zstd_v01.c 68.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
/*
 * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
 * All rights reserved.
 *
 * This source code is licensed under both the BSD-style license (found in the
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 * in the COPYING file in the root directory of this source tree).
 * You may select, at your option, one of the above-listed licenses.
 */


/******************************************
*  Includes
******************************************/
#include <stddef.h>    /* size_t, ptrdiff_t */
#include "zstd_v01.h"
#include "error_private.h"


/******************************************
*  Static allocation
******************************************/
/* You can statically allocate FSE CTable/DTable as a table of unsigned using below macro */
#define FSE_DTABLE_SIZE_U32(maxTableLog)                   (1 + (1<<maxTableLog))

/* You can statically allocate Huff0 DTable as a table of unsigned short using below macro */
#define HUF_DTABLE_SIZE_U16(maxTableLog)   (1 + (1<<maxTableLog))
#define HUF_CREATE_STATIC_DTABLE(DTable, maxTableLog) \
        unsigned short DTable[HUF_DTABLE_SIZE_U16(maxTableLog)] = { maxTableLog }


/******************************************
*  Error Management
******************************************/
#define FSE_LIST_ERRORS(ITEM) \
        ITEM(FSE_OK_NoError) ITEM(FSE_ERROR_GENERIC) \
        ITEM(FSE_ERROR_tableLog_tooLarge) ITEM(FSE_ERROR_maxSymbolValue_tooLarge) ITEM(FSE_ERROR_maxSymbolValue_tooSmall) \
        ITEM(FSE_ERROR_dstSize_tooSmall) ITEM(FSE_ERROR_srcSize_wrong)\
        ITEM(FSE_ERROR_corruptionDetected) \
        ITEM(FSE_ERROR_maxCode)

#define FSE_GENERATE_ENUM(ENUM) ENUM,
typedef enum { FSE_LIST_ERRORS(FSE_GENERATE_ENUM) } FSE_errorCodes;  /* enum is exposed, to detect & handle specific errors; compare function result to -enum value */


/******************************************
*  FSE symbol compression API
******************************************/
/*
   This API consists of small unitary functions, which highly benefit from being inlined.
   You will want to enable link-time-optimization to ensure these functions are properly inlined in your binary.
   Visual seems to do it automatically.
   For gcc or clang, you'll need to add -flto flag at compilation and linking stages.
   If none of these solutions is applicable, include "fse.c" directly.
*/

typedef unsigned FSE_CTable;   /* don't allocate that. It's just a way to be more restrictive than void* */
typedef unsigned FSE_DTable;   /* don't allocate that. It's just a way to be more restrictive than void* */

typedef struct
{
    size_t bitContainer;
    int    bitPos;
    char*  startPtr;
    char*  ptr;
    char*  endPtr;
} FSE_CStream_t;

typedef struct
{
    ptrdiff_t   value;
    const void* stateTable;
    const void* symbolTT;
    unsigned    stateLog;
} FSE_CState_t;

typedef struct
{
    size_t   bitContainer;
    unsigned bitsConsumed;
    const char* ptr;
    const char* start;
} FSE_DStream_t;

typedef struct
{
    size_t      state;
    const void* table;   /* precise table may vary, depending on U16 */
} FSE_DState_t;

typedef enum { FSE_DStream_unfinished = 0,
               FSE_DStream_endOfBuffer = 1,
               FSE_DStream_completed = 2,
               FSE_DStream_tooFar = 3 } FSE_DStream_status;  /* result of FSE_reloadDStream() */
               /* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... ?! */


/****************************************************************
*  Tuning parameters
****************************************************************/
/* MEMORY_USAGE :
*  Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
*  Increasing memory usage improves compression ratio
*  Reduced memory usage can improve speed, due to cache effect
*  Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
#define FSE_MAX_MEMORY_USAGE 14
#define FSE_DEFAULT_MEMORY_USAGE 13

/* FSE_MAX_SYMBOL_VALUE :
*  Maximum symbol value authorized.
*  Required for proper stack allocation */
#define FSE_MAX_SYMBOL_VALUE 255


/****************************************************************
*  template functions type & suffix
****************************************************************/
#define FSE_FUNCTION_TYPE BYTE
#define FSE_FUNCTION_EXTENSION


/****************************************************************
*  Byte symbol type
****************************************************************/
typedef struct
{
    unsigned short newState;
    unsigned char  symbol;
    unsigned char  nbBits;
} FSE_decode_t;   /* size == U32 */



/****************************************************************
*  Compiler specifics
****************************************************************/
#ifdef _MSC_VER    /* Visual Studio */
#  define FORCE_INLINE static __forceinline
#  include <intrin.h>                    /* For Visual 2005 */
#  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */
#  pragma warning(disable : 4214)        /* disable: C4214: non-int bitfields */
#else
#  define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
#  if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
#    ifdef __GNUC__
#      define FORCE_INLINE static inline __attribute__((always_inline))
#    else
#      define FORCE_INLINE static inline
#    endif
#  else
#    define FORCE_INLINE static
#  endif /* __STDC_VERSION__ */
#endif


/****************************************************************
*  Includes
****************************************************************/
#include <stdlib.h>     /* malloc, free, qsort */
#include <string.h>     /* memcpy, memset */
#include <stdio.h>      /* printf (debug) */


#ifndef MEM_ACCESS_MODULE
#define MEM_ACCESS_MODULE
/****************************************************************
*  Basic Types
*****************************************************************/
#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
# include <stdint.h>
typedef  uint8_t BYTE;
typedef uint16_t U16;
typedef  int16_t S16;
typedef uint32_t U32;
typedef  int32_t S32;
typedef uint64_t U64;
typedef  int64_t S64;
#else
typedef unsigned char       BYTE;
typedef unsigned short      U16;
typedef   signed short      S16;
typedef unsigned int        U32;
typedef   signed int        S32;
typedef unsigned long long  U64;
typedef   signed long long  S64;
#endif

#endif   /* MEM_ACCESS_MODULE */

/****************************************************************
*  Memory I/O
*****************************************************************/
/* FSE_FORCE_MEMORY_ACCESS
 * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
 * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
 * The below switch allow to select different access method for improved performance.
 * Method 0 (default) : use `memcpy()`. Safe and portable.
 * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
 *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
 * Method 2 : direct access. This method is portable but violate C standard.
 *            It can generate buggy code on targets generating assembly depending on alignment.
 *            But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
 * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
 * Prefer these methods in priority order (0 > 1 > 2)
 */
#ifndef FSE_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
#  if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
#    define FSE_FORCE_MEMORY_ACCESS 2
#  elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
  (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
#    define FSE_FORCE_MEMORY_ACCESS 1
#  endif
#endif


static unsigned FSE_32bits(void)
{
    return sizeof(void*)==4;
}

static unsigned FSE_isLittleEndian(void)
{
    const union { U32 i; BYTE c[4]; } one = { 1 };   /* don't use static : performance detrimental  */
    return one.c[0];
}

#if defined(FSE_FORCE_MEMORY_ACCESS) && (FSE_FORCE_MEMORY_ACCESS==2)

static U16 FSE_read16(const void* memPtr) { return *(const U16*) memPtr; }
static U32 FSE_read32(const void* memPtr) { return *(const U32*) memPtr; }
static U64 FSE_read64(const void* memPtr) { return *(const U64*) memPtr; }

#elif defined(FSE_FORCE_MEMORY_ACCESS) && (FSE_FORCE_MEMORY_ACCESS==1)

/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
/* currently only defined for gcc and icc */
typedef union { U16 u16; U32 u32; U64 u64; } __attribute__((packed)) unalign;

static U16 FSE_read16(const void* ptr) { return ((const unalign*)ptr)->u16; }
static U32 FSE_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
static U64 FSE_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }

#else

static U16 FSE_read16(const void* memPtr)
{
    U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
}

static U32 FSE_read32(const void* memPtr)
{
    U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
}

static U64 FSE_read64(const void* memPtr)
{
    U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
}

#endif // FSE_FORCE_MEMORY_ACCESS

static U16 FSE_readLE16(const void* memPtr)
{
    if (FSE_isLittleEndian())
        return FSE_read16(memPtr);
    else
    {
        const BYTE* p = (const BYTE*)memPtr;
        return (U16)(p[0] + (p[1]<<8));
    }
}

static U32 FSE_readLE32(const void* memPtr)
{
    if (FSE_isLittleEndian())
        return FSE_read32(memPtr);
    else
    {
        const BYTE* p = (const BYTE*)memPtr;
        return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24));
    }
}


static U64 FSE_readLE64(const void* memPtr)
{
    if (FSE_isLittleEndian())
        return FSE_read64(memPtr);
    else
    {
        const BYTE* p = (const BYTE*)memPtr;
        return (U64)((U64)p[0] + ((U64)p[1]<<8) + ((U64)p[2]<<16) + ((U64)p[3]<<24)
                     + ((U64)p[4]<<32) + ((U64)p[5]<<40) + ((U64)p[6]<<48) + ((U64)p[7]<<56));
    }
}

static size_t FSE_readLEST(const void* memPtr)
{
    if (FSE_32bits())
        return (size_t)FSE_readLE32(memPtr);
    else
        return (size_t)FSE_readLE64(memPtr);
}



