for the table specified is requested in the query from management node (mnode). According to the End Point information in metadata information, the query request is serialized and sent to the data node (dnode) where the table is located. After receiving the query, the dnode identifies the virtual node (vnode) pointed to and forwards the message to the query execution queue of the vnode. The query execution thread of vnode establishes the basic query execution environment, immediately returns the query request and starts executing the query at the same time. @@ -245,9 +247,9 @@ When client obtains query result, the worker thread in query execution queue of ### Aggregation by Time Axis, Downsampling, Interpolation -The remarkable feature that time-series data is different from ordinary data is that each record has a timestamp, so aggregating data with timestamps on the time axis is an important and distinct feature from common databases. From this point of view, it is similar to the window query of stream computing engine. +Time-series data is different from ordinary data in that each record has a timestamp. So aggregating data by timestamps on the time axis is an important and distinct feature of time-series databases which is different from that of common databases. It is similar to the window query of stream computing engines. -The keyword `interval` is introduced into TDengine to split fixed length time windows on time axis, and the data are aggregated based on time windows, and the data within window range are aggregated as needed. For example: +The keyword `interval` is introduced into TDengine to split fixed length time windows on the time axis. The data is aggregated based on time windows, and the data within time window ranges is aggregated as needed. For example: ```mysql select count(*) from d1001 interval(1h); @@ -265,7 +267,7 @@ For the data collected by device D1001, the number of records per hour is counte ### Multi-table Aggregation Query -TDengine creates a separate table for each data collection point, but in practical applications, it is often necessary to aggregate data from different data collection points. In order to perform aggregation operations efficiently, TDengine introduces the concept of STable. STable is used to represent a specific type of data collection point. It is a table set containing multiple tables. The schema of each table in the set is the same, but each table has its own static tag. The tags can be multiple and be added, deleted and modified at any time. Applications can aggregate or statistically operate all or a subset of tables under a STABLE by specifying tag filters, thus greatly simplifying the development of applications. The process is shown in the following figure: +TDengine creates a separate table for each data collection point, but in practical applications, it is often necessary to aggregate data from different data collection points. In order to perform aggregation operations efficiently, TDengine introduces the concept of STable (super table). STable is used to represent a specific type of data collection point. It is a table set containing multiple tables. The schema of each table in the set is the same, but each table has its own static tag. There can be multiple tags which can be added, deleted and modified at any time. Applications can aggregate or statistically operate on all or a subset of tables under a STABLE by specifying tag filters. This greatly simplifies the development of applications. The process is shown in the following figure: ![TDengine Database Diagram of multi-table aggregation query](multi_tables.webp)
Figure 5: Diagram of multi-table aggregation query
@@ -274,12 +276,12 @@ TDengine creates a separate table for each data collection point, but in practic 2. TAOSC sends the STable name to Meta Node(management node); 3. Management node sends the vnode list owned by the STable back to TAOSC; 4. TAOSC sends the computing request together with tag filters to multiple data nodes corresponding to these vnodes; -5. Each vnode first finds out the set of tables within its own node that meet the tag filters from memory, then scans the stored time-series data, completes corresponding aggregation calculations, and returns result to TAOSC; +5. Each vnode first finds the set of tables within its own node that meet the tag filters from memory, then scans the stored time-series data, completes corresponding aggregation calculations, and returns result to TAOSC; 6. TAOSC finally aggregates the results returned by multiple data nodes and send them back to application. -Since TDengine stores tag data and time-series data separately in vnode, by filtering tag data in memory, the set of tables that need to participate in aggregation operation is first found, which greatly reduces the volume of data scanned and improves aggregation speed. At the same time, because the data is distributed in multiple vnodes/dnodes, the aggregation operation is carried out concurrently in multiple vnodes, which further improves the aggregation speed. Aggregation functions for ordinary tables and most operations are applicable to STables. The syntax is exactly the same. Please see TAOS SQL for details. +Since TDengine stores tag data and time-series data