dataCompression.c 17.1 KB
Newer Older
T
tickduan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
/**
 *  @file double_compression.c
 *  @author Sheng Di, Dingwen Tao, Xin Liang, Xiangyu Zou, Tao Lu, Wen Xia, Xuan Wang, Weizhe Zhang
 *  @date April, 2016
 *  @brief Compression Technique for double array
 *  (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
 *      See COPYRIGHT in top-level directory.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "sz.h"
#include "DynamicByteArray.h"
#include "DynamicIntArray.h"
#include "TightDataPointStorageD.h"
#include "CompressElement.h"
#include "dataCompression.h"



float computeRangeSize_float(float* oriData, size_t size, float* valueRangeSize, float* medianValue)
{
	size_t i = 0;
	float min = oriData[0];
	float max = min;
	for(i=1;i<size;i++)
	{
		float data = oriData[i];
		if(min>data)
			min = data;
		else if(max<data)
			max = data;
	}

	*valueRangeSize = max - min;
	*medianValue = min + *valueRangeSize/2;
	return min;
}

double computeRangeSize_double(double* oriData, size_t size, double* valueRangeSize, double* medianValue)
{
	size_t i = 0;
	double min = oriData[0];
	double max = min;
	for(i=1;i<size;i++)
	{
		double data = oriData[i];
		if(min>data)
			min = data;
		else if(max<data)
			max = data;
	}
	
	*valueRangeSize = max - min;
	*medianValue = min + *valueRangeSize/2;
	return min;
}

double min_d(double a, double b)
{
	if(a<b)
		return a;
	else
		return b;
}

double max_d(double a, double b)
{
	if(a>b)
		return a;
	else
		return b;
}

float min_f(float a, float b)
{
	if(a<b)
		return a;
	else
		return b;
}

float max_f(float a, float b)
{
	if(a>b)
		return a;
	else
		return b;
}

double getRealPrecision_double(double valueRangeSize, int errBoundMode, double absErrBound, double relBoundRatio, int *status)
{
T
tickduan 已提交
94
	int state = SZ_SUCCESS;
T
tickduan 已提交
95
	double precision = 0;
T
tickduan 已提交
96
	if(errBoundMode==SZ_ABS||errBoundMode==ABS_OR_PW_REL||errBoundMode==ABS_AND_PW_REL)
T
tickduan 已提交
97
		precision = absErrBound; 
T
tickduan 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
	else if(errBoundMode==REL||errBoundMode==REL_OR_PW_REL||errBoundMode==REL_AND_PW_REL)
		precision = relBoundRatio*valueRangeSize;
	else if(errBoundMode==ABS_AND_REL)
		precision = min_d(absErrBound, relBoundRatio*valueRangeSize);
	else if(errBoundMode==ABS_OR_REL)
		precision = max_d(absErrBound, relBoundRatio*valueRangeSize);
	else if(errBoundMode==PW_REL)
		precision = 0;
	else
	{
		printf("Error: error-bound-mode is incorrect!\n");
		state = SZ_BERR;
	}
	*status = state;
	return precision;
}

double getRealPrecision_float(float valueRangeSize, int errBoundMode, double absErrBound, double relBoundRatio, int *status)
{
T
tickduan 已提交
117
	int state = SZ_SUCCESS;
T
tickduan 已提交
118
	double precision = 0;
T
tickduan 已提交
119
	if(errBoundMode==SZ_ABS||errBoundMode==ABS_OR_PW_REL||errBoundMode==ABS_AND_PW_REL)
T
tickduan 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
		precision = absErrBound; 
	else if(errBoundMode==REL||errBoundMode==REL_OR_PW_REL||errBoundMode==REL_AND_PW_REL)
		precision = relBoundRatio*valueRangeSize;
	else if(errBoundMode==ABS_AND_REL)
		precision = min_f(absErrBound, relBoundRatio*valueRangeSize);
	else if(errBoundMode==ABS_OR_REL)
		precision = max_f(absErrBound, relBoundRatio*valueRangeSize);
	else if(errBoundMode==PW_REL)
		precision = 0;
	else
	{
		printf("Error: error-bound-mode is incorrect!\n");
		state = SZ_BERR;
	}
	*status = state;
	return precision;
}