/****************************************************************
*  Constants
*****************************************************************/
#define FSE_MAX_TABLELOG  (FSE_MAX_MEMORY_USAGE-2)
#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
#define FSE_MIN_TABLELOG 5

#define FSE_TABLELOG_ABSOLUTE_MAX 15
#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
#error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
#endif


/****************************************************************
*  Error Management
****************************************************************/
#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; }   /* use only *after* variable declarations */


/****************************************************************
*  Complex types
****************************************************************/
typedef struct
{
    int deltaFindState;
    U32 deltaNbBits;
} FSE_symbolCompressionTransform; /* total 8 bytes */

typedef U32 DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)];

/****************************************************************
*  Internal functions
****************************************************************/
FORCE_INLINE unsigned FSE_highbit32 (U32 val)
{
#   if defined(_MSC_VER)   /* Visual */
    unsigned long r;
    _BitScanReverse ( &r, val );
    return (unsigned) r;
#   elif defined(__GNUC__) && (GCC_VERSION >= 304)   /* GCC Intrinsic */
    return 31 - __builtin_clz (val);
#   else   /* Software version */
    static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
    U32 v = val;
    unsigned r;
    v |= v >> 1;
    v |= v >> 2;
    v |= v >> 4;
    v |= v >> 8;
    v |= v >> 16;
    r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
    return r;
#   endif
}


/****************************************************************
*  Templates
****************************************************************/
/*
  designed to be included
  for type-specific functions (template emulation in C)
  Objective is to write these functions only once, for improved maintenance
*/

/* safety checks */
#ifndef FSE_FUNCTION_EXTENSION
#  error "FSE_FUNCTION_EXTENSION must be defined"
#endif
#ifndef FSE_FUNCTION_TYPE
#  error "FSE_FUNCTION_TYPE must be defined"
#endif

/* Function names */
#define FSE_CAT(X,Y) X##Y
#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)



static U32 FSE_tableStep(U32 tableSize) { return (tableSize>>1) + (tableSize>>3) + 3; }

#define FSE_DECODE_TYPE FSE_decode_t


typedef struct {
    U16 tableLog;
    U16 fastMode;
} FSE_DTableHeader;   /* sizeof U32 */

static size_t FSE_buildDTable
(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
{
    void* ptr = dt;
    FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
    FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*)(ptr) + 1;   /* because dt is unsigned, 32-bits aligned on 32-bits */
    const U32 tableSize = 1 << tableLog;
    const U32 tableMask = tableSize-1;
    const U32 step = FSE_tableStep(tableSize);
    U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1];
    U32 position = 0;
    U32 highThreshold = tableSize-1;
    const S16 largeLimit= (S16)(1 << (tableLog-1));
    U32 noLarge = 1;
    U32 s;

    /* Sanity Checks */
    if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return (size_t)-FSE_ERROR_maxSymbolValue_tooLarge;
    if (tableLog > FSE_MAX_TABLELOG) return (size_t)-FSE_ERROR_tableLog_tooLarge;

    /* Init, lay down lowprob symbols */
    DTableH[0].tableLog = (U16)tableLog;
    for (s=0; s<=maxSymbolValue; s++)
    {
        if (normalizedCounter[s]==-1)
        {
            tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
            symbolNext[s] = 1;
        }
        else
        {
            if (normalizedCounter[s] >= largeLimit) noLarge=0;
            symbolNext[s] = normalizedCounter[s];
        }
    }

    /* Spread symbols */
    for (s=0; s<=maxSymbolValue; s++)
    {
        int i;
        for (i=0; i<normalizedCounter[s]; i++)
        {
            tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
            position = (position + step) & tableMask;
            while (position > highThreshold) position = (position + step) & tableMask;   /* lowprob area */
        }
    }

    if (position!=0) return (size_t)-FSE_ERROR_GENERIC;   /* position must reach all cells once, otherwise normalizedCounter is incorrect */

    /* Build Decoding table */
    {
        U32 i;
        for (i=0; i<tableSize; i++)
        {
            FSE_FUNCTION_TYPE symbol = (FSE_FUNCTION_TYPE)(tableDecode[i].symbol);
            U16 nextState = symbolNext[symbol]++;
            tableDecode[i].nbBits = (BYTE) (tableLog - FSE_highbit32 ((U32)nextState) );
            tableDecode[i].newState = (U16) ( (nextState << tableDecode[i].nbBits) - tableSize);
        }
    }

    DTableH->fastMode = (U16)noLarge;
    return 0;
}


/******************************************
*  FSE byte symbol
******************************************/
#ifndef FSE_COMMONDEFS_ONLY

static unsigned FSE_isError(size_t code) { return (code > (size_t)(-FSE_ERROR_maxCode)); }

static short FSE_abs(short a)
{
    return a<0? -a : a;
}


/****************************************************************
*  Header bitstream management
****************************************************************/
static size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
                 const void* headerBuffer, size_t hbSize)
{
    const BYTE* const istart = (const BYTE*) headerBuffer;
    const BYTE* const iend = istart + hbSize;
    const BYTE* ip = istart;
    int nbBits;
    int remaining;
    int threshold;
    U32 bitStream;
    int bitCount;
    unsigned charnum = 0;
    int previous0 = 0;

    if (hbSize < 4) return (size_t)-FSE_ERROR_srcSize_wrong;
    bitStream = FSE_readLE32(ip);
    nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG;   /* extract tableLog */
    if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return (size_t)-FSE_ERROR_tableLog_tooLarge;
    bitStream >>= 4;
    bitCount = 4;
    *tableLogPtr = nbBits;
    remaining = (1<<nbBits)+1;
    threshold = 1<<nbBits;
    nbBits++;

    while ((remaining>1) && (charnum<=*maxSVPtr))
    {
        if (previous0)
        {
            unsigned n0 = charnum;
            while ((bitStream & 0xFFFF) == 0xFFFF)
            {
                n0+=24;
                if (ip < iend-5)
                {
                    ip+=2;
                    bitStream = FSE_readLE32(ip) >> bitCount;
                }
                else
                {
                    bitStream >>= 16;
                    bitCount+=16;
                }
            }
            while ((bitStream & 3) == 3)
            {
                n0+=3;
                bitStream>>=2;
                bitCount+=2;
            }
            n0 += bitStream & 3;
            bitCount += 2;
            if (n0 > *maxSVPtr) return (size_t)-FSE_ERROR_maxSymbolValue_tooSmall;
            while (charnum < n0) normalizedCounter[charnum++] = 0;
            if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
            {
                ip += bitCount>>3;
                bitCount &= 7;
                bitStream = FSE_readLE32(ip) >> bitCount;
            }
            else
                bitStream >>= 2;
        }
        {
            const short max = (short)((2*threshold-1)-remaining);
            short count;

            if ((bitStream & (threshold-1)) < (U32)max)
            {
                count = (short)(bitStream & (threshold-1));
                bitCount   += nbBits-1;
            }
            else
            {
                count = (short)(bitStream & (2*threshold-1));
                if (count >= threshold) count -= max;
                bitCount   += nbBits;
            }

            count--;   /* extra accuracy */
            remaining -= FSE_abs(count);
            normalizedCounter[charnum++] = count;
            previous0 = !count;
            while (remaining < threshold)
            {
                nbBits--;
                threshold >>= 1;
            }

            {
                if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
                {
                    ip += bitCount>>3;
                    bitCount &= 7;
                }
                else
                {
                    bitCount -= (int)(8 * (iend - 4 - ip));
                    ip = iend - 4;
                }
                bitStream = FSE_readLE32(ip) >> (bitCount & 31);
            }
        }
    }
    if (remaining != 1) return (size_t)-FSE_ERROR_GENERIC;
    *maxSVPtr = charnum-1;

    ip += (bitCount+7)>>3;
    if ((size_t)(ip-istart) > hbSize) return (size_t)-FSE_ERROR_srcSize_wrong;
    return ip-istart;
}


