docs.md 11.3 KB
Newer Older
1 2
# TDengine Documentation

sangshuduo's avatar
sangshuduo 已提交
3 4
TDengine is a highly efficient platform to store, query, and analyze time-series data. It is specially designed and optimized for IoT, Internet of Vehicles, Industrial IoT, IT Infrastructure and Application Monitoring, etc. It works like a relational database, such as MySQL, but you are strongly encouraged to read through the following documentation before you experience it, especially the Data Modeling sections. In addition to this document, you should also download and read the technology white paper.

5 6 7 8
## [TDengine Introduction](/evaluation)

* [TDengine Introduction and Features](/evaluation#intro)
* [TDengine Use Scenes](/evaluation#scenes)
9
* [TDengine Performance Metrics and Verification](/evaluation#)
10 11 12

## [Getting Started](/getting-started)

13 14 15 16 17 18
* [Quick Install](/getting-started#install): install via source code/package / Docker within seconds
* [Quick Launch](/getting-started#start): start / stop TDengine quickly with systemctl
* [Command-line](/getting-started#console) : an easy way to access TDengine server
* [Experience Lightning Speed](/getting-started#demo): running a demo, inserting/querying data to experience faster speed
* [List of Supported Platforms](/getting-started#platforms): a list of platforms supported by TDengine server and client
* [Deploy to Kubernetes](https://taosdata.github.io/TDengine-Operator/en/index.html):a detailed guide for TDengine deployment in Kubernetes environment
19 20 21

## [Overall Architecture](/architecture)

22
- [Data Model](/architecture#model): relational database model, but one table for one data collection point with static tags
23
- [Cluster and Primary Logical Unit](/architecture#cluster): Take advantage of NoSQL architecture, high availability and horizontal scalability
sangshuduo's avatar
sangshuduo 已提交
24
- [Storage Model and Data Partitioning/Sharding](/architecture#sharding): tag data is separated from time-series data, sharded by vnodes and partitioned by time
25
- [Data Writing and Replication Process](/architecture#replication): records received are written to WAL, cached, with acknowledgement sent back to client, while supporting data replications
26
- [Caching and Persistence](/architecture#persistence): latest records are cached in memory, but are written in columnar format with an ultra-high compression ratio
27
- [Data Query](/architecture#query): support various SQL functions, downsampling, interpolation, and multi-table aggregation
28 29 30

## [Data Modeling](/model)

31
- [Create a Database](/model#create-db): create a database for all data collection points with similar data characteristics
32
- [Create a Super Table(STable)](/model#create-stable): create a STable for all data collection points with the same type
33 34 35 36 37
- [Create a Table](/model#create-table): use STable as the template to create a table for each data collecting point

## [Efficient Data Ingestion](/insert)

- [Data Writing via SQL](/insert#sql): write one or multiple records into one or multiple tables via SQL insert command
G
Ganlin Zhao 已提交
38
- [Data Writing via Schemaless](/insert#schemaless): write one or multiple records with automatic table creation and adaptive table structure maintenance
39 40 41 42 43 44 45 46 47 48
- [Data Writing via Prometheus](/insert#prometheus): Configure Prometheus to write data directly without any code
- [Data Writing via Telegraf](/insert#telegraf): Configure Telegraf to write collected data directly without any code
- [Data Writing via EMQ X](/insert#emq): Configure EMQ X to write MQTT data directly without any code
- [Data Writing via HiveMQ Broker](/insert#hivemq): Configure HiveMQ to write MQTT data directly without any code

## [Efficient Data Querying](/queries)

- [Major Features](/queries#queries): support various standard query functions, setting filter conditions, and querying per time segment
- [Multi-table Aggregation](/queries#aggregation): use STable and set tag filter conditions to perform efficient aggregation
- [Downsampling](/queries#sampling): aggregate data in successive time windows, support interpolation
49 50 51 52 53 54 55 56

