szd_double.c 6.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
/**
 *  @file szd_double.c
 *  @author Sheng Di, Dingwen Tao, Xin Liang, Xiangyu Zou, Tao Lu, Wen Xia, Xuan Wang, Weizhe Zhang
 *  @date Aug, 2016
 *  @brief 
 *  (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
 *      See COPYRIGHT in top-level directory.
 */

#include <stdlib.h> 
#include <stdio.h>
#include <string.h>
#include "szd_double.h"
#include "TightDataPointStorageD.h"
#include "sz.h"
#include "utility.h"
#include "Huffman.h"

int SZ_decompress_args_double(double* newData, size_t r1, unsigned char* cmpBytes, 
				size_t cmpSize, int compressionType, double* hist_data, sz_exedata* pde_exe, sz_params* pde_params)
{
	int status = SZ_SUCCESS;
	size_t dataLength = r1;
	
	//unsigned char* tmpBytes;
	size_t targetUncompressSize = dataLength <<3; //i.e., *8
	//tmpSize must be "much" smaller than dataLength
	size_t i, tmpSize = 12+MetaDataByteLength_double+8;
	unsigned char* szTmpBytes = NULL;
	bool needFree = false;

	if(cmpSize!=12+4+MetaDataByteLength_double && cmpSize!=12+8+MetaDataByteLength_double)
	{
		pde_params->losslessCompressor = is_lossless_compressed_data(cmpBytes, cmpSize);
		if(pde_params->szMode!=SZ_TEMPORAL_COMPRESSION)
		{
			if(pde_params->losslessCompressor!=-1)
				pde_params->szMode = SZ_BEST_COMPRESSION;
			else
				pde_params->szMode = SZ_BEST_SPEED;			
		}


		if(pde_params->szMode==SZ_BEST_SPEED)
		{
			tmpSize = cmpSize;
			szTmpBytes = cmpBytes;	
		}	
		else
		{
			if(targetUncompressSize<MIN_ZLIB_DEC_ALLOMEM_BYTES) //Considering the minimum size
				targetUncompressSize = MIN_ZLIB_DEC_ALLOMEM_BYTES; 			
			tmpSize = sz_lossless_decompress(pde_params->losslessCompressor, cmpBytes, (unsigned long)cmpSize, &szTmpBytes, (unsigned long)targetUncompressSize+4+MetaDataByteLength_double+8);			
	        needFree = true;	
		}
	}
	else
		szTmpBytes = cmpBytes;
	
	// calc postion 
	//pde_params->sol_ID = szTmpBytes[1+3-2+14-4]; //szTmpBytes: version(3bytes), samebyte(1byte), [14]:sol_ID=SZ or SZ_Transpose		
	//TODO: convert szTmpBytes to double array.
	TightDataPointStorageD* tdps = NULL;
	int errBoundMode = new_TightDataPointStorageD_fromFlatBytes(&tdps, szTmpBytes, tmpSize, pde_exe, pde_params);
	if(tdps == NULL)
	{
		return SZ_FORMAT_ERR;
	}

	int doubleSize = sizeof(double);
	if(tdps->isLossless)
	{
		// *newData = (double*)malloc(doubleSize*dataLength); comment by tickduan
		if(sysEndianType==BIG_ENDIAN_SYSTEM)
		{
			memcpy(newData, szTmpBytes+4+MetaDataByteLength_double+pde_exe->SZ_SIZE_TYPE, dataLength*doubleSize);
		}
		else
		{
			unsigned char* p = szTmpBytes+4+MetaDataByteLength_double+pde_exe->SZ_SIZE_TYPE;
			for(i=0;i<dataLength;i++,p+=doubleSize)
				newData[i] = bytesToDouble(p);
		}		
	}
	else if(pde_params->sol_ID==SZ_Transpose)
	{
		getSnapshotData_double_1D(newData,dataLength,tdps, errBoundMode, 0, hist_data, pde_params);		
	}
	else //pde_params->sol_ID==SZ
	{
		if(tdps->raBytes_size > 0) //v2.0
		{
			getSnapshotData_double_1D(newData,r1,tdps, errBoundMode, 0, hist_data, pde_params);
		}
		else //1.4.13 or time-based compression
		{
			getSnapshotData_double_1D(newData,r1,tdps, errBoundMode, compressionType, hist_data, pde_params);
		}
	}	