/*********************************************************
*  Decompression (Byte symbols)
*********************************************************/
static size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue)
{
    void* ptr = dt;
    FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
    FSE_decode_t* const cell = (FSE_decode_t*)(ptr) + 1;   /* because dt is unsigned */

    DTableH->tableLog = 0;
    DTableH->fastMode = 0;

    cell->newState = 0;
    cell->symbol = symbolValue;
    cell->nbBits = 0;

    return 0;
}


static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits)
{
    void* ptr = dt;
    FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
    FSE_decode_t* const dinfo = (FSE_decode_t*)(ptr) + 1;   /* because dt is unsigned */
    const unsigned tableSize = 1 << nbBits;
    const unsigned tableMask = tableSize - 1;
    const unsigned maxSymbolValue = tableMask;
    unsigned s;

    /* Sanity checks */
    if (nbBits < 1) return (size_t)-FSE_ERROR_GENERIC;             /* min size */

    /* Build Decoding Table */
    DTableH->tableLog = (U16)nbBits;
    DTableH->fastMode = 1;
    for (s=0; s<=maxSymbolValue; s++)
    {
        dinfo[s].newState = 0;
        dinfo[s].symbol = (BYTE)s;
        dinfo[s].nbBits = (BYTE)nbBits;
    }

    return 0;
}


/* FSE_initDStream
 * Initialize a FSE_DStream_t.
 * srcBuffer must point at the beginning of an FSE block.
 * The function result is the size of the FSE_block (== srcSize).
 * If srcSize is too small, the function will return an errorCode;
 */
static size_t FSE_initDStream(FSE_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
{
    if (srcSize < 1) return (size_t)-FSE_ERROR_srcSize_wrong;

    if (srcSize >=  sizeof(size_t))
    {
        U32 contain32;
        bitD->start = (const char*)srcBuffer;
        bitD->ptr   = (const char*)srcBuffer + srcSize - sizeof(size_t);
        bitD->bitContainer = FSE_readLEST(bitD->ptr);
        contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
        if (contain32 == 0) return (size_t)-FSE_ERROR_GENERIC;   /* stop bit not present */
        bitD->bitsConsumed = 8 - FSE_highbit32(contain32);
    }
    else
    {
        U32 contain32;
        bitD->start = (const char*)srcBuffer;
        bitD->ptr   = bitD->start;
        bitD->bitContainer = *(const BYTE*)(bitD->start);
        switch(srcSize)
        {
            case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16);
            case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24);
            case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32);
            case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24;
            case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16;
            case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) <<  8;
            default:;
        }
        contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
        if (contain32 == 0) return (size_t)-FSE_ERROR_GENERIC;   /* stop bit not present */
        bitD->bitsConsumed = 8 - FSE_highbit32(contain32);
        bitD->bitsConsumed += (U32)(sizeof(size_t) - srcSize)*8;
    }

    return srcSize;
}


/*!FSE_lookBits
 * Provides next n bits from the bitContainer.
 * bitContainer is not modified (bits are still present for next read/look)
 * On 32-bits, maxNbBits==25
 * On 64-bits, maxNbBits==57
 * return : value extracted.
 */
static size_t FSE_lookBits(FSE_DStream_t* bitD, U32 nbBits)
{
    const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
    return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask);
}

static size_t FSE_lookBitsFast(FSE_DStream_t* bitD, U32 nbBits)   /* only if nbBits >= 1 !! */
{
    const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
    return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask);
}

static void FSE_skipBits(FSE_DStream_t* bitD, U32 nbBits)
{
    bitD->bitsConsumed += nbBits;
}


/*!FSE_readBits
 * Read next n bits from the bitContainer.
 * On 32-bits, don't read more than maxNbBits==25
 * On 64-bits, don't read more than maxNbBits==57
 * Use the fast variant *only* if n >= 1.
 * return : value extracted.
 */
static size_t FSE_readBits(FSE_DStream_t* bitD, U32 nbBits)
{
    size_t value = FSE_lookBits(bitD, nbBits);
    FSE_skipBits(bitD, nbBits);
    return value;
}

static size_t FSE_readBitsFast(FSE_DStream_t* bitD, U32 nbBits)   /* only if nbBits >= 1 !! */
{
    size_t value = FSE_lookBitsFast(bitD, nbBits);
    FSE_skipBits(bitD, nbBits);
    return value;
}

static unsigned FSE_reloadDStream(FSE_DStream_t* bitD)
{
    if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8))  /* should never happen */
        return FSE_DStream_tooFar;

    if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer))
    {
        bitD->ptr -= bitD->bitsConsumed >> 3;
        bitD->bitsConsumed &= 7;
        bitD->bitContainer = FSE_readLEST(bitD->ptr);
        return FSE_DStream_unfinished;
    }
    if (bitD->ptr == bitD->start)
    {
        if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return FSE_DStream_endOfBuffer;
        return FSE_DStream_completed;
    }
    {
        U32 nbBytes = bitD->bitsConsumed >> 3;
        U32 result = FSE_DStream_unfinished;
        if (bitD->ptr - nbBytes < bitD->start)
        {
            nbBytes = (U32)(bitD->ptr - bitD->start);  /* ptr > start */
            result = FSE_DStream_endOfBuffer;
        }
        bitD->ptr -= nbBytes;
        bitD->bitsConsumed -= nbBytes*8;
        bitD->bitContainer = FSE_readLEST(bitD->ptr);   /* reminder : srcSize > sizeof(bitD) */
        return result;
    }
}


static void FSE_initDState(FSE_DState_t* DStatePtr, FSE_DStream_t* bitD, const FSE_DTable* dt)
{
    const void* ptr = dt;
    const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr;
    DStatePtr->state = FSE_readBits(bitD, DTableH->tableLog);
    FSE_reloadDStream(bitD);
    DStatePtr->table = dt + 1;
}

static BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, FSE_DStream_t* bitD)
{
    const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
    const U32  nbBits = DInfo.nbBits;
    BYTE symbol = DInfo.symbol;
    size_t lowBits = FSE_readBits(bitD, nbBits);

    DStatePtr->state = DInfo.newState + lowBits;
    return symbol;
}

static BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, FSE_DStream_t* bitD)
{
    const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
    const U32 nbBits = DInfo.nbBits;
    BYTE symbol = DInfo.symbol;
    size_t lowBits = FSE_readBitsFast(bitD, nbBits);

    DStatePtr->state = DInfo.newState + lowBits;
    return symbol;
}

/* FSE_endOfDStream
   Tells if bitD has reached end of bitStream or not */

static unsigned FSE_endOfDStream(const FSE_DStream_t* bitD)
{
    return ((bitD->ptr == bitD->start) && (bitD->bitsConsumed == sizeof(bitD->bitContainer)*8));
}

static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
{
    return DStatePtr->state == 0;
}


FORCE_INLINE size_t FSE_decompress_usingDTable_generic(
          void* dst, size_t maxDstSize,
    const void* cSrc, size_t cSrcSize,
    const FSE_DTable* dt, const unsigned fast)
{
    BYTE* const ostart = (BYTE*) dst;
    BYTE* op = ostart;
    BYTE* const omax = op + maxDstSize;
    BYTE* const olimit = omax-3;

    FSE_DStream_t bitD;
    FSE_DState_t state1;
    FSE_DState_t state2;
    size_t errorCode;

    /* Init */
    errorCode = FSE_initDStream(&bitD, cSrc, cSrcSize);   /* replaced last arg by maxCompressed Size */
    if (FSE_isError(errorCode)) return errorCode;

    FSE_initDState(&state1, &bitD, dt);
    FSE_initDState(&state2, &bitD, dt);

#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)

    /* 4 symbols per loop */
    for ( ; (FSE_reloadDStream(&bitD)==FSE_DStream_unfinished) && (op<olimit) ; op+=4)
    {
        op[0] = FSE_GETSYMBOL(&state1);

        if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8)    /* This test must be static */
            FSE_reloadDStream(&bitD);

        op[1] = FSE_GETSYMBOL(&state2);

        if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8)    /* This test must be static */
            { if (FSE_reloadDStream(&bitD) > FSE_DStream_unfinished) { op+=2; break; } }

        op[2] = FSE_GETSYMBOL(&state1);

        if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8)    /* This test must be static */
            FSE_reloadDStream(&bitD);

        op[3] = FSE_GETSYMBOL(&state2);
    }

    /* tail */
    /* note : FSE_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly FSE_DStream_completed */
    while (1)
    {
        if ( (FSE_reloadDStream(&bitD)>FSE_DStream_completed) || (op==omax) || (FSE_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state1))) )
            break;

        *op++ = FSE_GETSYMBOL(&state1);

        if ( (FSE_reloadDStream(&bitD)>FSE_DStream_completed) || (op==omax) || (FSE_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state2))) )
            break;