## [TAOS SQL](/taos-sql)

- [Data Types](/taos-sql#data-type): support timestamp, int, float, nchar, bool, and other types
- [Database Management](/taos-sql#management): add, drop, check databases
- [Table Management](/taos-sql#table): add, drop, check, alter tables
- [STable Management](/taos-sql#super-table): add, drop, check, alter STables
- [Tag Management](/taos-sql#tags): add, drop, alter tags
57
- [Inserting Records](/taos-sql#insert): write single/multiple records a table, multiple records across tables, and historical data
58 59
- [Data Query](/taos-sql#select): support time segment, value filtering, sorting, manual paging of query results, etc
- [SQL Function](/taos-sql#functions): support various aggregation functions, selection functions, and calculation functions, such as avg, min, diff, etc
60
- [Cutting and Aggregation](/taos-sql#aggregation): aggregate and reduce the dimension after cutting table data by time segment
61 62 63 64 65 66 67 68 69 70 71 72 73
- [Boundary Restrictions](/taos-sql#limitation): restrictions for the library, table, SQL, and others
- [Error Code](/taos-sql/error-code): TDengine 2.0 error codes and corresponding decimal codes

## [Advanced Features](/advanced-features)

- [Continuous Query](/advanced-features#continuous-query): Based on sliding windows, the data stream is automatically queried and calculated at regular intervals
- [Data Publisher/Subscriber](/advanced-features#subscribe): subscribe to the newly arrived data like a typical messaging system
- [Cache](/advanced-features#cache): the newly arrived data of each device/table will always be cached
- [Alarm Monitoring](/advanced-features#alert): automatically monitor out-of-threshold data, and actively push it based-on configuration rules

## [Connector](/connector)

- [C/C++ Connector](/connector#c-cpp): primary method to connect to TDengine server through libtaos client library
74
- [Java Connector(JDBC)](/connector/java): driver for connecting to the server from Java applications using the JDBC API
75 76 77 78 79 80
- [Python Connector](/connector#python): driver for connecting to TDengine server from Python applications
- [RESTful Connector](/connector#restful): a simple way to interact with TDengine via HTTP
- [Go Connector](/connector#go): driver for connecting to TDengine server from Go applications
- [Node.js Connector](/connector#nodejs): driver for connecting to TDengine server from Node.js applications
- [C# Connector](/connector#csharp): driver for connecting to TDengine server from C# applications
- [Windows Client](https://www.taosdata.com/blog/2019/07/26/514.html): compile your own Windows client, which is required by various connectors on the Windows environment
81
- [Rust Connector](/connector/rust): A taosc/RESTful API based TDengine client for Rust
82

S
Shuaiqiang Chang 已提交
83
## Components and Tools
S
Shuaiqiang Chang 已提交
84

85 86 87
* [taosAdapter](/tools/adapter): a bridge/adapter between TDengine cluster and applications.
* [TDinsight](/tools/insight): monitoring TDengine cluster with Grafana.
* [taosdump](/tools/taosdump): backup tool for TDengine. Please install `taosTools` package for it.
S
Shuaiqiang Chang 已提交
88
* [taosBenchmark](/tools/taosbenchmark): stress test tool for TDengine. Please install `taosTools` package for it.
S
Shuaiqiang Chang 已提交
89

90 91 92
## [Connections with Other Tools](/connections)

- [Grafana](/connections#grafana): query the data saved in TDengine and provide visualization
93
- [MATLAB](/connections#matlab): access data stored in TDengine server via JDBC configured within MATLAB
94 95
- [R](/connections#r): access data stored in TDengine server via JDBC configured within R
- [IDEA Database](https://www.taosdata.com/blog/2020/08/27/1767.html): use TDengine visually through IDEA Database Management Tool
sangshuduo's avatar
sangshuduo 已提交
96 97
- [TDengineGUI](https://github.com/skye0207/TDengineGUI)
- [DataX, a data immigaration tool with TDeninge supported](https://github.com/taosdata/datax)
98 99 100

