提交 09913616 编写于 作者: F freemine

Merge remote-tracking branch 'upstream/develop' into with-http-parser

......@@ -6,10 +6,10 @@ TDengine是涛思数据面对高速增长的物联网大数据市场和技术挑
TDengine的模块之一是时序数据库。但除此之外,为减少研发的复杂度、系统维护的难度,TDengine还提供缓存、消息队列、订阅、流式计算等功能,为物联网、工业互联网大数据的处理提供全栈的技术方案,是一个高效易用的物联网大数据平台。与Hadoop等典型的大数据平台相比,它具有如下鲜明的特点:
* __10倍以上的性能提升__:定义了创新的数据存储结构,单核每秒就能处理至少2万次请求,插入数百万个数据点,读出一千万以上数据点,比现有通用数据库快了十倍以上。
* __硬件或云服务成本降至1/5__:由于超强性能,计算资源不到通用大数据方案的1/5;通过列式存储和先进的压缩算法,存储空间不到通用数据库的1/10
* __全栈时序数据处理引擎__:将数据库、消息队列、缓存、流式计算等功能融合一起,应用无需再集成Kafka/Redis/HBase/Spark/HDFS等软件,大幅降低应用开发和维护的复杂度成本。
* __强大的分析功能__:无论是十年前还是一秒钟前的数据,指定时间范围即可查询。数据可在时间轴上或多个设备上进行聚合。临时查询可通过Shell, Python, R, Matlab随时进行。
* __10倍以上的性能提升__:定义了创新的数据存储结构,单核每秒能处理至少2万次请求,插入数百万个数据点,读出一千万以上数据点,比现有通用数据库快十倍以上。
* __硬件或云服务成本降至1/5__:由于超强性能,计算资源不到通用大数据方案的1/5;通过列式存储和先进的压缩算法,存储空间不到通用数据库的1/10
* __全栈时序数据处理引擎__:将数据库、消息队列、缓存、流式计算等功能融为一体,应用无需再集成Kafka/Redis/HBase/Spark/HDFS等软件,大幅降低应用开发和维护的复杂度成本。
* __强大的分析功能__:无论是十年前还是一秒钟前的数据,指定时间范围即可查询。数据可在时间轴上或多个设备上进行聚合。即席查询可通过Shell, Python, R, Matlab随时进行。
* __与第三方工具无缝连接__:不用一行代码,即可与Telegraf, Grafana, EMQ, Prometheus, Matlab, R等集成。后续将支持OPC, Hadoop, Spark等, BI工具也将无缝连接。
* __零运维成本、零学习成本__:安装、集群一秒搞定,无需分库分表,实时备份。标准SQL,支持JDBC, RESTful, 支持Python/Java/C/C++/Go, 与MySQL相似,零学习成本。
......@@ -21,7 +21,7 @@ TDengine的模块之一是时序数据库。但除此之外,为减少研发的
### 数据源特点和需求
从数据源角度,设计人员可以从已经角度分析TDengine在目标应用系统里面的适用性。
从数据源角度,设计人员可以从下面几个角度分析TDengine在目标应用系统里面的适用性。
|数据源特点和需求|不适用|可能适用|非常适用|简单说明|
|---|---|---|---|---|
......@@ -33,14 +33,14 @@ TDengine的模块之一是时序数据库。但除此之外,为减少研发的
|系统架构要求|不适用|可能适用|非常适用|简单说明|
|---|---|---|---|---|
|要求简单可靠的系统架构| | | √ |TDengine的系统架构非常简单可靠,自带消息队列,缓存,流式计算,监控等功能,无需集成额外的第三方产品。|
|要求容错和高可靠| | | √ |TDengine的集群功能,自动提供容错灾备等高可靠功能|
|标准化规范| | | √ |TDengine使用标准的SQL语言提供主要功能,遵守标准化规范|
|要求容错和高可靠| | | √ |TDengine的集群功能,自动提供容错灾备等高可靠功能|
|标准化规范| | | √ |TDengine使用标准的SQL语言提供主要功能,遵守标准化规范|
### 系统功能需求
|系统功能需求|不适用|可能适用|非常适用|简单说明|
|---|---|---|---|---|
|要求完整的内置数据处理算法| | √ | |TDengine的实现了通用的数据处理算法,但是还没有做到妥善处理各行各业的所有要求,因此特殊类型的处理还需要应用层面处理。|
|需要大量的交叉查询处理| | √ | |这种类型的处理更多应该用关系型数据系统处理,或者应该考虑TDengine和关系型数据系统配合实现系统功能|
|需要大量的交叉查询处理| | √ | |这种类型的处理更多应该用关系型数据系统处理,或者应该考虑TDengine和关系型数据系统配合实现系统功能|
### 系统性能需求
|系统性能需求|不适用|可能适用|非常适用|简单说明|
......@@ -53,8 +53,8 @@ TDengine的模块之一是时序数据库。但除此之外,为减少研发的
|系统维护需求|不适用|可能适用|非常适用|简单说明|
|---|---|---|---|---|
|要求系统可靠运行| | | √ |TDengine的系统架构非常稳定可靠,日常维护也简单便捷,对维护人员的要求简洁明了,最大程度上杜绝人为错误和事故。|
|要求运维学习成本可控| | | √ |同上|
|要求市场有大量人才储备| √ | | |TDengine作为新一代产品,目前人才市场里面有经验的人员还有限。但是学习成本低,我们作为厂家也提供运维的培训和辅助服务|
|要求运维学习成本可控| | | √ |同上|
|要求市场有大量人才储备| √ | | |TDengine作为新一代产品,目前人才市场里面有经验的人员还有限。但是学习成本低,我们作为厂家也提供运维的培训和辅助服务|
## TDengine 性能指标介绍和验证方法
......@@ -59,7 +59,7 @@ systemctl status taosd
## TDengine命令行程序
执行TDengine命令行程序,您只要在Linux终端执行`taos`即可
执行TDengine命令行程序,您只要在Linux终端执行`taos`即可
```cmd
taos
......@@ -74,9 +74,9 @@ taos>
在TDengine终端中,用户可以通过SQL命令来创建/删除数据库、表等,并进行插入查询操作。在终端中运行的SQL语句需要以分号结束来运行。示例:
```mysql
create database db;
use db;
create table t (ts timestamp, cdata int);
create database demo;
use demo;
create table t (ts timestamp, speed int);
insert into t values ('2019-07-15 00:00:00', 10);
insert into t values ('2019-07-15 01:00:00', 20);
select * from t;
......
......@@ -13,7 +13,10 @@ CREATE DATABASE power KEEP 365 DAYS 10 REPLICA 3 BLOCKS 4;
```
上述语句将创建一个名为power的库,这个库的数据将保留365天(超过365天将被自动删除),每10天一个数据文件,副本数为3, 内存块数为4。详细的语法及参数请见<a href="https://www.taosdata.com/cn/documentation20/taos-sql/">TAOS SQL </a>
注意:任何一张表或超级表是属于一个库的,在创建表之前,必须先创建库。
**注意:**
- 任何一张表或超级表是属于一个库的,在创建表之前,必须先创建库。
- 处于两个不同库的表是不能进行JOIN操作的。
## 创建超级表
一个物联网系统,往往存在多种类型的设备,比如对于电网,存在智能电表、变压器、母线、开关等等。为便于多表之间的聚合,使用TDengine, 需要对每个类型的设备创建一超级表。以表一中的智能电表为例,可以使用如下的SQL命令创建超级表:
......@@ -33,6 +36,7 @@ CREATE TABLE d1001 USING meters TAGS ("Beijing.Chaoyang", 2);
TDengine建议将数据采集点的全局唯一ID作为表名(比如设备序列号)。但对于有的场景,并没有唯一的ID,可以将多个ID组合成一个唯一的ID。不建议将具有唯一性的ID作为标签值。
**自动建表**:在某些特殊场景中,用户在写数据时并不确定某个数据采集点的表是否存在,此时可在写入数据时使用自动建表语法来创建不存在的表,若该表已存在则不会建立新表。比如:
```cmd
......@@ -40,5 +44,6 @@ INSERT INTO d1001 USING METERS TAGS ("Beijng.Chaoyang", 2) VALUES (now, 10.2, 21
```
上述SQL语句将记录(now, 10.2, 219, 0.32) 插入进表d1001。如果表d1001还未创建,则使用超级表meters做模板自动创建,同时打上标签值“Beijing.Chaoyang", 2。
**多列模型**:TDengine支持多列模型,只要这些物理量是同时采集的,这些量就可以作为不同列放在同一张表里。有的数据采集点有多组采集量,每一组的数据采集时间是不一样的,这时需要对同一个采集点建多张表。但还有一种极限的设计,单列模型,无论是否同时采集,每个采集的物理量单独建表。TDengine建议,只要采集时间一致,就采用多列模型,因为插入效率以及存储效率更高。
......@@ -59,7 +59,7 @@ Query OK, 2 row(s) in set (0.002136s)
物联网场景里,经常需要通过降采样(down sampling)将采集的数据按时间段进行聚合。TDengine 提供了一个简便的关键词 interval 让按照时间窗口的查询操作变得极为简单。比如,将智能电表 d1001 采集的电流值每10秒钟求和
```mysql
taos> SELECT sum(current) FROM d1001 INTERVAL(10s) ;
taos> SELECT sum(current) FROM d1001 INTERVAL(10s);
ts | sum(current) |
======================================================
2018-10-03 14:38:00.000 | 10.300000191 |
......@@ -68,7 +68,7 @@ Query OK, 2 row(s) in set (0.000883s)
```
降采样操作也适用于超级表,比如:将所有智能电表采集的电流值每秒钟求和
```mysql
taos> SELECT SUM(current) FROM meters INTERVAL(1s) ;
taos> SELECT SUM(current) FROM meters INTERVAL(1s);
ts | sum(current) |
======================================================
2018-10-03 14:38:04.000 | 10.199999809 |
......