        *op++ = FSE_GETSYMBOL(&state2);
    }

    /* end ? */
    if (FSE_endOfDStream(&bitD) && FSE_endOfDState(&state1) && FSE_endOfDState(&state2))
        return op-ostart;

    if (op==omax) return (size_t)-FSE_ERROR_dstSize_tooSmall;   /* dst buffer is full, but cSrc unfinished */

    return (size_t)-FSE_ERROR_corruptionDetected;
}


static size_t FSE_decompress_usingDTable(void* dst, size_t originalSize,
                            const void* cSrc, size_t cSrcSize,
                            const FSE_DTable* dt)
{
    FSE_DTableHeader DTableH;
    memcpy(&DTableH, dt, sizeof(DTableH));   /* memcpy() into local variable, to avoid strict aliasing warning */

    /* select fast mode (static) */
    if (DTableH.fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
    return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
}


static size_t FSE_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
{
    const BYTE* const istart = (const BYTE*)cSrc;
    const BYTE* ip = istart;
    short counting[FSE_MAX_SYMBOL_VALUE+1];
    DTable_max_t dt;   /* Static analyzer seems unable to understand this table will be properly initialized later */
    unsigned tableLog;
    unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
    size_t errorCode;

    if (cSrcSize<2) return (size_t)-FSE_ERROR_srcSize_wrong;   /* too small input size */

    /* normal FSE decoding mode */
    errorCode = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
    if (FSE_isError(errorCode)) return errorCode;
    if (errorCode >= cSrcSize) return (size_t)-FSE_ERROR_srcSize_wrong;   /* too small input size */
    ip += errorCode;
    cSrcSize -= errorCode;

    errorCode = FSE_buildDTable (dt, counting, maxSymbolValue, tableLog);
    if (FSE_isError(errorCode)) return errorCode;

    /* always return, even if it is an error code */
    return FSE_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt);
}



/* *******************************************************
*  Huff0 : Huffman block compression
*********************************************************/
#define HUF_MAX_SYMBOL_VALUE 255
#define HUF_DEFAULT_TABLELOG  12       /* used by default, when not specified */
#define HUF_MAX_TABLELOG  12           /* max possible tableLog; for allocation purpose; can be modified */
#define HUF_ABSOLUTEMAX_TABLELOG  16   /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
#if (HUF_MAX_TABLELOG > HUF_ABSOLUTEMAX_TABLELOG)
#  error "HUF_MAX_TABLELOG is too large !"
#endif

typedef struct HUF_CElt_s {
  U16  val;
  BYTE nbBits;
} HUF_CElt ;

typedef struct nodeElt_s {
    U32 count;
    U16 parent;
    BYTE byte;
    BYTE nbBits;
} nodeElt;


/* *******************************************************
*  Huff0 : Huffman block decompression
*********************************************************/
typedef struct {
    BYTE byte;
    BYTE nbBits;
} HUF_DElt;

static size_t HUF_readDTable (U16* DTable, const void* src, size_t srcSize)
{
    BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1];
    U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];  /* large enough for values from 0 to 16 */
    U32 weightTotal;
    U32 maxBits;
    const BYTE* ip = (const BYTE*) src;
    size_t iSize;
    size_t oSize;
    U32 n;
    U32 nextRankStart;
    void* ptr = DTable+1;
    HUF_DElt* const dt = (HUF_DElt*)ptr;

    if (!srcSize) return (size_t)-FSE_ERROR_srcSize_wrong;
    iSize = ip[0];

    FSE_STATIC_ASSERT(sizeof(HUF_DElt) == sizeof(U16));   /* if compilation fails here, assertion is false */
    //memset(huffWeight, 0, sizeof(huffWeight));   /* should not be necessary, but some analyzer complain ... */
    if (iSize >= 128)  /* special header */
    {
        if (iSize >= (242))   /* RLE */
        {
            static int l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 };
            oSize = l[iSize-242];
            memset(huffWeight, 1, sizeof(huffWeight));
            iSize = 0;
        }
        else   /* Incompressible */
        {
            oSize = iSize - 127;
            iSize = ((oSize+1)/2);
            if (iSize+1 > srcSize) return (size_t)-FSE_ERROR_srcSize_wrong;
            ip += 1;
            for (n=0; n<oSize; n+=2)
            {
                huffWeight[n]   = ip[n/2] >> 4;
                huffWeight[n+1] = ip[n/2] & 15;
            }
        }
    }
    else  /* header compressed with FSE (normal case) */
    {
        if (iSize+1 > srcSize) return (size_t)-FSE_ERROR_srcSize_wrong;
        oSize = FSE_decompress(huffWeight, HUF_MAX_SYMBOL_VALUE, ip+1, iSize);   /* max 255 values decoded, last one is implied */
        if (FSE_isError(oSize)) return oSize;
    }

    /* collect weight stats */
    memset(rankVal, 0, sizeof(rankVal));
    weightTotal = 0;
    for (n=0; n<oSize; n++)
    {
        if (huffWeight[n] >= HUF_ABSOLUTEMAX_TABLELOG) return (size_t)-FSE_ERROR_corruptionDetected;
        rankVal[huffWeight[n]]++;
        weightTotal += (1 << huffWeight[n]) >> 1;
    }
    if (weightTotal == 0) return (size_t)-FSE_ERROR_corruptionDetected;

    /* get last non-null symbol weight (implied, total must be 2^n) */
    maxBits = FSE_highbit32(weightTotal) + 1;
    if (maxBits > DTable[0]) return (size_t)-FSE_ERROR_tableLog_tooLarge;   /* DTable is too small */
    DTable[0] = (U16)maxBits;
    {
        U32 total = 1 << maxBits;
        U32 rest = total - weightTotal;
        U32 verif = 1 << FSE_highbit32(rest);
        U32 lastWeight = FSE_highbit32(rest) + 1;
        if (verif != rest) return (size_t)-FSE_ERROR_corruptionDetected;    /* last value must be a clean power of 2 */
        huffWeight[oSize] = (BYTE)lastWeight;
        rankVal[lastWeight]++;
    }

    /* check tree construction validity */
    if ((rankVal[1] < 2) || (rankVal[1] & 1)) return (size_t)-FSE_ERROR_corruptionDetected;   /* by construction : at least 2 elts of rank 1, must be even */

    /* Prepare ranks */
    nextRankStart = 0;
    for (n=1; n<=maxBits; n++)
    {
        U32 current = nextRankStart;
        nextRankStart += (rankVal[n] << (n-1));
        rankVal[n] = current;
    }

    /* fill DTable */
    for (n=0; n<=oSize; n++)
    {
        const U32 w = huffWeight[n];
        const U32 length = (1 << w) >> 1;
        U32 i;
        HUF_DElt D;
        D.byte = (BYTE)n; D.nbBits = (BYTE)(maxBits + 1 - w);
        for (i = rankVal[w]; i < rankVal[w] + length; i++)
            dt[i] = D;
        rankVal[w] += length;
    }

    return iSize+1;
}


static BYTE HUF_decodeSymbol(FSE_DStream_t* Dstream, const HUF_DElt* dt, const U32 dtLog)
{
        const size_t val = FSE_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
        const BYTE c = dt[val].byte;
        FSE_skipBits(Dstream, dt[val].nbBits);
        return c;
}

static size_t HUF_decompress_usingDTable(   /* -3% slower when non static */
          void* dst, size_t maxDstSize,
    const void* cSrc, size_t cSrcSize,
    const U16* DTable)
{
    BYTE* const ostart = (BYTE*) dst;
    BYTE* op = ostart;
    BYTE* const omax = op + maxDstSize;
    BYTE* const olimit = omax-15;

    const void* ptr = DTable;
    const HUF_DElt* const dt = (const HUF_DElt*)(ptr)+1;
    const U32 dtLog = DTable[0];
    size_t errorCode;
    U32 reloadStatus;

    /* Init */

    const U16* jumpTable = (const U16*)cSrc;
    const size_t length1 = FSE_readLE16(jumpTable);
    const size_t length2 = FSE_readLE16(jumpTable+1);
    const size_t length3 = FSE_readLE16(jumpTable+2);
    const size_t length4 = cSrcSize - 6 - length1 - length2 - length3;   // check coherency !!
    const char* const start1 = (const char*)(cSrc) + 6;
    const char* const start2 = start1 + length1;
    const char* const start3 = start2 + length2;
    const char* const start4 = start3 + length3;
    FSE_DStream_t bitD1, bitD2, bitD3, bitD4;

    if (length1+length2+length3+6 >= cSrcSize) return (size_t)-FSE_ERROR_srcSize_wrong;

    errorCode = FSE_initDStream(&bitD1, start1, length1);
    if (FSE_isError(errorCode)) return errorCode;
    errorCode = FSE_initDStream(&bitD2, start2, length2);
    if (FSE_isError(errorCode)) return errorCode;
    errorCode = FSE_initDStream(&bitD3, start3, length3);
    if (FSE_isError(errorCode)) return errorCode;
    errorCode = FSE_initDStream(&bitD4, start4, length4);
    if (FSE_isError(errorCode)) return errorCode;

    reloadStatus=FSE_reloadDStream(&bitD2);