double getRealPrecision_int(long valueRangeSize, int errBoundMode, double absErrBound, double relBoundRatio, int *status)
{
T
tickduan 已提交
140
	int state = SZ_SUCCESS;
T
tickduan 已提交
141
	double precision = 0;
T
tickduan 已提交
142
	if(errBoundMode==SZ_ABS||errBoundMode==ABS_OR_PW_REL||errBoundMode==ABS_AND_PW_REL)
T
tickduan 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
		precision = absErrBound; 
	else if(errBoundMode==REL||errBoundMode==REL_OR_PW_REL||errBoundMode==REL_AND_PW_REL)
		precision = relBoundRatio*valueRangeSize;
	else if(errBoundMode==ABS_AND_REL)
		precision = min_f(absErrBound, relBoundRatio*valueRangeSize);
	else if(errBoundMode==ABS_OR_REL)
		precision = max_f(absErrBound, relBoundRatio*valueRangeSize);
	else if(errBoundMode==PW_REL)
		precision = -1;
	else
	{
		printf("Error: error-bound-mode is incorrect!\n");
		state = SZ_BERR;
	}
	*status = state;
	return precision;
}

void symTransform_8bytes(unsigned char data[8])
{
	unsigned char tmp = data[0];
	data[0] = data[7];
	data[7] = tmp;

	tmp = data[1];
	data[1] = data[6];
	data[6] = tmp;
	
	tmp = data[2];
	data[2] = data[5];
	data[5] = tmp;
	
	tmp = data[3];
	data[3] = data[4];
	data[4] = tmp;
}

inline void symTransform_2bytes(unsigned char data[2])
{
	unsigned char tmp = data[0];
	data[0] = data[1];
	data[1] = tmp;
}

inline void symTransform_4bytes(unsigned char data[4])
{
	unsigned char tmp = data[0];
	data[0] = data[3];
	data[3] = tmp;

	tmp = data[1];
	data[1] = data[2];
	data[2] = tmp;
}

T
tickduan 已提交
198
inline void compressSingleFloatValue(FloatValueCompressElement *vce, float oriValue, float precision, float medianValue, 
T
tickduan 已提交
199 200
		int reqLength, int reqBytesLength, int resiBitsLength)
{		
T
tickduan 已提交
201 202 203 204 205 206 207
	lfloat diffVal;
	diffVal.value = oriValue - medianValue;

	// calc ignore bit count		
	int ignBitCount = 32 - reqLength;
	if(ignBitCount<0)
		ignBitCount = 0;
T
tickduan 已提交
208
	
T
tickduan 已提交
209
	intToBytes_bigEndian(vce->curBytes, diffVal.ivalue);
T
tickduan 已提交
210
	
T
tickduan 已提交
211 212
	// truncate diff value tail bit with ignBitCount	
	diffVal.ivalue = (diffVal.ivalue >> ignBitCount) << ignBitCount;
T
tickduan 已提交
213
	
T
tickduan 已提交
214 215 216
	// save to vce
	vce->data           = diffVal.value + medianValue;
	vce->curValue       = diffVal.ivalue;
T
tickduan 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
	vce->reqBytesLength = reqBytesLength;
	vce->resiBitsLength = resiBitsLength;
}

void compressSingleDoubleValue(DoubleValueCompressElement *vce, double tgtValue, double precision, double medianValue, 
		int reqLength, int reqBytesLength, int resiBitsLength)
{		
	double normValue = tgtValue - medianValue;

	ldouble lfBuf;
	lfBuf.value = normValue;
			
	int ignBytesLength = 64 - reqLength;
	if(ignBytesLength<0)
		ignBytesLength = 0;

	long tmp_long = lfBuf.lvalue;
	longToBytes_bigEndian(vce->curBytes, tmp_long);
				
	lfBuf.lvalue = (lfBuf.lvalue >> ignBytesLength)<<ignBytesLength;
	