......@@ -59,7 +59,7 @@ TDengine缺省的时间戳是毫秒精度,但通过修改配置参数enableMic
- **创建数据库**
```mysql
CREATE DATABASE [IF NOT EXISTS] db_name [KEEP keep]
CREATE DATABASE [IF NOT EXISTS] db_name [KEEP keep];
```
说明:
......@@ -71,21 +71,21 @@ TDengine缺省的时间戳是毫秒精度,但通过修改配置参数enableMic
- **使用数据库**
```mysql
USE db_name
USE db_name;
```
使用/切换数据库
- **删除数据库**
```mysql
DROP DATABASE [IF EXISTS] db_name
DROP DATABASE [IF EXISTS] db_name;
```
删除数据库。所包含的全部数据表将被删除,谨慎使用
- **显示系统所有数据库**
```mysql
SHOW DATABASES
SHOW DATABASES;
```
......@@ -93,7 +93,7 @@ TDengine缺省的时间戳是毫秒精度,但通过修改配置参数enableMic
- **创建数据表**
```mysql
CREATE TABLE [IF NOT EXISTS] tb_name (timestamp_field_name TIMESTAMP, field1_name data_type1 [, field2_name data_type2 ...])
CREATE TABLE [IF NOT EXISTS] tb_name (timestamp_field_name TIMESTAMP, field1_name data_type1 [, field2_name data_type2 ...]);
```
说明:
1) 表的第一个字段必须是TIMESTAMP,并且系统自动将其设为主键;
......@@ -104,13 +104,13 @@ TDengine缺省的时间戳是毫秒精度,但通过修改配置参数enableMic
- **删除数据表**
```mysql
DROP TABLE [IF EXISTS] tb_name
DROP TABLE [IF EXISTS] tb_name;
```
- **显示当前数据库下的所有数据表信息**
```mysql
SHOW TABLES [LIKE tb_name_wildcar]
SHOW TABLES [LIKE tb_name_wildcar];
```
显示当前数据库下的所有数据表信息。说明:可在like中使用通配符进行名称的匹配。 通配符匹配:1)’%’ (百分号)匹配0到任意个字符;2)’_’下划线匹配一个字符。
......@@ -119,13 +119,13 @@ TDengine缺省的时间戳是毫秒精度,但通过修改配置参数enableMic
- **获取表的结构信息**
```mysql
DESCRIBE tb_name
DESCRIBE tb_name;
```
- **表增加列**
```mysql
ALTER TABLE tb_name ADD COLUMN field_name data_type
ALTER TABLE tb_name ADD COLUMN field_name data_type;
```
说明:
1) 列的最大个数为1024,最小个数为2;
......@@ -134,7 +134,7 @@ TDengine缺省的时间戳是毫秒精度,但通过修改配置参数enableMic
- **表删除列**
```mysql
ALTER TABLE tb_name DROP COLUMN field_name
ALTER TABLE tb_name DROP COLUMN field_name;
```
如果表是通过[超级表](../super-table/)创建,更改表结构的操作只能对超级表进行。同时针对超级表的结构更改对所有通过该结构创建的表生效。对于不是通过超级表创建的表,可以直接修改表结构
......@@ -142,7 +142,7 @@ TDengine缺省的时间戳是毫秒精度,但通过修改配置参数enableMic
- **创建超级表**
```mysql
CREATE TABLE [IF NOT EXISTS] stb_name (timestamp_field_name TIMESTAMP, field1_name data_type1 [, field2_name data_type2 ...]) TAGS (tag1_name tag_type1, tag2_name tag_type2 [, tag3_name tag_type3])
CREATE TABLE [IF NOT EXISTS] stb_name (timestamp_field_name TIMESTAMP, field1_name data_type1 [, field2_name data_type2 ...]) TAGS (tag1_name tag_type1, tag2_name tag_type2 [, tag3_name tag_type3]);
```
创建STable, 与创建表的SQL语法相似,但需指定TAGS字段的名称和类型
......@@ -155,61 +155,61 @@ TDengine缺省的时间戳是毫秒精度,但通过修改配置参数enableMic
- **删除超级表**
```mysql
DROP TABLE [IF EXISTS] stb_name
DROP TABLE [IF EXISTS] stb_name;
```
删除STable会自动删除通过STable创建的字表。
- **显示当前数据库下的所有超级表信息**
```mysql
SHOW STABLES [LIKE tb_name_wildcar]
SHOW STABLES [LIKE tb_name_wildcar];
```
查看数据库内全部STable,及其相关信息,包括STable的名称、创建时间、列数量、标签(TAG)数量、通过该STable建表的数量。
- **获取超级表的结构信息**
```mysql
DESCRIBE stb_name
DESCRIBE stb_name;
```
- **超级表增加列**
```mysql
ALTER TABLE stb_name ADD COLUMN field_name data_type
ALTER TABLE stb_name ADD COLUMN field_name data_type;
```
- **超级表删除列**
```mysql
ALTER TABLE stb_name DROP COLUMN field_name
ALTER TABLE stb_name DROP COLUMN field_name;
```
## 超级表 STable 中 TAG 管理
- **添加标签**
```mysql
ALTER TABLE stb_name ADD TAG new_tag_name tag_type
ALTER TABLE stb_name ADD TAG new_tag_name tag_type;
```
为STable增加一个新的标签,并指定新标签的类型。标签总数不能超过128个,总长度不超过16k个字符.
- **删除标签**
```mysql
ALTER TABLE stb_name DROP TAG tag_name
ALTER TABLE stb_name DROP TAG tag_name;
```
删除超级表的一个标签,从超级表删除某个标签后,该超级表下的所有子表也会自动删除该标签。
- **修改标签名**
```mysql
ALTER TABLE stb_name CHANGE TAG old_tag_name new_tag_name
ALTER TABLE stb_name CHANGE TAG old_tag_name new_tag_name;
```
修改超级表的标签名,从超级表修改某个标签名后,该超级表下的所有子表也会自动更新该标签名。
- **修改字表标签值**
```mysql
ALTER TABLE tb_name SET TAG tag_name=new_tag_value
ALTER TABLE tb_name SET TAG tag_name=new_tag_value;
```
说明:除了更新标签的值的操作是针对子表进行,其他所有的标签操作(添加标签、删除标签等)均只能作用于STable,不能对单个子表操作。对STable添加标签以后,依托于该STable建立的所有表将自动增加了一个标签,所有新增标签的默认值都是NULL。
......@@ -253,8 +253,8 @@ TDengine缺省的时间戳是毫秒精度,但通过修改配置参数enableMic
- **同时向多个表按列插入多条记录**
```mysql
INSERT INTO tb1_name (tb1_field1_name, ...) VALUES (field1_value1, ...) (field1_value1, ...)
tb2_name (tb2_field1_name, ...) VALUES(field1_value1, ...) (field1_value2, ...)