    /* 16 symbols per loop */
    for ( ; (reloadStatus<FSE_DStream_completed) && (op<olimit);  /* D2-3-4 are supposed to be synchronized and finish together */
        op+=16, reloadStatus = FSE_reloadDStream(&bitD2) | FSE_reloadDStream(&bitD3) | FSE_reloadDStream(&bitD4), FSE_reloadDStream(&bitD1))
    {
#define HUF_DECODE_SYMBOL_0(n, Dstream) \
        op[n] = HUF_decodeSymbol(&Dstream, dt, dtLog);

#define HUF_DECODE_SYMBOL_1(n, Dstream) \
        op[n] = HUF_decodeSymbol(&Dstream, dt, dtLog); \
        if (FSE_32bits() && (HUF_MAX_TABLELOG>12)) FSE_reloadDStream(&Dstream)

#define HUF_DECODE_SYMBOL_2(n, Dstream) \
        op[n] = HUF_decodeSymbol(&Dstream, dt, dtLog); \
        if (FSE_32bits()) FSE_reloadDStream(&Dstream)

        HUF_DECODE_SYMBOL_1( 0, bitD1);
        HUF_DECODE_SYMBOL_1( 1, bitD2);
        HUF_DECODE_SYMBOL_1( 2, bitD3);
        HUF_DECODE_SYMBOL_1( 3, bitD4);
        HUF_DECODE_SYMBOL_2( 4, bitD1);
        HUF_DECODE_SYMBOL_2( 5, bitD2);
        HUF_DECODE_SYMBOL_2( 6, bitD3);
        HUF_DECODE_SYMBOL_2( 7, bitD4);
        HUF_DECODE_SYMBOL_1( 8, bitD1);
        HUF_DECODE_SYMBOL_1( 9, bitD2);
        HUF_DECODE_SYMBOL_1(10, bitD3);
        HUF_DECODE_SYMBOL_1(11, bitD4);
        HUF_DECODE_SYMBOL_0(12, bitD1);
        HUF_DECODE_SYMBOL_0(13, bitD2);
        HUF_DECODE_SYMBOL_0(14, bitD3);
        HUF_DECODE_SYMBOL_0(15, bitD4);
    }

    if (reloadStatus!=FSE_DStream_completed)   /* not complete : some bitStream might be FSE_DStream_unfinished */
        return (size_t)-FSE_ERROR_corruptionDetected;

    /* tail */
    {
        // bitTail = bitD1;   // *much* slower : -20% !??!
        FSE_DStream_t bitTail;
        bitTail.ptr = bitD1.ptr;
        bitTail.bitsConsumed = bitD1.bitsConsumed;
        bitTail.bitContainer = bitD1.bitContainer;   // required in case of FSE_DStream_endOfBuffer
        bitTail.start = start1;
        for ( ; (FSE_reloadDStream(&bitTail) < FSE_DStream_completed) && (op<omax) ; op++)
        {
            HUF_DECODE_SYMBOL_0(0, bitTail);
        }

        if (FSE_endOfDStream(&bitTail))
            return op-ostart;
    }

    if (op==omax) return (size_t)-FSE_ERROR_dstSize_tooSmall;   /* dst buffer is full, but cSrc unfinished */

    return (size_t)-FSE_ERROR_corruptionDetected;
}


static size_t HUF_decompress (void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
{
    HUF_CREATE_STATIC_DTABLE(DTable, HUF_MAX_TABLELOG);
    const BYTE* ip = (const BYTE*) cSrc;
    size_t errorCode;

    errorCode = HUF_readDTable (DTable, cSrc, cSrcSize);
    if (FSE_isError(errorCode)) return errorCode;
    if (errorCode >= cSrcSize) return (size_t)-FSE_ERROR_srcSize_wrong;
    ip += errorCode;
    cSrcSize -= errorCode;

    return HUF_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, DTable);
}


#endif   /* FSE_COMMONDEFS_ONLY */

/*
    zstd - standard compression library
    Copyright (C) 2014-2015, Yann Collet.

    BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions are
    met:
    * Redistributions of source code must retain the above copyright
    notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above
    copyright notice, this list of conditions and the following disclaimer
    in the documentation and/or other materials provided with the
    distribution.
    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

    You can contact the author at :
    - zstd source repository : https://github.com/Cyan4973/zstd
    - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
*/

/****************************************************************
*  Tuning parameters
*****************************************************************/
/* MEMORY_USAGE :
*  Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
*  Increasing memory usage improves compression ratio
*  Reduced memory usage can improve speed, due to cache effect */
#define ZSTD_MEMORY_USAGE 17


/**************************************
   CPU Feature Detection
**************************************/
/*
 * Automated efficient unaligned memory access detection
 * Based on known hardware architectures
 * This list will be updated thanks to feedbacks
 */
#if defined(CPU_HAS_EFFICIENT_UNALIGNED_MEMORY_ACCESS) \
    || defined(__ARM_FEATURE_UNALIGNED) \
    || defined(__i386__) || defined(__x86_64__) \
    || defined(_M_IX86) || defined(_M_X64) \
    || defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_8__) \
    || (defined(_M_ARM) && (_M_ARM >= 7))
#  define ZSTD_UNALIGNED_ACCESS 1
#else
#  define ZSTD_UNALIGNED_ACCESS 0
#endif


/********************************************************
*  Includes
*********************************************************/
#include <stdlib.h>      /* calloc */
#include <string.h>      /* memcpy, memmove */
#include <stdio.h>       /* debug : printf */


/********************************************************
*  Compiler specifics
*********************************************************/
#ifdef __AVX2__
#  include <immintrin.h>   /* AVX2 intrinsics */
#endif

#ifdef _MSC_VER    /* Visual Studio */
#  include <intrin.h>                    /* For Visual 2005 */
#  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */
#  pragma warning(disable : 4324)        /* disable: C4324: padded structure */
#endif


#ifndef MEM_ACCESS_MODULE
#define MEM_ACCESS_MODULE
/********************************************************
*  Basic Types
*********************************************************/
#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
# include <stdint.h>
typedef  uint8_t BYTE;
typedef uint16_t U16;
typedef  int16_t S16;
typedef uint32_t U32;
typedef  int32_t S32;
typedef uint64_t U64;
#else
typedef unsigned char       BYTE;
typedef unsigned short      U16;
typedef   signed short      S16;
typedef unsigned int        U32;
typedef   signed int        S32;
typedef unsigned long long  U64;
#endif

#endif   /* MEM_ACCESS_MODULE */


/********************************************************
*  Constants
*********************************************************/
static const U32 ZSTD_magicNumber = 0xFD2FB51E;   /* 3rd version : seqNb header */

#define HASH_LOG (ZSTD_MEMORY_USAGE - 2)
#define HASH_TABLESIZE (1 << HASH_LOG)
#define HASH_MASK (HASH_TABLESIZE - 1)

#define KNUTH 2654435761

#define BIT7 128
#define BIT6  64
#define BIT5  32
#define BIT4  16

#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)

#define BLOCKSIZE (128 KB)                 /* define, for static allocation */

#define WORKPLACESIZE (BLOCKSIZE*3)
#define MINMATCH 4
#define MLbits   7
#define LLbits   6
#define Offbits  5
#define MaxML  ((1<<MLbits )-1)
#define MaxLL  ((1<<LLbits )-1)
#define MaxOff ((1<<Offbits)-1)
#define LitFSELog  11
#define MLFSELog   10
#define LLFSELog   10
#define OffFSELog   9
#define MAX(a,b) ((a)<(b)?(b):(a))
#define MaxSeq MAX(MaxLL, MaxML)

#define LITERAL_NOENTROPY 63
#define COMMAND_NOENTROPY 7   /* to remove */

static const size_t ZSTD_blockHeaderSize = 3;
static const size_t ZSTD_frameHeaderSize = 4;