separately in vnode, by filtering tag data in memory, the set of tables that need to participate in aggregation operation is first found, which reduces the volume of data to be scanned and improves aggregation speed. At the same time, because the data is distributed in multiple vnodes/dnodes, the aggregation operation is carried out concurrently in multiple vnodes, which further improves the aggregation speed. Aggregation functions for ordinary tables and most operations are applicable to STables. The syntax is exactly the same. Please see TAOS SQL for details. ### Precomputation -In order to effectively improve the performance of query processing, based-on the unchangeable feature of IoT data, statistical information of data stored in data block is recorded in the head of data block, including max value, min value, and sum. We call it a precomputing unit. If the query processing involves all the data of a whole data block, the pre-calculated results are directly used, and no need to read the data block contents at all. Since the amount of pre-calculated data is much smaller than the actual size of data block stored on disk, for query processing with disk IO as bottleneck, the use of pre-calculated results can greatly reduce the pressure of reading IO and accelerate the query process. The precomputation mechanism is similar to the index BRIN (Block Range Index) of PostgreSQL. +In order to effectively improve the performance of query processing, based-on the unchangeable feature of IoT data, statistical information of data stored in data block is recorded in the head of data block, including max value, min value, and sum. We call it a precomputing unit. If the query processing involves all the data of a whole data block, the pre-calculated results are directly used, and no need to read the data block contents at all. Since the amount of pre-calculated data is much smaller than the actual size of data block stored on disk, for query processing with disk IO as bottleneck, the use of pre-calculated results can greatly reduce the pressure of reading IO and accelerate the query process. The precomputation mechanism is similar to the BRIN (Block Range Index) of PostgreSQL. diff --git a/docs-en/25-application/01-telegraf.md b/docs-en/25-application/01-telegraf.md index 6a57145cd3d82ca5ec1ab828bfc7b6270bbe9d47..d30a23fe1b942e1411e8b5f1320e1c54ae2b407f 100644 --- a/docs-en/25-application/01-telegraf.md +++ b/docs-en/25-application/01-telegraf.md @@ -5,16 +5,16 @@ title: Quickly Build IT DevOps Visualization System with TDengine + Telegraf + G ## Background -TDengine is a big data platform designed and optimized for IoT (Internet of Things), Vehicle Telematics, Industrial Internet, IT DevOps, etc. by TAOSData. Since it opened its source code in July 2019, it has won the favor of a large number of time-series data developers with its innovative data modeling design, convenient installation, easy-to-use programming interface, and powerful data writing and query performance. +TDengine is a big data platform designed and optimized for IoT (Internet of Things), Vehicle Telemetry, Industrial Internet, IT DevOps and other applications. Since it was open-sourced in July 2019, it has won the favor of a large number of time-series data developers with its innovative data modeling design, convenient installation, easy-to-use programming interface, and powerful data writing and query performance. IT DevOps metric data usually are time sensitive, for example: - System resource metrics: CPU, memory, IO, bandwidth, etc. - Software system metrics: health status, number of connections, number of requests, number of timeouts, number of errors, response time, service type, and other business-related metrics. -Current mainstream IT DevOps system usually include a data collection module, a data persistent module, and a visualization module; Telegraf and Grafana are one of the most popular data collection modules and visualization modules, respectively. The data persistent module is available in a wide range of options, with OpenTSDB or InfluxDB being the most popular. TDengine, as an emerging time-series big data platform, has the advantages of high performance, high reliability, easy management and easy maintenance. +Current mainstream IT DevOps system usually include a data collection module, a data persistent module, and a visualization module; Telegraf and Grafana are one of the most popular data collection modules and visualization modules, respectively. The data persistence module is available in a wide range of options, with OpenTSDB or InfluxDB being the most popular. TDengine, as an emerging time-series big data platform, has the advantages of high performance, high reliability, easy management and easy maintenance. -This article introduces how to quickly build a TDengine + Telegraf + Grafana based IT DevOps visualization system without writing even a single line of code and by simply modifying a few lines of configuration files. The architecture is as follows. +This article introduces how to quickly build a TDengine + Telegraf + Grafana based IT DevOps visualization system without writing even a single line of code and by simply modifying a few lines in configuration files. The architecture is as