INSERT INTO tb1_name (tb1_field1_name, ...) VALUES (field1_value1, ...) (field1_value2, ...)
tb2_name (tb2_field1_name, ...) VALUES (field1_value1, ...) (field1_value2, ...);
```
同时向表tb1_name和tb2_name中按列分别插入多条记录
......@@ -435,11 +435,11 @@ Query OK, 1 row(s) in set (0.000081s)
#### 小技巧
获取一个超级表所有的子表名及相关的标签信息:
```
SELECT TBNAME, location FROM meters
SELECT TBNAME, location FROM meters;
```
统计超级表下辖子表数量:
```
SELECT COUNT(TBNAME) FROM meters
SELECT COUNT(TBNAME) FROM meters;
```
以上两个查询均只支持在Where条件子句中添加针对标签(TAGS)的过滤条件。例如:
```
......@@ -486,31 +486,31 @@ Query OK, 1 row(s) in set (0.001091s)
- 对于下面的例子,表tb1用以下语句创建
```mysql
CREATE TABLE tb1 (ts timestamp, col1 int, col2 float, col3 binary(50))
CREATE TABLE tb1 (ts timestamp, col1 int, col2 float, col3 binary(50));
```
- 查询tb1刚过去的一个小时的所有记录
```mysql
SELECT * FROM tb1 WHERE ts >= NOW - 1h
SELECT * FROM tb1 WHERE ts >= NOW - 1h;
```
- 查询表tb1从2018-06-01 08:00:00.000 到2018-06-02 08:00:00.000时间范围,并且col3的字符串是'nny'结尾的记录,结果按照时间戳降序
```mysql
SELECT * FROM tb1 WHERE ts > '2018-06-01 08:00:00.000' AND ts <= '2018-06-02 08:00:00.000' AND col3 LIKE '%nny' ORDER BY ts DESC
SELECT * FROM tb1 WHERE ts > '2018-06-01 08:00:00.000' AND ts <= '2018-06-02 08:00:00.000' AND col3 LIKE '%nny' ORDER BY ts DESC;
```
- 查询col1与col2的和,并取名complex, 时间大于2018-06-01 08:00:00.000, col2大于1.2,结果输出仅仅10条记录,从第5条开始
```mysql
SELECT (col1 + col2) AS 'complex' FROM tb1 WHERE ts > '2018-06-01 08:00:00.000' and col2 > 1.2 LIMIT 10 OFFSET 5
SELECT (col1 + col2) AS 'complex' FROM tb1 WHERE ts > '2018-06-01 08:00:00.000' and col2 > 1.2 LIMIT 10 OFFSET 5;
```
- 查询过去10分钟的记录,col2的值大于3.14,并且将结果输出到文件 `/home/testoutpu.csv`.
```mysql
SELECT COUNT(*) FROM tb1 WHERE ts >= NOW - 10m AND col2 > 3.14 >> /home/testoutpu.csv
SELECT COUNT(*) FROM tb1 WHERE ts >= NOW - 10m AND col2 > 3.14 >> /home/testoutpu.csv;
```
## SQL函数
......@@ -521,7 +521,7 @@ TDengine支持针对数据的聚合查询。提供支持的聚合和选择函数
- **COUNT**
```mysql
SELECT COUNT([*|field_name]) FROM tb_name [WHERE clause]
SELECT COUNT([*|field_name]) FROM tb_name [WHERE clause];
```
功能说明:统计表/超级表中记录行数或某列的非空值个数。
返回结果数据类型:长整型INT64。
......@@ -547,7 +547,7 @@ TDengine支持针对数据的聚合查询。提供支持的聚合和选择函数
- **AVG**
```mysql
SELECT AVG(field_name) FROM tb_name [WHERE clause]
SELECT AVG(field_name) FROM tb_name [WHERE clause];
```
功能说明:统计表/超级表中某列的平均值。
返回结果数据类型:双精度浮点数Double。
......@@ -571,7 +571,7 @@ TDengine支持针对数据的聚合查询。提供支持的聚合和选择函数
- **TWA**
```mysql
SELECT TWA(field_name) FROM tb_name WHERE clause
SELECT TWA(field_name) FROM tb_name WHERE clause;
```
功能说明:时间加权平均函数。统计表/超级表中某列在一段时间内的时间加权平均。
返回结果数据类型:双精度浮点数Double。
......@@ -581,7 +581,7 @@ TDengine支持针对数据的聚合查询。提供支持的聚合和选择函数
- **SUM**
```mysql
SELECT SUM(field_name) FROM tb_name [WHERE clause]
SELECT SUM(field_name) FROM tb_name [WHERE clause];
```
功能说明:统计表/超级表中某列的和。
返回结果数据类型:双精度浮点数Double和长整型INT64。
......@@ -605,7 +605,7 @@ TDengine支持针对数据的聚合查询。提供支持的聚合和选择函数
- **STDDEV**
```mysql
SELECT STDDEV(field_name) FROM tb_name [WHERE clause]
SELECT STDDEV(field_name) FROM tb_name [WHERE clause];
```
功能说明:统计表中某列的均方差。
返回结果数据类型:双精度浮点数Double。
......@@ -623,7 +623,7 @@ TDengine支持针对数据的聚合查询。提供支持的聚合和选择函数
- **LEASTSQUARES**
```mysql
SELECT LEASTSQUARES(field_name, start_val, step_val) FROM tb_name [WHERE clause]
SELECT LEASTSQUARES(field_name, start_val, step_val) FROM tb_name [WHERE clause];
```
功能说明:统计表中某列的值是主键(时间戳)的拟合直线方程。start_val是自变量初始值,step_val是自变量的步长值。
返回结果数据类型:字符串表达式(斜率, 截距)。
......@@ -644,7 +644,7 @@ TDengine支持针对数据的聚合查询。提供支持的聚合和选择函数
- **MIN**
```mysql
SELECT MIN(field_name) FROM {tb_name | stb_name} [WHERE clause]
SELECT MIN(field_name) FROM {tb_name | stb_name} [WHERE clause];
```
功能说明:统计表/超级表中某列的值最小值。
返回结果数据类型:同应用的字段。
......@@ -667,7 +667,7 @@ TDengine支持针对数据的聚合查询。提供支持的聚合和选择函数
- **MAX**
```mysql
SELECT MAX(field_name) FROM { tb_name | stb_name } [WHERE clause]
SELECT MAX(field_name) FROM { tb_name | stb_name } [WHERE clause];
```
功能说明:统计表/超级表中某列的值最大值。
返回结果数据类型:同应用的字段。
......@@ -691,7 +691,7 @@ TDengine支持针对数据的聚合查询。提供支持的聚合和选择函数
- **FIRST**
```mysql
SELECT FIRST(field_name) FROM { tb_name | stb_name } [WHERE clause]
SELECT FIRST(field_name) FROM { tb_name | stb_name } [WHERE clause];
```
功能说明:统计表/超级表中某列的值最先写入的非NULL值。
返回结果数据类型:同应用的字段。
......@@ -715,7 +715,7 @@ TDengine支持针对数据的聚合查询。提供支持的聚合和选择函数
- **LAST**
```mysql
SELECT LAST(field_name) FROM { tb_name | stb_name } [WHERE clause]
SELECT LAST(field_name) FROM { tb_name | stb_name } [WHERE clause];
```
功能说明:统计表/超级表中某列的值最后写入的非NULL值。
返回结果数据类型:同应用的字段。
......@@ -739,7 +739,7 @@ TDengine支持针对数据的聚合查询。提供支持的聚合和选择函数
- **TOP**
```mysql
SELECT TOP(field_name, K) FROM { tb_name | stb_name } [WHERE clause]
SELECT TOP(field_name, K) FROM { tb_name | stb_name } [WHERE clause];
```
功能说明: 统计表/超级表中某列的值最大*k*个非NULL值。若多于k个列值并列最大,则返回时间戳小的。
返回结果数据类型:同应用的字段。
......@@ -766,7 +766,7 @@ TDengine支持针对数据的聚合查询。提供支持的聚合和选择函数
- **BOTTOM**
```mysql
SELECT BOTTOM(field_name, K) FROM { tb_name | stb_name } [WHERE clause]
SELECT BOTTOM(field_name, K) FROM { tb_name | stb_name } [WHERE clause];
```
功能说明:统计表/超级表中某列的值最小*k*个非NULL值。若多于k个列值并列最小,则返回时间戳小的。
返回结果数据类型:同应用的字段。
......@@ -792,7 +792,7 @@ TDengine支持针对数据的聚合查询。提供支持的聚合和选择函数
- **PERCENTILE**
```mysql
SELECT PERCENTILE(field_name, P) FROM { tb_name | stb_name } [WHERE clause]