/********************************************************
*  Memory operations
*********************************************************/
static unsigned ZSTD_32bits(void) { return sizeof(void*)==4; }

static unsigned ZSTD_isLittleEndian(void)
{
    const union { U32 i; BYTE c[4]; } one = { 1 };   /* don't use static : performance detrimental  */
    return one.c[0];
}

static U16    ZSTD_read16(const void* p) { U16 r; memcpy(&r, p, sizeof(r)); return r; }

static U32    ZSTD_read32(const void* p) { U32 r; memcpy(&r, p, sizeof(r)); return r; }

static void   ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }

static void   ZSTD_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }

#define COPY8(d,s)    { ZSTD_copy8(d,s); d+=8; s+=8; }

static void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length)
{
    const BYTE* ip = (const BYTE*)src;
    BYTE* op = (BYTE*)dst;
    BYTE* const oend = op + length;
    while (op < oend) COPY8(op, ip);
}

static U16 ZSTD_readLE16(const void* memPtr)
{
    if (ZSTD_isLittleEndian()) return ZSTD_read16(memPtr);
    else
    {
        const BYTE* p = (const BYTE*)memPtr;
        return (U16)((U16)p[0] + ((U16)p[1]<<8));
    }
}


static U32 ZSTD_readLE32(const void* memPtr)
{
    if (ZSTD_isLittleEndian())
        return ZSTD_read32(memPtr);
    else
    {
        const BYTE* p = (const BYTE*)memPtr;
        return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24));
    }
}

static U32 ZSTD_readBE32(const void* memPtr)
{
    const BYTE* p = (const BYTE*)memPtr;
    return (U32)(((U32)p[0]<<24) + ((U32)p[1]<<16) + ((U32)p[2]<<8) + ((U32)p[3]<<0));
}


/**************************************
*  Local structures
***************************************/
typedef struct ZSTD_Cctx_s ZSTD_Cctx;

typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t;

typedef struct
{
    blockType_t blockType;
    U32 origSize;
} blockProperties_t;

typedef struct {
    void* buffer;
    U32*  offsetStart;
    U32*  offset;
    BYTE* offCodeStart;
    BYTE* offCode;
    BYTE* litStart;
    BYTE* lit;
    BYTE* litLengthStart;
    BYTE* litLength;
    BYTE* matchLengthStart;
    BYTE* matchLength;
    BYTE* dumpsStart;
    BYTE* dumps;
} seqStore_t;


typedef struct ZSTD_Cctx_s
{
    const BYTE* base;
    U32 current;
    U32 nextUpdate;
    seqStore_t seqStore;
#ifdef __AVX2__
    __m256i hashTable[HASH_TABLESIZE>>3];
#else
    U32 hashTable[HASH_TABLESIZE];
#endif
    BYTE buffer[WORKPLACESIZE];
} cctxi_t;




/**************************************
*  Error Management
**************************************/
/* published entry point */
unsigned ZSTDv01_isError(size_t code) { return ERR_isError(code); }


/**************************************
*  Tool functions
**************************************/
#define ZSTD_VERSION_MAJOR    0    /* for breaking interface changes  */
#define ZSTD_VERSION_MINOR    1    /* for new (non-breaking) interface capabilities */
#define ZSTD_VERSION_RELEASE  3    /* for tweaks, bug-fixes, or development */
#define ZSTD_VERSION_NUMBER  (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE)

/**************************************************************
*   Decompression code
**************************************************************/

size_t ZSTDv01_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
{
    const BYTE* const in = (const BYTE* const)src;
    BYTE headerFlags;
    U32 cSize;

    if (srcSize < 3) return ERROR(srcSize_wrong);

    headerFlags = *in;
    cSize = in[2] + (in[1]<<8) + ((in[0] & 7)<<16);

    bpPtr->blockType = (blockType_t)(headerFlags >> 6);
    bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0;

    if (bpPtr->blockType == bt_end) return 0;
    if (bpPtr->blockType == bt_rle) return 1;
    return cSize;
}


static size_t ZSTD_copyUncompressedBlock(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
    if (srcSize > maxDstSize) return ERROR(dstSize_tooSmall);
    memcpy(dst, src, srcSize);
    return srcSize;
}


static size_t ZSTD_decompressLiterals(void* ctx,
                                      void* dst, size_t maxDstSize,
                                const void* src, size_t srcSize)
{
    BYTE* op = (BYTE*)dst;
    BYTE* const oend = op + maxDstSize;
    const BYTE* ip = (const BYTE*)src;
    size_t errorCode;
    size_t litSize;

    /* check : minimum 2, for litSize, +1, for content */
    if (srcSize <= 3) return ERROR(corruption_detected);

    litSize = ip[1] + (ip[0]<<8);
    litSize += ((ip[-3] >> 3) & 7) << 16;   // mmmmh....
    op = oend - litSize;

    (void)ctx;
    if (litSize > maxDstSize) return ERROR(dstSize_tooSmall);
    errorCode = HUF_decompress(op, litSize, ip+2, srcSize-2);
    if (FSE_isError(errorCode)) return ERROR(GENERIC);
    return litSize;
}


size_t ZSTDv01_decodeLiteralsBlock(void* ctx,
                                void* dst, size_t maxDstSize,
                          const BYTE** litStart, size_t* litSize,
                          const void* src, size_t srcSize)
{
    const BYTE* const istart = (const BYTE* const)src;
    const BYTE* ip = istart;
    BYTE* const ostart = (BYTE* const)dst;
    BYTE* const oend = ostart + maxDstSize;
    blockProperties_t litbp;

    size_t litcSize = ZSTDv01_getcBlockSize(src, srcSize, &litbp);
    if (ZSTDv01_isError(litcSize)) return litcSize;
    if (litcSize > srcSize - ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
    ip += ZSTD_blockHeaderSize;

    switch(litbp.blockType)
    {
    case bt_raw:
        *litStart = ip;
        ip += litcSize;
        *litSize = litcSize;
        break;
    case bt_rle:
        {
            size_t rleSize = litbp.origSize;
            if (rleSize>maxDstSize) return ERROR(dstSize_tooSmall);
            if (!srcSize) return ERROR(srcSize_wrong);
            memset(oend - rleSize, *ip, rleSize);
            *litStart = oend - rleSize;
            *litSize = rleSize;
            ip++;
            break;
        }
    case bt_compressed:
        {
            size_t decodedLitSize = ZSTD_decompressLiterals(ctx, dst, maxDstSize, ip, litcSize);
            if (ZSTDv01_isError(decodedLitSize)) return decodedLitSize;
            *litStart = oend - decodedLitSize;
            *litSize = decodedLitSize;
            ip += litcSize;
            break;
        }
    case bt_end:
    default:
        return ERROR(GENERIC);
    }

    return ip-istart;
}


size_t ZSTDv01_decodeSeqHeaders(int* nbSeq, const BYTE** dumpsPtr, size_t* dumpsLengthPtr,
                         FSE_DTable* DTableLL, FSE_DTable* DTableML, FSE_DTable* DTableOffb,
                         const void* src, size_t srcSize)
{
    const BYTE* const istart = (const BYTE* const)src;
    const BYTE* ip = istart;
    const BYTE* const iend = istart + srcSize;
    U32 LLtype, Offtype, MLtype;
    U32 LLlog, Offlog, MLlog;
    size_t dumpsLength;

    /* check */
    if (srcSize < 5) return ERROR(srcSize_wrong);

    /* SeqHead */
    *nbSeq = ZSTD_readLE16(ip); ip+=2;
    LLtype  = *ip >> 6;
    Offtype = (*ip >> 4) & 3;
    MLtype  = (*ip >> 2) & 3;
    if (*ip & 2)
    {
        dumpsLength  = ip[2];
        dumpsLength += ip[1] << 8;
        ip += 3;
    }
    else
    {
        dumpsLength  = ip[1];
        dumpsLength += (ip[0] & 1) << 8;
        ip += 2;
    }
    *dumpsPtr = ip;
    ip += dumpsLength;
    *dumpsLengthPtr = dumpsLength;

    /* check */
    if (ip > iend-3) return ERROR(srcSize_wrong); /* min : all 3 are "raw", hence no header, but at least xxLog bits per type */

    /* sequences */
    {
        S16 norm[MaxML+1];    /* assumption : MaxML >= MaxLL and MaxOff */
        size_t headerSize;