	free_TightDataPointStorageD2(tdps);
	if(szTmpBytes && needFree)
		free(szTmpBytes);	
	return status;
}

void decompressDataSeries_double_1D(double* data, size_t dataSeriesLength, double* hist_data, TightDataPointStorageD* tdps) 
{
	//updateQuantizationInfo(tdps->intervals);
	int intvRadius = tdps->intervals/2;
	size_t i, j, k = 0, p = 0, l = 0; // k is to track the location of residual_bit
								// in resiMidBits, p is to track the
								// byte_index of resiMidBits, l is for
								// leadNum
	unsigned char* leadNum;
	double interval = tdps->realPrecision*2;
	
	convertByteArray2IntArray_fast_2b(tdps->exactDataNum, tdps->leadNumArray, tdps->leadNumArray_size, &leadNum);
	//*data = (double*)malloc(sizeof(double)*dataSeriesLength); comment by tickduan

	int* type = (int*)malloc(dataSeriesLength*sizeof(int));
	HuffmanTree* huffmanTree = createHuffmanTree(tdps->stateNum);
	decode_withTree(huffmanTree, tdps->typeArray, dataSeriesLength, type);
	SZ_ReleaseHuffman(huffmanTree);	
	
	unsigned char preBytes[8];
	unsigned char curBytes[8];
	
	memset(preBytes, 0, 8);

	size_t curByteIndex = 0;
	int reqBytesLength, resiBitsLength, resiBits; 
	unsigned char leadingNum;	
	double medianValue, exactData, predValue;
	
	reqBytesLength = tdps->reqLength/8;
	resiBitsLength = tdps->reqLength%8;
	medianValue = tdps->medianValue;
	

	int type_;
	for (i = 0; i < dataSeriesLength; i++) 
	{
		type_ = type[i];
		switch (type_) {
		case 0:
			// compute resiBits
			resiBits = 0;
			if (resiBitsLength != 0) {
				int kMod8 = k % 8;
				int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength);
				if (rightMovSteps > 0) {
					int code = getRightMovingCode(kMod8, resiBitsLength);
					resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps;
				} else if (rightMovSteps < 0) {
					int code1 = getLeftMovingCode(kMod8);
					int code2 = getRightMovingCode(kMod8, resiBitsLength);
					int leftMovSteps = -rightMovSteps;
					rightMovSteps = 8 - leftMovSteps;
					resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps;
					p++;
					resiBits = resiBits
							| ((tdps->residualMidBits[p] & code2) >> rightMovSteps);
				} else // rightMovSteps == 0
				{
					int code = getRightMovingCode(kMod8, resiBitsLength);
					resiBits = (tdps->residualMidBits[p] & code);
					p++;
				}
				k += resiBitsLength;
			}

			// recover the exact data
			memset(curBytes, 0, 8);
			leadingNum = leadNum[l++];
			memcpy(curBytes, preBytes, leadingNum);
			for (j = leadingNum; j < reqBytesLength; j++)
				curBytes[j] = tdps->exactMidBytes[curByteIndex++];
			if (resiBitsLength != 0) {
				unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength));
				curBytes[reqBytesLength] = resiByte;
			}
			
			exactData = bytesToDouble(curBytes);
			data[i] = exactData + medianValue;
			memcpy(preBytes,curBytes,8);
			break;
		default:
			//predValue = 2 * data[i-1] - data[i-2];
			predValue = data[i-1];
			data[i] = predValue + (type_-intvRadius)*interval;
			break;
		}
		//printf("%.30G\n",data[i]);
	}
	
	free(leadNum);
	free(type);
	return;
}


void getSnapshotData_double_1D(double* data, size_t dataSeriesLength, TightDataPointStorageD* tdps, int errBoundMode, int compressionType, double* hist_data, sz_params* pde_params) 
{
	size_t i;
	if (tdps->allSameData) {
		double value = bytesToDouble(tdps->exactMidBytes);

		//*data = (double*)malloc(sizeof(double)*dataSeriesLength); comment by tickduan
		for (i = 0; i < dataSeriesLength; i++)
			data[i] = value;
	} 
	else 
	{
		decompressDataSeries_double_1D(data, dataSeriesLength, hist_data, tdps);
	}
}