SELECT PERCENTILE(field_name, P) FROM { tb_name | stb_name } [WHERE clause];
```
功能说明:统计表中某列的值百分比分位数。
返回结果数据类型: 双精度浮点数Double。
......@@ -810,7 +810,7 @@ TDengine支持针对数据的聚合查询。提供支持的聚合和选择函数
- **APERCENTILE**
```mysql
SELECT APERCENTILE(field_name, P) FROM { tb_name | stb_name } [WHERE clause]
SELECT APERCENTILE(field_name, P) FROM { tb_name | stb_name } [WHERE clause];
```
功能说明:统计表中某列的值百分比分位数,与PERCENTILE函数相似,但是返回近似结果。
返回结果数据类型: 双精度浮点数Double。
......@@ -826,7 +826,7 @@ TDengine支持针对数据的聚合查询。提供支持的聚合和选择函数
- **LAST_ROW**
```mysql
SELECT LAST_ROW(field_name) FROM { tb_name | stb_name }
SELECT LAST_ROW(field_name) FROM { tb_name | stb_name };
```
功能说明:返回表(超级表)的最后一条记录。
返回结果数据类型:同应用的字段。
......@@ -851,7 +851,7 @@ TDengine支持针对数据的聚合查询。提供支持的聚合和选择函数
### 计算函数
- **DIFF**
```mysql
SELECT DIFF(field_name) FROM tb_name [WHERE clause]
SELECT DIFF(field_name) FROM tb_name [WHERE clause];
```
功能说明:统计表中某列的值与前一行对应值的差。
返回结果数据类型: 同应用字段。
......@@ -871,7 +871,7 @@ TDengine支持针对数据的聚合查询。提供支持的聚合和选择函数
- **SPREAD**
```mysql
SELECT SPREAD(field_name) FROM { tb_name | stb_name } [WHERE clause]
SELECT SPREAD(field_name) FROM { tb_name | stb_name } [WHERE clause];
```
功能说明:统计表/超级表中某列的最大值和最小值之差。
返回结果数据类型: 双精度浮点数。
......@@ -897,7 +897,7 @@ TDengine支持针对数据的聚合查询。提供支持的聚合和选择函数
- **四则运算**
```mysql
SELECT field_name [+|-|*|/|%][Value|field_name] FROM { tb_name | stb_name } [WHERE clause]
SELECT field_name [+|-|*|/|%][Value|field_name] FROM { tb_name | stb_name } [WHERE clause];
```
功能说明:统计表/超级表中某列或多列间的值加、减、乘、除、取余计算结果。
返回结果数据类型:双精度浮点数。
......@@ -968,5 +968,5 @@ SELECT AVG(current),MAX(current),LEASTSQUARES(current, start_val, step_val), PER
- 表名最大长度为193,每行数据最大长度16k个字符
- 列名最大长度为65,最多允许1024列,最少需要2列,第一列必须是时间戳
- 标签最多允许128个,可以0个,标签总长度不超过16k个字符
- SQL语句最大长度65480个字符,但可通过系统配置参数maxSQLLength修改
- SQL语句最大长度65480个字符,但可通过系统配置参数maxSQLLength修改,最长可配置为8M
- 库的数目,超级表的数目、表的数目,系统不做限制,仅受系统资源限制
\ No newline at end of file
......@@ -78,7 +78,7 @@ TDengine集群的节点数必须大于等于副本数,否则创建表时将报
TDengine系统后台服务由taosd提供,可以在配置文件taos.cfg里修改配置参数,以满足不同场景的需求。配置文件的缺省位置在/etc/taos目录,可以通过taosd命令行执行参数-c指定配置文件目录。比如taosd -c /home/user来指定配置文件位于/home/user这个目录。
下面仅仅列出一些重要的配置参数,更多的参数请看配置文件里的说明。各个参数的详细介绍及作用请看前述章节。**注意:配置修改后,需要重启*taosd*服务才能生效。**
下面仅仅列出一些重要的配置参数,更多的参数请看配置文件里的说明。各个参数的详细介绍及作用请看前述章节,而且这些参数的缺省配置都是工作的,一般无需设置**注意:配置修改后,需要重启*taosd*服务才能生效。**
- firstEp: taosd启动时,主动连接的集群中第一个dnode的end point, 缺省值为 localhost:6030。
- secondEp: taosd启动时,如果first连接不上,尝试连接集群中第二个dnode的end point, 缺省值为空。
......@@ -94,6 +94,8 @@ TDengine系统后台服务由taosd提供,可以在配置文件taos.cfg里修
- maxSQLLength:单条SQL语句允许最长限制。默认值:65380字节。
- maxBinaryDisplayWidth:Shell中binary 和 nchar字段的显示宽度上限,超过此限制的部分将被隐藏。默认值:30。可在 shell 中通过命令 set max_binary_display_width nn动态修改此选项。
**注意:**对于端口,TDengine会使用从serverPort起11个连续的TCP和UDP端口号,请务必在防火墙打开。因此如果是缺省配置,需要打开从6030都6040共11个端口,而且必须TCP和UDP都打开。
不同应用场景的数据往往具有不同的数据特征,比如保留天数、副本数、采集频次、记录大小、采集点的数量、压缩等都可完全不同。为获得在存储上的最高效率,TDengine提供如下存储相关的系统配置参数:
- days:一个数据文件存储数据的时间跨度,单位为天,默认值:10。
......@@ -111,7 +113,7 @@ TDengine系统后台服务由taosd提供,可以在配置文件taos.cfg里修
对于一个应用场景,可能有多种数据特征的数据并存,最佳的设计是将具有相同数据特征的表放在一个库里,这样一个应用有多个库,而每个库可以配置不同的存储参数,从而保证系统有最优的性能。TDengine允许应用在创建库时指定上述存储参数,如果指定,该参数就将覆盖对应的系统配置参数。举例,有下述SQL:
```
create database demo days 10 cache 32 blocks 8 replica 3
create database demo days 10 cache 32 blocks 8 replica 3;
```
该SQL创建了一个库demo, 每个数据文件存储10天数据,内存块为32兆字节,每个VNODE占用8个内存块,副本数为3,而其他参数与系统配置完全一致。
......@@ -150,25 +152,25 @@ TDengine系统的前台交互客户端应用程序为taos,它与taosd共享同
系统管理员可以在CLI界面里添加、删除用户,也可以修改密码。CLI里SQL语法如下:
```
CREATE USER user_name PASS ‘password’
CREATE USER user_name PASS ‘password’;
```
创建用户,并指定用户名和密码,密码需要用单引号引起来
```
DROP USER user_name
DROP USER user_name;
```
删除用户,限root用户使用
```
ALTER USER user_name PASS ‘password’
ALTER USER user_name PASS ‘password’;
```
修改用户密码, 为避免被转换为小写,密码需要用单引号引用
```
SHOW USERS
SHOW USERS;
```
显示所有用户
......@@ -186,7 +188,7 @@ TDengine的shell支持source filename命令,用于批量运行文件中的SQL
TDengine也支持在shell对已存在的表从CSV文件中进行数据导入。CSV文件只属于一张表且CSV文件中的数据格式需与要导入表的结构相同, 在导入的时候,其语法如下
```mysql
insert into tb1 file 'path/data.csv'
insert into tb1 file 'path/data.csv';
```
注意:如果CSV文件首行存在描述信息,请手动删除后再导入
......@@ -237,7 +239,7 @@ TDengine提供了方便的数据库导入导出工具taosdump。用户可以将t
如果用户需要导出一个表或一个STable中的数据,可在shell中运行
```
select * from <tb_name> >> data.csv
select * from <tb_name> >> data.csv;
```
这样,表tb_name中的数据就会按照CSV格式导出到文件data.csv中。
......@@ -251,37 +253,37 @@ TDengine提供了方便的数据库导出工具taosdump。用户可以根据需
系统管理员可以从CLI查询系统的连接、正在进行的查询、流式计算,并且可以关闭连接、停止正在进行的查询和流式计算。CLI里SQL语法如下:
```
SHOW CONNECTIONS
SHOW CONNECTIONS;
```
显示数据库的连接,其中一列显示ip:port, 为连接的IP地址和端口号。
```
KILL CONNECTION <connection-id>
KILL CONNECTION <connection-id>;
```
强制关闭数据库连接,其中的connection-id是SHOW CONNECTIONS中显示的第一列的数字。
```
SHOW QUERIES
SHOW QUERIES;
```
显示数据查询,其中第一列显示的以冒号隔开的两个数字为query-id,为发起该query应用连接的connection-id和查询次数。
```
KILL QUERY <query-id>
KILL QUERY <query-id>;
```
强制关闭数据查询,其中query-id是SHOW QUERIES中显示的 connection-id:query-no字串,如“105:2”,拷贝粘贴即可。
```
SHOW STREAMS
SHOW STREAMS;
```
显示流式计算,其中第一列显示的以冒号隔开的两个数字为stream-id, 为启动该stream应用连接的connection-id和发起stream的次数。
```
KILL STREAM <stream-id>
KILL STREAM <stream-id>;
```
强制关闭流式计算,其中的中stream-id是SHOW STREAMS中显示的connection-id:stream-no字串,如103:2,拷贝粘贴即可。
......