        /* Build DTables */
        switch(LLtype)
        {
        case bt_rle :
            LLlog = 0;
            FSE_buildDTable_rle(DTableLL, *ip++); break;
        case bt_raw :
            LLlog = LLbits;
            FSE_buildDTable_raw(DTableLL, LLbits); break;
        default :
            {   U32 max = MaxLL;
                headerSize = FSE_readNCount(norm, &max, &LLlog, ip, iend-ip);
                if (FSE_isError(headerSize)) return ERROR(GENERIC);
                if (LLlog > LLFSELog) return ERROR(corruption_detected);
                ip += headerSize;
                FSE_buildDTable(DTableLL, norm, max, LLlog);
        }   }

        switch(Offtype)
        {
        case bt_rle :
            Offlog = 0;
            if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
            FSE_buildDTable_rle(DTableOffb, *ip++); break;
        case bt_raw :
            Offlog = Offbits;
            FSE_buildDTable_raw(DTableOffb, Offbits); break;
        default :
            {   U32 max = MaxOff;
                headerSize = FSE_readNCount(norm, &max, &Offlog, ip, iend-ip);
                if (FSE_isError(headerSize)) return ERROR(GENERIC);
                if (Offlog > OffFSELog) return ERROR(corruption_detected);
                ip += headerSize;
                FSE_buildDTable(DTableOffb, norm, max, Offlog);
        }   }

        switch(MLtype)
        {
        case bt_rle :
            MLlog = 0;
            if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
            FSE_buildDTable_rle(DTableML, *ip++); break;
        case bt_raw :
            MLlog = MLbits;
            FSE_buildDTable_raw(DTableML, MLbits); break;
        default :
            {   U32 max = MaxML;
                headerSize = FSE_readNCount(norm, &max, &MLlog, ip, iend-ip);
                if (FSE_isError(headerSize)) return ERROR(GENERIC);
                if (MLlog > MLFSELog) return ERROR(corruption_detected);
                ip += headerSize;
                FSE_buildDTable(DTableML, norm, max, MLlog);
    }   }   }

    return ip-istart;
}


typedef struct {
    size_t litLength;
    size_t offset;
    size_t matchLength;
} seq_t;

typedef struct {
    FSE_DStream_t DStream;
    FSE_DState_t stateLL;
    FSE_DState_t stateOffb;
    FSE_DState_t stateML;
    size_t prevOffset;
    const BYTE* dumps;
    const BYTE* dumpsEnd;
} seqState_t;


static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState)
{
    size_t litLength;
    size_t prevOffset;
    size_t offset;
    size_t matchLength;
    const BYTE* dumps = seqState->dumps;
    const BYTE* const de = seqState->dumpsEnd;

    /* Literal length */
    litLength = FSE_decodeSymbol(&(seqState->stateLL), &(seqState->DStream));
    prevOffset = litLength ? seq->offset : seqState->prevOffset;
    seqState->prevOffset = seq->offset;
    if (litLength == MaxLL)
    {
        U32 add = dumps<de ? *dumps++ : 0;
        if (add < 255) litLength += add;
        else
        {
            if (dumps<=(de-3))
            {
                litLength = ZSTD_readLE32(dumps) & 0xFFFFFF;  /* no pb : dumps is always followed by seq tables > 1 byte */
                dumps += 3;
            }
        }
    }

    /* Offset */
    {
        U32 offsetCode, nbBits;
        offsetCode = FSE_decodeSymbol(&(seqState->stateOffb), &(seqState->DStream));
        if (ZSTD_32bits()) FSE_reloadDStream(&(seqState->DStream));
        nbBits = offsetCode - 1;
        if (offsetCode==0) nbBits = 0;   /* cmove */
        offset = ((size_t)1 << (nbBits & ((sizeof(offset)*8)-1))) + FSE_readBits(&(seqState->DStream), nbBits);
        if (ZSTD_32bits()) FSE_reloadDStream(&(seqState->DStream));
        if (offsetCode==0) offset = prevOffset;
    }

    /* MatchLength */
    matchLength = FSE_decodeSymbol(&(seqState->stateML), &(seqState->DStream));
    if (matchLength == MaxML)
    {
        U32 add = dumps<de ? *dumps++ : 0;
        if (add < 255) matchLength += add;
        else
        {
            if (dumps<=(de-3))
            {
                matchLength = ZSTD_readLE32(dumps) & 0xFFFFFF;  /* no pb : dumps is always followed by seq tables > 1 byte */
                dumps += 3;
            }
        }
    }
    matchLength += MINMATCH;

    /* save result */
    seq->litLength = litLength;
    seq->offset = offset;
    seq->matchLength = matchLength;
    seqState->dumps = dumps;
}


static size_t ZSTD_execSequence(BYTE* op,
                                seq_t sequence,
                                const BYTE** litPtr, const BYTE* const litLimit,
                                BYTE* const base, BYTE* const oend)
{
    static const int dec32table[] = {0, 1, 2, 1, 4, 4, 4, 4};   /* added */
    static const int dec64table[] = {8, 8, 8, 7, 8, 9,10,11};   /* substracted */
    const BYTE* const ostart = op;
    const size_t litLength = sequence.litLength;
    BYTE* const endMatch = op + litLength + sequence.matchLength;    /* risk : address space overflow (32-bits) */
    const BYTE* const litEnd = *litPtr + litLength;

    /* check */
    if (endMatch > oend) return ERROR(dstSize_tooSmall);   /* overwrite beyond dst buffer */
    if (litEnd > litLimit) return ERROR(corruption_detected);
    if (sequence.matchLength > (size_t)(*litPtr-op))  return ERROR(dstSize_tooSmall);    /* overwrite literal segment */

    /* copy Literals */
    if (((size_t)(*litPtr - op) < 8) || ((size_t)(oend-litEnd) < 8) || (op+litLength > oend-8))
        memmove(op, *litPtr, litLength);   /* overwrite risk */
    else
        ZSTD_wildcopy(op, *litPtr, litLength);
    op += litLength;
    *litPtr = litEnd;   /* update for next sequence */

    /* check : last match must be at a minimum distance of 8 from end of dest buffer */
    if (oend-op < 8) return ERROR(dstSize_tooSmall);

    /* copy Match */
    {
        const U32 overlapRisk = (((size_t)(litEnd - endMatch)) < 12);
        const BYTE* match = op - sequence.offset;            /* possible underflow at op - offset ? */
        size_t qutt = 12;
        U64 saved[2];

        /* check */
        if (match < base) return ERROR(corruption_detected);
        if (sequence.offset > (size_t)base) return ERROR(corruption_detected);

        /* save beginning of literal sequence, in case of write overlap */
        if (overlapRisk)
        {
            if ((endMatch + qutt) > oend) qutt = oend-endMatch;
            memcpy(saved, endMatch, qutt);
        }

        if (sequence.offset < 8)
        {
            const int dec64 = dec64table[sequence.offset];
            op[0] = match[0];
            op[1] = match[1];
            op[2] = match[2];
            op[3] = match[3];
            match += dec32table[sequence.offset];
            ZSTD_copy4(op+4, match);
            match -= dec64;
        } else { ZSTD_copy8(op, match); }
        op += 8; match += 8;

        if (endMatch > oend-(16-MINMATCH))
        {
            if (op < oend-8)
            {
                ZSTD_wildcopy(op, match, (oend-8) - op);
                match += (oend-8) - op;
                op = oend-8;
            }
            while (op<endMatch) *op++ = *match++;
        }
        else
            ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8);   /* works even if matchLength < 8 */

        /* restore, in case of overlap */
        if (overlapRisk) memcpy(endMatch, saved, qutt);
    }

    return endMatch-ostart;
}

typedef struct ZSTDv01_Dctx_s
{
    U32 LLTable[FSE_DTABLE_SIZE_U32(LLFSELog)];
    U32 OffTable[FSE_DTABLE_SIZE_U32(OffFSELog)];
    U32 MLTable[FSE_DTABLE_SIZE_U32(MLFSELog)];
    void* previousDstEnd;
    void* base;
    size_t expected;
    blockType_t bType;
    U32 phase;
} dctx_t;


static size_t ZSTD_decompressSequences(
                               void* ctx,
                               void* dst, size_t maxDstSize,
                         const void* seqStart, size_t seqSize,
                         const BYTE* litStart, size_t litSize)
{
    dctx_t* dctx = (dctx_t*)ctx;
    const BYTE* ip = (const BYTE*)seqStart;
    const BYTE* const iend = ip + seqSize;
    BYTE* const ostart = (BYTE* const)dst;
    BYTE* op = ostart;
    BYTE* const oend = ostart + maxDstSize;
    size_t errorCode, dumpsLength;
    const BYTE* litPtr = litStart;
    const BYTE* const litEnd = litStart + litSize;
    int nbSeq;
    const BYTE* dumps;
    U32* DTableLL = dctx->LLTable;
    U32* DTableML = dctx->MLTable;
    U32* DTableOffb = dctx->OffTable;
    BYTE* const base = (BYTE*) (dctx->base);