follows. ![TDengine Database IT-DevOps-Solutions-Telegraf](./IT-DevOps-Solutions-Telegraf.webp) @@ -79,5 +79,5 @@ Click on the plus icon on the left and select `Import` to get the data from `htt ## Wrap-up -The above demonstrates how to quickly build a IT DevOps visualization system. Thanks to the new schemaless protocol parsing feature in TDengine version 2.4.0.0 and the powerful ecological software adaptation capability, users can build an efficient and easy-to-use IT DevOps visualization system in just a few minutes. +The above demonstrates how to quickly build a IT DevOps visualization system. Thanks to the new schemaless protocol parsing feature in TDengine version 2.4.0.0 and ability to integrate easily with a large software ecosystem, users can build an efficient and easy-to-use IT DevOps visualization system in just a few minutes. Please refer to the official documentation and product implementation cases for other features. diff --git a/docs-en/25-application/02-collectd.md b/docs-en/25-application/02-collectd.md index 963881eafa6e5085eab951c1b1ab54faeba1fa7b..1733ed1b1af8c9375c3773d1ca86831396499a78 100644 --- a/docs-en/25-application/02-collectd.md +++ b/docs-en/25-application/02-collectd.md @@ -5,17 +5,17 @@ title: Quickly build an IT DevOps visualization system using TDengine + collectd ## Background -TDengine is a big data platform designed and optimized for IoT (Internet of Things), Vehicle Telematics, Industrial Internet, IT DevOps, etc. by TAOSData. Since it opened its source code in July 2019, it has won the favor of a large number of time-series data developers with its innovative data modeling design, convenient installation, easy-to-use programming interface, and powerful data writing and query performance. +TDengine is a big data platform designed and optimized for IoT (Internet of Things), Vehicle Telemetry, Industrial Internet, IT DevOps and other applications. Since it was open-sourced in July 2019, it has won the favor of a large number of time-series data developers with its innovative data modeling design, convenient installation, easy-to-use programming interface, and powerful data writing and query performance. IT DevOps metric data usually are time sensitive, for example: - System resource metrics: CPU, memory, IO, bandwidth, etc. - Software system metrics: health status, number of connections, number of requests, number of timeouts, number of errors, response time, service type, and other business-related metrics. -The current mainstream IT DevOps visualization system usually contains a data collection module, a data persistent module, and a visual display module. collectd/StatsD, as an old-fashion open source data collection tool, has a wide user base. However, collectd/StatsD has limited functionality, and often needs to be combined with Telegraf, Grafana, and a time-series database to build a complete monitoring system. +The current mainstream IT DevOps visualization system usually contains a data collection module, a data persistence module, and a visual display module. collectd/StatsD, as an old-fashion open source data collection tool, has a wide user base. However, collectd/StatsD has limited functionality, and often needs to be combined with Telegraf, Grafana, and a time-series database to build a complete monitoring system. The new version of TDengine supports multiple data protocols and can accept data from collectd and StatsD directly, and provides Grafana dashboard for graphical display. -This article introduces how to quickly build an IT DevOps visualization system based on TDengine + collectd / StatsD + Grafana without writing even a single line of code but by simply modifying a few lines of configuration files. The architecture is shown in the following figure. +This article introduces how to quickly build an IT DevOps visualization system based on TDengine + collectd / StatsD + Grafana without writing even a single line of code but by simply modifying a few lines in configuration files. The architecture is shown in the following figure. ![TDengine Database IT-DevOps-Solutions-Collectd-StatsD](./IT-DevOps-Solutions-Collectd-StatsD.webp) @@ -99,6 +99,6 @@ Download the dashboard json from `https://github.com/taosdata/grafanaplugin/blob ## Wrap-up -TDengine, as an emerging time-series big data platform, has the advantages of high performance, high reliability, easy management and easy maintenance. Thanks to the new schemaless protocol parsing function in TDengine version 2.4.0.0 and the powerful ecological software adaptation capability, users can build an efficient and easy-to-use IT DevOps visualization system or adapt to an existing system in just a few minutes. +TDengine, as an emerging time-series big data platform, has the advantages of high performance, high reliability, easy management and easy maintenance. Thanks to the new schemaless protocol parsing feature in TDengine version 2.4.0.0 and ability to integrate easily with a large software ecosystem, users can build an efficient and easy-to-use IT DevOps visualization system, or adapt an existing system, in just a few minutes. For TDengine's powerful data writing and querying performance and other features, please refer to the official documentation and successful product implementation cases.