......@@ -39,7 +39,7 @@ create table D1002 using meters tags ("Beijing.Haidian", 2);
我们已经知道,可以通过下面这条SQL语句以一分钟为时间窗口、30秒为前向增量统计这些电表的平均电压。
```sql
select avg(voltage) from meters interval(1m) sliding(30s)
select avg(voltage) from meters interval(1m) sliding(30s)
```
每次执行这条语句,都会重新计算所有数据。
......@@ -47,14 +47,14 @@ select avg(voltage) from meters interval(1m) sliding(30s)
可以把上面的语句改进成下面的样子,每次使用不同的 `startTime` 并定期执行:
```sql
select avg(voltage) from meters where ts > {startTime} interval(1m) sliding(30s)
select avg(voltage) from meters where ts > {startTime} interval(1m) sliding(30s)
```
这样做没有问题,但TDengine提供了更简单的方法,
只要在最初的查询语句前面加上 `create table {tableName} as ` 就可以了, 例如:
```sql
create table avg_vol as select avg(voltage) from meters interval(1m) sliding(30s)
create table avg_vol as select avg(voltage) from meters interval(1m) sliding(30s)
```
会自动创建一个名为 `avg_vol` 的新表,然后每隔30秒,TDengine会增量执行 `as` 后面的 SQL 语句,
......@@ -80,7 +80,7 @@ taos> select * from avg_vol;
比如使用下面的SQL创建的连续查询将运行一小时,之后会自动停止。
```sql
create table avg_vol as select avg(voltage) from meters where ts > now and ts <= now + 1h interval(1m) sliding(30s)
create table avg_vol as select avg(voltage) from meters where ts > now and ts <= now + 1h interval(1m) sliding(30s)
```
需要说明的是,上面例子中的 `now` 是指创建连续查询的时间,而不是查询执行的时间,否则,查询就无法自动停止了。
......
......@@ -20,41 +20,41 @@
每一条记录都有设备ID,时间戳,采集的物理量(如上图中的电流、电压、相位),还有与每个设备相关的静态标签(如上述表一中的位置Location和分组groupId)。每个设备是受外界的触发,或按照设定的周期采集数据。采集的数据点是时序的,是一个数据流。
### 数据特征
除时序特征外,仔细研究发现,物联网、车联网、运维监测类数据还具有很多其他明显的特征
除时序特征外,仔细研究发现,物联网、车联网、运维监测类数据还具有很多其他明显的特征
1. 数据高度结构化;
2. 数据极少有更新或删除操作;
3. 无需传统数据库的事务处理;
4. 相对互联网应用,写多读少;
5. 流量平稳,根据设备数量和采集频次,可以预测出来;
6. 用户关注的是一段时间的趋势,而不是某一特时间点的值;
6. 用户关注的是一段时间的趋势,而不是某一特时间点的值;
7. 数据有保留期限;
8. 数据的查询分析一定是基于时间段和地理区域;
9. 除存储查询外,还需要各种统计和实时计算操作;
10. 数据量巨大,一天采集的数据就可以超过100亿条。
8. 数据的查询分析一定是基于时间段和空间区域;
9. 除存储、查询操作外,还需要各种统计和实时计算操作;
10. 数据量巨大,一天可能采集的数据就可以超过100亿条。
充分利用上述特征,TDengine 采取了特殊的优化的存储和计算设计来处理时序数据,能将系统处理能力显著提高
充分利用上述特征,TDengine 采取了经特殊优化的存储和计算设计来处理时序数据,它将系统处理能力显著提高,同时大幅降低了系统运维的复杂度
### 关系型数据库模型
因为采集的数据一般是结构化数据,而且为降低学习门槛,TDengine采用传统的关系型数据库模型管理数据。因此用户需要先创建库,然后创建表,之后才能插入或查询数据。TDengine采用的是结构化存储,而不是NoSQL的key-value存储。
因为采集的数据一般是结构化数据,同时为降低学习门槛,TDengine采用传统的关系型数据库模型管理数据。因此用户需要先创建库,然后创建表,之后才能插入或查询数据。TDengine采用的是结构化存储,而不是NoSQL的key-value存储。
### 一个数据采集点一张表
为充分利用其数据的时序性和其他数据特点,TDengine要求**对每个数据采集点单独建表**(比如有一千万个智能电表,就需创建一千万张表,上述表格中的d1001, d1002, d1003, d1004都需单独建表),用来存储这个采集点所采集的时序数据。这种设计有几大优点:
1. 能保证一个采集点的数据在存储介质上是一块一块连续的。如果读取一个时间段的数据,它能大幅减少随机读取操作,成数量级的提升读取和查询速度。
1. 能保证一个采集点的数据在存储介质上是以块为单位连续存储的。如果读取一个时间段的数据,它能大幅减少随机读取操作,成数量级的提升读取和查询速度。
2. 由于不同采集设备产生数据的过程完全独立,每个设备的数据源是唯一的,一张表也就只有一个写入者,这样就可采用无锁方式来写,写入速度就能大幅提升。
3. 对于一个数据采集点而言,其产生的数据是时序的,因此写的操作可用追加的方式实现,进一步大幅提高数据写入速度。
如果采用传统的方式,将多个设备的数据写入一张表,由于网络延时不可控,不同设备的数据到达服务器的时序是无法保证的,写入操作是要有锁保护的,而且一个设备的数据是难以保证连续存储在一起的。**采用一个数据采集点一张表的方式,能最大程度的保证单个数据采集点的插入和查询的性能是最优的。**
TDengine 建议用数据采集点的名字(如上表中的D1001)来做表名。每个数据采集点可能同时采集多个物理量(如上表中的curent, voltage, phase),每个物理量对应一张表中的一列,数据类型可以是整型、浮点型、字符串等。除此之外,表的第一列必须是时间戳,即数据类型为 timestamp。对采集的数据,TDengine将自动按照时间戳建立索引,但对采集的物理量不建任何索引。数据用列式存储方式保存。
TDengine 建议用数据采集点的名字(如上表中的D1001)来做表名。每个数据采集点可能同时采集多个物理量(如上表中的curent, voltage, phase),每个物理量对应一张表中的一列,数据类型可以是整型、浮点型、字符串等。除此之外,表的第一列必须是时间戳,即数据类型为 timestamp。对采集的数据,TDengine将自动按照时间戳建立索引,但对采集的物理量不建任何索引。数据用列式存储方式保存。
### 超级表:同一类型数据采集点的集合
由于一个数据采集点一张表,导致表的数量巨,难以管理,而且应用经常需要做采集点之间的聚合操作,聚合的操作也变得复杂起来。为解决这个问题,TDengine引入超级表(Super Table,简称为STable)的概念。
由于一个数据采集点一张表,导致表的数量巨,难以管理,而且应用经常需要做采集点之间的聚合操作,聚合的操作也变得复杂起来。为解决这个问题,TDengine引入超级表(Super Table,简称为STable)的概念。
超级表是指某一特定类型的数据采集点的集合。同一类型的数据采集点,其表的结构是完全一样的,但每个表(数据采集点)的静态属性(标签)是不一样的。描述一个超级表(一特定类型的数据采集点),除需要定义采集量的表结构之外,还需要定义其标签的schema,标签的数据类型可以是整数、浮点数、字符串,标签可以有多个,可以事后增加、删除或修改。 如果整个系统有N个不同类型的数据采集点,就需要建立N个超级表。
超级表是指某一特定类型的数据采集点的集合。同一类型的数据采集点,其表的结构是完全一样的,但每个表(数据采集点)的静态属性(标签)是不一样的。描述一个超级表(某一特定类型的数据采集点的结合),除需要定义采集量的表结构之外,还需要定义其标签的schema,标签的数据类型可以是整数、浮点数、字符串,标签可以有多个,可以事后增加、删除或修改。 如果整个系统有N个不同类型的数据采集点,就需要建立N个超级表。
在TDengine的设计里,**表用来代表一个具体的数据采集点,超级表用来代表一组相同类型的数据采集点**。当为某个具体数据采集点创建表时,用户使用超级表的定义做模板,同时指定该具体采集点(表)的标签值。与传统的关系型数据库相比,表(一个数据采集点)是带有静态标签的,而且这些标签可以事后增加、删除、修改。**一张超级表包含有多张表,这些表具有相同的时序数据schema,但带有不同的标签值**
在TDengine的设计里,**表用来代表一个具体的数据采集点,超级表用来代表一组相同类型的数据*采集点集合**。当为某个具体数据采集点创建表时,用户使用超级表的定义做模板,同时指定该具体采集点(表)的标签值。与传统的关系型数据库相比,表(一个数据采集点)是带有静态标签的,而且这些标签可以事后增加、删除、修改。**一张超级表包含有多张表,这些表具有相同的时序数据schema,但带有不同的标签值**