## [Installation and Management of TDengine Cluster](/cluster)

101
- [Preparation](/cluster#prepare): important steps before deploying TDengine for production usage
sangshuduo's avatar
sangshuduo 已提交
102
- [Create the First Node](/cluster#node-one): just follow the steps in quick start
103 104
- [Create Subsequent Nodes](/cluster#node-other): configure taos.cfg for new nodes to add more to the existing cluster
- [Node Management](/cluster#management): add, delete, and check nodes in the cluster
105 106
- [High-availability of Vnode](/cluster#high-availability): implement high-availability of Vnode through replicas
- [Mnode Management](/cluster#mnode): mnodes are created automatically without any manual intervention
107 108 109 110 111 112 113 114 115 116 117 118
- [Load Balancing](/cluster#load-balancing): automatically performed once the number of nodes or load changes
- [Offline Node Processing](/cluster#offline): any node that offline for more than a certain period will be removed from the cluster
- [Arbitrator](/cluster#arbitrator): used in the case of an even number of replicas to prevent split-brain

## [TDengine Operation and Maintenance](/administrator)

- [Capacity Planning](/administrator#planning): Estimating hardware resources based on scenarios
- [Fault Tolerance and Disaster Recovery](/administrator#tolerance): set the correct WAL and number of data replicas
- [System Configuration](/administrator#config): port, cache size, file block size, and other system configurations
- [User Management](/administrator#user): add/delete TDengine users, modify user password
- [Import Data](/administrator#import): import data into TDengine from either script or CSV file
- [Export Data](/administrator#export): export data either from TDengine shell or from the taosdump tool
119 120
- [System Connection and Task Query Management](/administrator#status): show the system connections, queries, streaming calculation and others
- [System Monitor](/administrator#monitoring): monitor TDengine cluster with log database and TDinsight.
121
- [File Directory Structure](/administrator#directories): directories where TDengine data files and configuration files located
B
Bo Ding 已提交
122
- [Parameter Limits and Reserved Keywords](/administrator#keywords): TDengine’s list of parameter limits and reserved keywords
123

sangshuduo's avatar
sangshuduo 已提交
124 125 126 127 128 129
## Rapidly build an IT DevOps system with TDengine

* [devops](/devops/telegraf): Rapidly build an IT DevOps system with TDengine + Telegraf + Grafana
* [devops](/devops/collectd): Rapidly build a IT DevOps system with TDengine + collectd/StatsD + Grafana
* [immigration](/devops/immigrate): Best practice of immigration from OpenTSDB to TDengine

130
## Performance: TDengine vs Others
131

132 133 134 135
- [Performance: TDengine vs OpenTSDB](https://www.taosdata.com/blog/2019/09/12/710.html)
- [Performance: TDengine vs Cassandra](https://www.taosdata.com/blog/2019/09/12/708.html)
- [Performance: TDengine vs InfluxDB](https://www.taosdata.com/blog/2019/09/12/706.html)
- [Performance Test Reports of TDengine vs InfluxDB/OpenTSDB/Cassandra/MySQL/ClickHouse](https://www.taosdata.com/downloads/TDengine_Testing_Report_en.pdf)
136 137 138 139 140 141 142

## More on IoT Big Data

- [Characteristics of IoT and Industry Internet Big Data](https://www.taosdata.com/blog/2019/07/09/characteristics-of-iot-big-data/)
- [Features and Functions of IoT Big Data platforms](https://www.taosdata.com/blog/2019/07/29/542.html)
- [Why don’t General Big Data Platforms Fit IoT Scenarios?](https://www.taosdata.com/blog/2019/07/09/why-does-the-general-big-data-platform-not-fit-iot-data-processing/)
- [Why TDengine is the best choice for IoT, Internet of Vehicles, and Industry Internet Big Data platforms?](https://www.taosdata.com/blog/2019/07/09/why-tdengine-is-the-best-choice-for-iot-big-data-processing/)
143
- [Technical Blog](https://www.taosdata.com/cn/blog/?categories=3): More technical analysis and architecture design articles
144 145 146

## FAQ

S
Shuaiqiang Chang 已提交
147
- [FAQ: Common questions and answers](/faq)