    /* Build Decoding Tables */
    errorCode = ZSTDv01_decodeSeqHeaders(&nbSeq, &dumps, &dumpsLength,
                                      DTableLL, DTableML, DTableOffb,
                                      ip, iend-ip);
    if (ZSTDv01_isError(errorCode)) return errorCode;
    ip += errorCode;

    /* Regen sequences */
    {
        seq_t sequence;
        seqState_t seqState;

        memset(&sequence, 0, sizeof(sequence));
        seqState.dumps = dumps;
        seqState.dumpsEnd = dumps + dumpsLength;
        seqState.prevOffset = 1;
        errorCode = FSE_initDStream(&(seqState.DStream), ip, iend-ip);
        if (FSE_isError(errorCode)) return ERROR(corruption_detected);
        FSE_initDState(&(seqState.stateLL), &(seqState.DStream), DTableLL);
        FSE_initDState(&(seqState.stateOffb), &(seqState.DStream), DTableOffb);
        FSE_initDState(&(seqState.stateML), &(seqState.DStream), DTableML);

        for ( ; (FSE_reloadDStream(&(seqState.DStream)) <= FSE_DStream_completed) && (nbSeq>0) ; )
        {
            size_t oneSeqSize;
            nbSeq--;
            ZSTD_decodeSequence(&sequence, &seqState);
            oneSeqSize = ZSTD_execSequence(op, sequence, &litPtr, litEnd, base, oend);
            if (ZSTDv01_isError(oneSeqSize)) return oneSeqSize;
            op += oneSeqSize;
        }

        /* check if reached exact end */
        if ( !FSE_endOfDStream(&(seqState.DStream)) ) return ERROR(corruption_detected);   /* requested too much : data is corrupted */
        if (nbSeq<0) return ERROR(corruption_detected);   /* requested too many sequences : data is corrupted */

        /* last literal segment */
        {
            size_t lastLLSize = litEnd - litPtr;
            if (op+lastLLSize > oend) return ERROR(dstSize_tooSmall);
            if (op != litPtr) memmove(op, litPtr, lastLLSize);
            op += lastLLSize;
        }
    }

    return op-ostart;
}


static size_t ZSTD_decompressBlock(
                            void* ctx,
                            void* dst, size_t maxDstSize,
                      const void* src, size_t srcSize)
{
    /* blockType == blockCompressed, srcSize is trusted */
    const BYTE* ip = (const BYTE*)src;
    const BYTE* litPtr = NULL;
    size_t litSize = 0;
    size_t errorCode;

    /* Decode literals sub-block */
    errorCode = ZSTDv01_decodeLiteralsBlock(ctx, dst, maxDstSize, &litPtr, &litSize, src, srcSize);
    if (ZSTDv01_isError(errorCode)) return errorCode;
    ip += errorCode;
    srcSize -= errorCode;

    return ZSTD_decompressSequences(ctx, dst, maxDstSize, ip, srcSize, litPtr, litSize);
}


size_t ZSTDv01_decompressDCtx(void* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
    const BYTE* ip = (const BYTE*)src;
    const BYTE* iend = ip + srcSize;
    BYTE* const ostart = (BYTE* const)dst;
    BYTE* op = ostart;
    BYTE* const oend = ostart + maxDstSize;
    size_t remainingSize = srcSize;
    U32 magicNumber;
    size_t errorCode=0;
    blockProperties_t blockProperties;

    /* Frame Header */
    if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
    magicNumber = ZSTD_readBE32(src);
    if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown);
    ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize;

    /* Loop on each block */
    while (1)
    {
        size_t blockSize = ZSTDv01_getcBlockSize(ip, iend-ip, &blockProperties);
        if (ZSTDv01_isError(blockSize)) return blockSize;

        ip += ZSTD_blockHeaderSize;
        remainingSize -= ZSTD_blockHeaderSize;
        if (blockSize > remainingSize) return ERROR(srcSize_wrong);

        switch(blockProperties.blockType)
        {
        case bt_compressed:
            errorCode = ZSTD_decompressBlock(ctx, op, oend-op, ip, blockSize);
            break;
        case bt_raw :
            errorCode = ZSTD_copyUncompressedBlock(op, oend-op, ip, blockSize);
            break;
        case bt_rle :
            return ERROR(GENERIC);   /* not yet supported */
            break;
        case bt_end :
            /* end of frame */
            if (remainingSize) return ERROR(srcSize_wrong);
            break;
        default:
            return ERROR(GENERIC);
        }
        if (blockSize == 0) break;   /* bt_end */

        if (ZSTDv01_isError(errorCode)) return errorCode;
        op += errorCode;
        ip += blockSize;
        remainingSize -= blockSize;
    }

    return op-ostart;
}

size_t ZSTDv01_decompress(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
    dctx_t ctx;
    ctx.base = dst;
    return ZSTDv01_decompressDCtx(&ctx, dst, maxDstSize, src, srcSize);
}

size_t ZSTDv01_findFrameCompressedSize(const void* src, size_t srcSize)
{
    const BYTE* ip = (const BYTE*)src;
    size_t remainingSize = srcSize;
    U32 magicNumber;
    blockProperties_t blockProperties;

    /* Frame Header */
    if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
    magicNumber = ZSTD_readBE32(src);
    if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown);
    ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize;

    /* Loop on each block */
    while (1)
    {
        size_t blockSize = ZSTDv01_getcBlockSize(ip, remainingSize, &blockProperties);
        if (ZSTDv01_isError(blockSize)) return blockSize;

        ip += ZSTD_blockHeaderSize;
        remainingSize -= ZSTD_blockHeaderSize;
        if (blockSize > remainingSize) return ERROR(srcSize_wrong);

        if (blockSize == 0) break;   /* bt_end */

        ip += blockSize;
        remainingSize -= blockSize;
    }

    return ip - (const BYTE*)src;
}

/*******************************
*  Streaming Decompression API
*******************************/

size_t ZSTDv01_resetDCtx(ZSTDv01_Dctx* dctx)
{
    dctx->expected = ZSTD_frameHeaderSize;
    dctx->phase = 0;
    dctx->previousDstEnd = NULL;
    dctx->base = NULL;
    return 0;
}

ZSTDv01_Dctx* ZSTDv01_createDCtx(void)
{
    ZSTDv01_Dctx* dctx = (ZSTDv01_Dctx*)malloc(sizeof(ZSTDv01_Dctx));
    if (dctx==NULL) return NULL;
    ZSTDv01_resetDCtx(dctx);
    return dctx;
}

size_t ZSTDv01_freeDCtx(ZSTDv01_Dctx* dctx)
{
    free(dctx);
    return 0;
}

size_t ZSTDv01_nextSrcSizeToDecompress(ZSTDv01_Dctx* dctx)
{
    return ((dctx_t*)dctx)->expected;
}

size_t ZSTDv01_decompressContinue(ZSTDv01_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
    dctx_t* ctx = (dctx_t*)dctx;

    /* Sanity check */
    if (srcSize != ctx->expected) return ERROR(srcSize_wrong);
    if (dst != ctx->previousDstEnd)  /* not contiguous */
        ctx->base = dst;

    /* Decompress : frame header */
    if (ctx->phase == 0)
    {
        /* Check frame magic header */
        U32 magicNumber = ZSTD_readBE32(src);
        if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown);
        ctx->phase = 1;
        ctx->expected = ZSTD_blockHeaderSize;
        return 0;
    }

    /* Decompress : block header */
    if (ctx->phase == 1)
    {
        blockProperties_t bp;
        size_t blockSize = ZSTDv01_getcBlockSize(src, ZSTD_blockHeaderSize, &bp);
        if (ZSTDv01_isError(blockSize)) return blockSize;
        if (bp.blockType == bt_end)
        {
            ctx->expected = 0;
            ctx->phase = 0;
        }
        else
        {
            ctx->expected = blockSize;
            ctx->bType = bp.blockType;
            ctx->phase = 2;
        }

        return 0;
    }

    /* Decompress : block content */
    {
        size_t rSize;
        switch(ctx->bType)
        {
        case bt_compressed:
            rSize = ZSTD_decompressBlock(ctx, dst, maxDstSize, src, srcSize);
            break;
        case bt_raw :
            rSize = ZSTD_copyUncompressedBlock(dst, maxDstSize, src, srcSize);
            break;
        case bt_rle :
            return ERROR(GENERIC);   /* not yet handled */
            break;
        case bt_end :   /* should never happen (filtered at phase 1) */
            rSize = 0;
            break;
        default:
            return ERROR(GENERIC);
        }
        ctx->phase = 1;
        ctx->expected = ZSTD_blockHeaderSize;
        ctx->previousDstEnd = (void*)( ((char*)dst) + rSize);
        return rSize;
    }

}