当对多个具有相同数据类型的数据采集点进行聚合操作时,TDengine将先把满足标签过滤条件的表从超级表的中查找出来,然后再扫描这些表的时序数据,进行聚合操作,这样能将需要扫描的数据集大幅减少,从而大幅提高聚合计算的性能。
......@@ -69,18 +69,18 @@ TDengine 分布式架构的逻辑结构图如下:
**物理节点(pnode):** pnode是一独立运行、拥有自己的计算、存储和网络能力的计算机,可以是安装有OS的物理机、虚拟机或容器。物理节点由其配置的 FQDN(Fully Qualified Domain Name)来标识。
**数据节点(dnode):** dnode 是 TDengine 服务器侧执行代码 taosd 在物理节点上的一个运行实例,一个工作的系统必须有至少一个数据节点。dnode包含零到多个逻辑的虚拟节点(VNODE),零或者至多一个逻辑的管理节点(mnode). dnode在系统中的唯一标识由实例的End Point(EP)决定。EP是dnode所在物理节点的FQDN(Fully Qualified Domain Name)和系统所配置的网络端口号(Port)的组合。通过配置不同的端口,一个物理节点(一台物理机、虚拟机或容器)可以运行多个实例,或有多个数据节点。
**数据节点(dnode):** dnode 是 TDengine 服务器侧执行代码 taosd 在物理节点上的一个运行实例,一个工作的系统必须有至少一个数据节点。dnode包含零到多个逻辑的虚拟节点(VNODE),零或者至多一个逻辑的管理节点(mnode)。dnode在系统中的唯一标识由实例的End Point (EP )决定。EP是dnode所在物理节点的FQDN (Fully Qualified Domain Name)和系统所配置的网络端口号(Port)的组合。通过配置不同的端口,一个物理节点(一台物理机、虚拟机或容器)可以运行多个实例,或有多个数据节点。
**虚拟节点(vnode)**: 为更好的支持数据分片、负载均衡,防止数据过热或倾斜,数据节点被虚拟化成多个虚拟节点(vnode,图中V2, V3, V4等)。每个 vnode 都是一个相对独立的工作单元,是时序数据存储的基本单元,具有独立的运行线程、内存空间与持久化存储的路径。一个 vnode 包含一定数量的表(数据采集点)。当创建一张新表时,系统会检查是否需要创建新的 vnode。一个数据节点上能创建的 vnode 的数量取决于该数据节点所在物理节点的硬件资源。一个 vnode 只属于一个DB,但一个DB可以有多个 vnode。一个 vnode 除存储的时序数据外,也保存有所包含的表的SCHEMA、标签值等。一个虚拟节点由所属的数据节点的EP,以及所属的Vgroup ID在系统内唯一标识,是由管理节点创建并管理的
**虚拟节点(vnode)**: 为更好的支持数据分片、负载均衡,防止数据过热或倾斜,数据节点被虚拟化成多个虚拟节点(vnode,图中V2, V3, V4等)。每个 vnode 都是一个相对独立的工作单元,是时序数据存储的基本单元,具有独立的运行线程、内存空间与持久化存储的路径。一个 vnode 包含一定数量的表(数据采集点)。当创建一张新表时,系统会检查是否需要创建新的 vnode。一个数据节点上能创建的 vnode 的数量取决于该数据节点所在物理节点的硬件资源。一个 vnode 只属于一个DB,但一个DB可以有多个 vnode。一个 vnode 除存储的时序数据外,也保存有所包含的表的SCHEMA、标签值等。一个虚拟节点由所属的数据节点的EP,以及所属的VGroup ID在系统内唯一标识,由管理节点创建并管理
**管理节点(mnode):** 一个虚拟的逻辑单元,负责所有数据节点运行状态的监控和维护,以及节点之间的负载均衡(图中M)。同时,管理节点也负责元数据(包括用户、数据库、表、静态标签等)的存储和管理,因此也称为 Meta Node。TDengine 集群中可配置多个(最多不超过5个) mnode,它们自动构建成为一个虚拟管理节点组(图中M0, M1, M2)。mnode 间采用 master/slave 的机制进行管理,而且采取强一致方式进行数据同步, 任何数据更新操作只能在 Master 上进行。mnode 集群的创建由系统自动完成,无需人工干预。每个dnode上至多有一个mnode,由所属的数据节点的EP来唯一标识。每个dnode通过内部消息交互自动获取整个集群中所有 mnode 所在的 dnode 的EP。
**虚拟节点组(VGroup):** 不同数据节点上的 vnode 可以组成一个虚拟节点组(vnode group)来保证系统的高可靠。虚拟节点组内采取master/slave的方式进行管理。写操作只能在 master vnode 上进行,系统采用异步复制的方式将数据同步到 slave vnode,这样确保了一份数据在多个物理节点上有拷贝。一个 vgroup 里虚拟节点个数就是数据的副本数。如果一个DB的副本数为N,系统必须有至少N个数据节点。副本数在创建DB时通过参数 replica 可以指定,缺省为1。使用 TDengine 的多副本特性,可以不再需要昂贵的磁盘阵列等存储设备,获得同样的数据高可靠性。虚拟节点组由管理节点创建、管理,并且由管理节点分配一系统唯一的ID,vnode group ID。如果两个虚拟节点的vnode group ID相同,说明他们属于同一个组,数据互为备份。虚拟节点组里虚拟节点的个数是可以动态改变的,容许只有一个,也就是没有数据复制。Vnode group ID是永远不变的,即使一个虚拟节点组被删除,它的ID也不会被收回重复利用。
**虚拟节点组(VGroup):** 不同数据节点上的 vnode 可以组成一个虚拟节点组(vnode group)来保证系统的高可靠。虚拟节点组内采取master/slave的方式进行管理。写操作只能在 master vnode 上进行,系统采用异步复制的方式将数据同步到 slave vnode,这样确保了一份数据在多个物理节点上有拷贝。一个 vgroup 里虚拟节点个数就是数据的副本数。如果一个DB的副本数为N,系统必须有至少N个数据节点。副本数在创建DB时通过参数 replica 可以指定,缺省为1。使用 TDengine 的多副本特性,可以不再需要昂贵的磁盘阵列等存储设备,就可以获得同样的数据高可靠性。虚拟节点组由管理节点创建、管理,并且由管理节点分配一个系统唯一的ID,VGroup ID。如果两个虚拟节点的vnode group ID相同,说明他们属于同一个组,数据互为备份。虚拟节点组里虚拟节点的个数是可以动态改变的,容许只有一个,也就是没有数据复制。VGroup ID是永远不变的,即使一个虚拟节点组被删除,它的ID也不会被收回重复利用。
**TAOSC:** taosc是TDengine给应用提供的驱动程序(driver),负责处理应用与集群的接口交互,内嵌于JDBC、ODBC driver中,或者C、Python、Go语言连接库里。应用都是通过taosc而不是直接连接集群中的数据节点与整个集群进行交互的。这个模块负责获取并缓存元数据;将插入、查询等请求转发到正确的数据节点;在把结果返回给应用时,还需要负责最后一级的聚合、排序、过滤等操作。对于JDBC, ODBC, C/C++接口而言,这个模块是在应用所处的物理节点上运行,但消耗的资源很小。同时,为支持全分布式的RESTful接口,taosc在TDengine集群的每个dnode上都有一运行实例。
**TAOSC:** taosc是TDengine给应用提供的驱动程序(driver),负责处理应用与集群的接口交互,内嵌于JDBC、ODBC driver中,或者C、Python、Go语言连接库里。应用都是通过taosc而不是直接连接集群中的数据节点与整个集群进行交互的。这个模块负责获取并缓存元数据;将插入、查询等请求转发到正确的数据节点;在把结果返回给应用时,还需要负责最后一级的聚合、排序、过滤等操作。对于JDBC, ODBC, C/C++接口而言,这个模块是在应用所处的物理节点上运行,但消耗的资源很小。同时,为支持全分布式的RESTful接口,taosc在TDengine集群的每个dnode上都有一运行实例。
### 节点之间的通讯
**通讯方式:**TDengine系统的各个节点之间的通讯是通过TCP/UDP进行的。因为考虑到物联网场景,数据写入的包一般不大,因此TDengine 除采用TCP做传输之外,还采用UDP方式,因为UDP 更加高效,而且不受接数的限制。TDengine实现了自己的超时、重传、确认等机制,以确保UDP的可靠传输。对于数据量不到15K的数据包,采取UDP的方式进行传输,超过15K的,或者是查询类的操作,自动采取TCP的方式进行传输。同时,TDengine根据配置和数据包,会自动对数据进行压缩/解压缩,数字签名/认证等处理。对于数据节点之间的数据复制,只采用TCP方式进行数据传输。
**通讯方式:**TDengine系统的各个节点之间的通讯是通过TCP/UDP进行的。因为考虑到物联网场景,数据写入的包一般不大,因此TDengine 除采用TCP做传输之外,还采用UDP方式,因为UDP 更加高效,而且不受接数的限制。TDengine实现了自己的超时、重传、确认等机制,以确保UDP的可靠传输。对于数据量不到15K的数据包,采取UDP的方式进行传输,超过15K的,或者是查询类的操作,自动采取TCP的方式进行传输。同时,TDengine根据配置和数据包,会自动对数据进行压缩/解压缩,数字签名/认证等处理。对于数据节点之间的数据复制,只采用TCP方式进行数据传输。
**FQDN配置**:一个数据节点有一个或多个FQDN,可以在系统配置文件taos.cfg通过选项“fqdn"进行指定,如果没有指定,系统将自动获取FQDN。如果节点没有配置FQDN,可以直接使用IP地址作为FQDN,但不建议使用,因为IP地址可变,一旦变化,将让集群无法正常工作。一个数据节点的EP(End Point)由FQDN + Port组成。
......@@ -96,12 +96,12 @@ TDengine 分布式架构的逻辑结构图如下:
**重定向**:无论是dnode还是taosc,最先都是要发起与mnode的链接,但mnode是系统自动创建并维护的,因此对于用户来说,并不知道哪个dnode在运行mnode。TDengine只要求向系统中任何一个工作的dnode发起链接即可。因为任何一个正在运行的dnode,都维护有目前运行的mnode EP List。当收到一个来自新启动的dnode或taosc的链接请求,如果自己不是mnode,则将mnode EP List回复给对方,taosc或新启动的dnode收到这个list, 就重新尝试建立链接。当mnode EP List发生改变,通过节点之间的消息交互,各个数据节点就很快获取最新列表,并通知taosc。
### 一典型的操作流程
### 一个典型的消息流程
为解释vnode, mnode, taosc和应用之间的关系以及各自扮演的角色,下面对写入数据这个典型操作的流程进行剖析。
<center> <img src="../assets/message.png"> </center>
<center> 图 2 TDengine典型的操作流程 </center>
1. 应用通过JDBC、ODBC或其他API接口发起插入数据的请求。
2. taosc会检查缓存,看是保存有该表的meta data。如果有,直接到第4步。如果没有,taosc将向mnode发出get meta-data请求。
2. taosc会检查缓存,看是保存有该表的meta data。如果有,直接到第4步。如果没有,taosc将向mnode发出get meta-data请求。
3. mnode将该表的meta-data返回给taosc。Meta-data包含有该表的schema, 而且还有该表所属的vgroup信息(vnode ID以及所在的dnode的End Point,如果副本数为N,就有N组End Point)。如果taosc迟迟得不到mnode回应,而且存在多个mnode, taosc将向下一个mnode发出请求。
4. taosc向master vnode发起插入请求。
5. vnode插入数据后,给taosc一个应答,表示插入成功。如果taosc迟迟得不到vnode的回应,taosc会认为该节点已经离线。这种情况下,如果被插入的数据库有多个副本,taosc将向vgroup里下一个vnode发出插入请求。
......@@ -109,7 +109,7 @@ TDengine 分布式架构的逻辑结构图如下:
对于第二和第三步,taosc启动时,并不知道mnode的End Point,因此会直接向配置的集群对外服务的End Point发起请求。如果接收到该请求的dnode并没有配置mnode,该dnode会在回复的消息中告知mnode EP列表,这样taosc会重新向新的mnode的EP发出获取meta-data的请求。
对于第四和第五步,没有缓存的情况下,taosc无法知道虚拟节点组里谁是master,就假设第一个vnodeID就是master,向它发出请求。如果接收到请求的vnode并不是master,它会在回复中告知谁是master,这样taosc就向建议的master vnode发出请求。一旦得到插入成功的回复,taosc会缓存master节点的信息。
对于第四和第五步,没有缓存的情况下,taosc无法知道虚拟节点组里谁是master,就假设第一个vnodeID就是master,向它发出请求。如果接收到请求的vnode并不是master,它会在回复中告知谁是master,这样taosc就向建议的master vnode发出请求。一旦得到插入成功的回复,taosc会缓存master节点的信息。
上述是插入数据的流程,查询、计算的流程也完全一致。taosc把这些复杂的流程全部封装屏蔽了,对于应用来说无感知也无需任何特别处理。
......@@ -134,7 +134,7 @@ TDengine存储的数据包括采集的时序数据以及库、表相关的元数
vnode(虚拟数据节点)负责为采集的时序数据提供写入、查询和计算功能。为便于负载均衡、数据恢复、支持异构环境,TDengine将一个数据节点根据其计算和存储资源切分为多个vnode。这些vnode的管理是TDengine自动完成的,对应用完全透明。
对于单独一个数据采集点,无论其数据量多大,一个vnode(或vnode group, 如果副本数大于1)有足够的计算资源和存储资源来处理(如果每秒生成一条16字节的记录,一年产生的原始数据不到0.5G),因此TDengine将一张表(一个数据采集点)的所有数据都存放在一个vnode里,而不会让同一个采集点的数据分布到两个或多个dnode上。而且一个vnode可存储多个数据采集点(表)的数据,一个vnode可容纳的表的数目的上限为一百万。设计上,一个vnode里所有的表都属于同一个DB。一个数据节点上,一个DB拥有的vnode数目不会超过系统核的数目。
对于单独一个数据采集点,无论其数据量多大,一个vnode(或vnode group, 如果副本数大于1)有足够的计算资源和存储资源来处理(如果每秒生成一条16字节的记录,一年产生的原始数据不到0.5G),因此TDengine将一张表(一个数据采集点)的所有数据都存放在一个vnode里,而不会让同一个采集点的数据分布到两个或多个dnode上。而且一个vnode可存储多个数据采集点(表)的数据,一个vnode可容纳的表的数目的上限为一百万。设计上,一个vnode里所有的表都属于同一个DB。一个数据节点上,除非特殊配置,一个DB拥有的vnode数目不会超过系统核的数目。
创建DB时,系统并不会马上分配资源。但当创建一张表时,系统将看是否有已经分配的vnode, 且该vnode是否有空余的表空间,如果有,立即在该有空位的vnode创建表。如果没有,系统将从集群中,根据当前的负载情况,在一个dnode上创建一新的vnode, 然后创建表。如果DB有多个副本,系统不是只创建一个vnode,而是一个vgroup(虚拟数据节点组)。系统对vnode的数目没有任何限制,仅仅受限于物理节点本身的计算和存储资源。
......@@ -163,7 +163,7 @@ Master Vnode遵循下面的写入流程:
<center> 图 3 TDengine Master写入流程 </center>
1. Master vnode收到应用的数据插入请求,验证OK,进入下一步;
2. 如果系统配置参数walLevel打开(设置为2),vnode将把该请求的原始数据包写入数据库日志文件WAL,以保证TDengine能够在断电等因素导致的服务重启时从数据库日志文件中恢复数据,避免数据的丢失;
3. 如果有多个副本,vnode将把数据包转发给同一虚拟节点组内slave vnodes, 该转发包带有数据的版本号(version)
3. 如果有多个副本,vnode将把数据包转发给同一虚拟节点组内slave vnodes, 该转发包带有数据的版本号(version)
4. 写入内存,并加记录加入到skip list;
5. Master vnode返回确认信息给应用,表示写入成功。
6. 如果第2,3,4步中任何一步失败,将直接返回错误给应用。
......@@ -180,7 +180,7 @@ Master Vnode遵循下面的写入流程:
与Master vnode相比,slave vnode不存在转发环节,也不存在回复确认环节,少了两步。但写内存与WAL是完全一样的。
### 异地容灾、IDC迁移
从上述Master和Slave流程可以看出,TDengine采用的是异步复制的方式进行数据同步。这种方式能够大幅提高写入性能,网络延时对写入速度不会有大的影响。通过配置每个物理节点的IDC和机架号,可以让一个虚拟节点组内,虚拟节点由来自不同IDC、不同机架的物理节点组成,从而实现异地容灾。因此TDengine原生支持异地容灾,无需再使用其他工具。
从上述Master和Slave流程可以看出,TDengine采用的是异步复制的方式进行数据同步。这种方式能够大幅提高写入性能,网络延时对写入速度不会有大的影响。通过配置每个物理节点的IDC和机架号,可以保证对于一个虚拟节点组,虚拟节点由来自不同IDC、不同机架的物理节点组成,从而实现异地容灾。因此TDengine原生支持异地容灾,无需再使用其他工具。
另外一方面,TDengine支持动态修改副本数,一旦副本数增加,新加入的虚拟节点将立即进入数据同步流程,同步结束后,新加入的虚拟节点即可提供服务。而在同步过程中,master以及其他已经同步的虚拟节点都可以对外提供服务。利用这一特性,TDengine可以实现无服务中断的IDC机房迁移。只需要将新IDC的物理节点加入现有集群,等数据同步完成后,再将老的IDC的物理节点从集群中剔除即可。
......@@ -276,14 +276,14 @@ SQL语句的解析和校验工作在客户端完成。解析SQL语句并生成
在TDengine中引入关键词interval来进行时间轴上固定长度时间窗口的切分,并按照时间窗口对数据进行聚合,对窗口范围内的数据按需进行聚合。例如:
```mysql
select count(*) from d1001 interval(1h)
select count(*) from d1001 interval(1h)
```
针对d1001设备采集的数据,按照1小时的时间窗口返回每小时存储的记录数量。
在需要连续获得查询结果的应用场景下,如果给定的时间区间存在数据缺失,会导致该区间数据结果也丢失。TDengine提供策略针对时间轴聚合计算的结果进行插值,通过使用关键词Fill就能够对时间轴聚合结果进行插值。例如:
```mysql
select count(*) from d1001 interval(1h) fill(prev)
select count(*) from d1001 interval(1h) fill(prev)
```
针对d1001设备采集数据统计每小时记录数,如果某一个小时不存在数据,这返回之前一个小时的统计数据。TDengine提供前向插值(prev)、线性插值(linear)、NULL值填充(NULL)、特定值填充(value)。
......
......@@ -97,8 +97,11 @@ SHOW DNODES;
```
SHOW VGROUPS;
```
##高可用性
TDengine通过多副本的机制来提供系统的高可用性。副本数是与DB关联的,一个集群里可以有多个DB,根据运营的需求,每个DB可以配置不同的副本数。创建数据库时,通过参数replica 指定副本数(缺省为1)。如果副本数为1,系统的可靠性无法保证,只要数据所在的节点宕机,就将无法提供服务。集群的节点数必须大于等于副本数,否则创建表时将返回错误“more dnodes are needed"。比如下面的命令将创建副本数为3的数据库demo:
##vnode的高可用性
TDengine通过多副本的机制来提供系统的高可用性,包括vnode和mnode的高可用性。
vnode的副本数是与DB关联的,一个集群里可以有多个DB,根据运营的需求,每个DB可以配置不同的副本数。创建数据库时,通过参数replica 指定副本数(缺省为1)。如果副本数为1,系统的可靠性无法保证,只要数据所在的节点宕机,就将无法提供服务。集群的节点数必须大于等于副本数,否则创建表时将返回错误“more dnodes are needed"。比如下面的命令将创建副本数为3的数据库demo:
```
CREATE DATABASE demo replica 3;
```
......@@ -108,7 +111,7 @@ CREATE DATABASE demo replica 3;
因为vnode的引入,无法简单的给出结论:“集群中过半dnode工作,集群就应该工作”。但是对于简单的情形,很好下结论。比如副本数为3,只有三个dnode,那如果仅有一个节点不工作,整个集群还是可以正常工作的,但如果有两个节点不工作,那整个集群就无法正常工作了。
##Mnode的高可用
##Mnode的高可用
TDengine集群是由mnode (taosd的一个模块,逻辑节点) 负责管理的,为保证mnode的高可用,可以配置多个mnode副本,副本数由系统配置参数numOfMnodes决定,有效范围为1-3。为保证元数据的强一致性,mnode副本之间是通过同步的方式进行数据复制的。
一个集群有多个dnode, 但一个dnode至多运行一个mnode实例。多个dnode情况下,哪个dnode可以作为mnode呢?这是完全由系统根据整个系统资源情况,自动指定的。用户可通过CLI程序taos,在TDengine的console里,执行如下命令:
......@@ -120,6 +123,8 @@ SHOW MNODES;
为保证mnode服务的高可用性,numOfMnodes必须设置为2或更大。因为mnode保存的元数据必须是强一致的,如果numOfMnodes大于2,复制参数quorum自动设为2,也就是说,至少要保证有两个副本写入数据成功,才通知客户端应用写入成功。
**注意:**一个TDengine高可用系统,无论是vnode还是mnode, 都必须配置多个副本。
##负载均衡
有三种情况,将触发负载均衡,而且都无需人工干预。
......
......@@ -22,7 +22,7 @@ INSERT INTO d1001 VALUES (1538548685000, 10.3, 219, 0.31) (1538548695000, 12.6,
**Tips:**
- 要提高写入效率,需要批量写入。一批写入的记录条数越多,插入效率就越高。但一条记录不能超过16K,一条SQL语句总长度不能超过64K(可通过参数maxSQLLength配置)。
- 要提高写入效率,需要批量写入。一批写入的记录条数越多,插入效率就越高。但一条记录不能超过16K,一条SQL语句总长度不能超过64K(可通过参数maxSQLLength配置,最大可配置为8M)。
- TDengine支持多线程同时写入,要进一步提高写入速度,一个客户端需要打开20个以上的线程同时写。但线程数达到一定数量后,无法再提高,甚至还会下降,因为线程切频繁切换,带来额外开销。
## Prometheus直接写入
......@@ -215,7 +215,5 @@ select * from cpu;
## EMQ X Broker直接写入
MQTT是一流行的物联网数据传输协议,[EMQ](https://github.com/emqx/emqx)是一开源的MQTT Broker软件,无需任何代码,只需要在EMQ里做简单配置,即可将MQTT的数据直接写入TDengine。
MQTT是一流行的物联网数据传输协议,[EMQ](https://github.com/emqx/emqx)是一开源的MQTT Broker软件,无需任何代码,只需要在EMQ Dashboard里使用“规则”做简单配置,即可将MQTT的数据直接写入TDengine。EMQ X 支持通过 发送到 Web 服务 的方式保存数据到 TDEngine,也在企业版上提供原生的 TDEngine 驱动实现直接保存。详细使用方法请参考 [EMQ 官方文档](https://docs.emqx.io/broker/latest/cn/rule/rule-example.html#%E4%BF%9D%E5%AD%98%E6%95%B0%E6%8D%AE%E5%88%B0-tdengine)
......@@ -1758,6 +1758,9 @@ static int32_t mnodeDoCreateChildTable(SMnodeMsg *pMsg, int32_t tid) {
pMsg->pTable = NULL;
mError("app:%p:%p, table:%s, failed to create, reason:%s", pMsg->rpcMsg.ahandle, pMsg, pCreate->tableId,
tstrerror(code));
} else {
mDebug("app:%p:%p, table:%s, allocated in vgroup, vgId:%d sid:%d uid:%" PRIu64, pMsg->rpcMsg.ahandle, pMsg,
pTable->info.tableId, pVgroup->vgId, pTable->sid, pTable->uid);
}
return code;
......@@ -1790,9 +1793,6 @@ static int32_t mnodeProcessCreateChildTableMsg(SMnodeMsg *pMsg) {
pMsg->pVgroup = pVgroup;
mnodeIncVgroupRef(pVgroup);
mDebug("app:%p:%p, table:%s, allocated in vgroup, vgId:%d sid:%d", pMsg->rpcMsg.ahandle, pMsg, pCreate->tableId,
pVgroup->vgId, sid);
return mnodeDoCreateChildTable(pMsg, sid);
}
} else {
......@@ -2348,6 +2348,15 @@ static void mnodeProcessCreateChildTableRsp(SRpcMsg *rpcMsg) {
if (sdbCheckRowDeleted(tsChildTableSdb, pTable)) {
mDebug("app:%p:%p, table:%s, create table rsp received, but a deleting opertion incoming, vgId:%d sid:%d uid:%" PRIu64,
mnodeMsg->rpcMsg.ahandle, mnodeMsg, pTable->info.tableId, pTable->vgId, pTable->sid, pTable->uid);
// if the vgroup is already dropped from hash, it can't be accquired by pTable->vgId
// so the refCount of vgroup can not be decreased
SVgObj *pVgroup = mnodeGetVgroup(pTable->vgId);
if (pVgroup == NULL) {
mnodeRemoveTableFromVgroup(pVgroup, pTable);
}
mnodeDecVgroupRef(pVgroup);
mnodeSendDropChildTableMsg(mnodeMsg, false);
rpcMsg->code = TSDB_CODE_SUCCESS;
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册