	//double tmpValue = lfBuf.value;
	
	vce->data = lfBuf.value+medianValue;
	vce->curValue = tmp_long;
	vce->reqBytesLength = reqBytesLength;
	vce->resiBitsLength = resiBitsLength;
}

int compIdenticalLeadingBytesCount_double(unsigned char* preBytes, unsigned char* curBytes)
{
	int i, n = 0;
	for(i=0;i<8;i++)
		if(preBytes[i]==curBytes[i])
			n++;
		else
			break;
	if(n>3) n = 3;
	return n;
}

inline int compIdenticalLeadingBytesCount_float(unsigned char* preBytes, unsigned char* curBytes)
{
	int i, n = 0;
	for(i=0;i<4;i++)
		if(preBytes[i]==curBytes[i])
			n++;
		else
			break;
	if(n>3) n = 3;
	return n;
}

//TODO double-check the correctness...
inline void addExactData(DynamicByteArray *exactMidByteArray, DynamicIntArray *exactLeadNumArray, 
		DynamicIntArray *resiBitArray, LossyCompressionElement *lce)
{
	int i;
	int leadByteLength = lce->leadingZeroBytes;
	addDIA_Data(exactLeadNumArray, leadByteLength);
	unsigned char* intMidBytes = lce->integerMidBytes;
	int integerMidBytesLength = lce->integerMidBytes_Length;
	int resMidBitsLength = lce->resMidBitsLength;
	if(intMidBytes!=NULL||resMidBitsLength!=0)
	{
		if(intMidBytes!=NULL)
			for(i = 0;i<integerMidBytesLength;i++)
				addDBA_Data(exactMidByteArray, intMidBytes[i]);
		if(resMidBitsLength!=0)
			addDIA_Data(resiBitArray, lce->residualMidBits);
	}
}

/**
 * @deprecated
 * @return: the length of the coefficient array.
 * */
int getPredictionCoefficients(int layers, int dimension, int **coeff_array, int *status)
{
	size_t size = 0;
	switch(dimension)
	{
		case 1:
			switch(layers)
			{
				case 1:
					*coeff_array = (int*)malloc(sizeof(int));
					(*coeff_array)[0] = 1;
					size = 1;
					break;
				case 2:
					*coeff_array = (int*)malloc(2*sizeof(int));
					(*coeff_array)[0] = 2;
					(*coeff_array)[1] = -1;
					size = 2;
					break;
				case 3:
					*coeff_array = (int*)malloc(3*sizeof(int));
					(*coeff_array)[0] = 3;
					(*coeff_array)[1] = -3;
					(*coeff_array)[2] = 1;
					break;
			}	
			break;
		case 2:
			switch(layers)
			{
				case 1:
				
					break;
				case 2:
				
					break;
				case 3:
				
					break;
			}				
			break;
		case 3:
			switch(layers)
			{
				case 1:
				
					break;
				case 2:
				
					break;
				case 3:
				
					break;
			}			
			break;
		default:
			printf("Error: dimension must be no greater than 3 in the current version.\n");
			*status = SZ_DERR;
	}
T
tickduan 已提交
353
	*status = SZ_SUCCESS;
T
tickduan 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	return size;
}

int computeBlockEdgeSize_2D(int segmentSize)
{
	int i = 1;
	for(i=1; i<segmentSize;i++)
	{
		if(i*i>segmentSize)
			break;
	}
	return i;
	//return (int)(sqrt(segmentSize)+1);
}

int computeBlockEdgeSize_3D(int segmentSize)
{
	int i = 1;
	for(i=1; i<segmentSize;i++)
	{
		if(i*i*i>segmentSize)
			break;
	}
	return i;	
	//return (int)(pow(segmentSize, 1.0/3)+1);
}

//The following functions are float-precision version of dealing with the unpredictable data points 
int generateLossyCoefficients_float(float* oriData, double precision, size_t nbEle, int* reqBytesLength, int* resiBitsLength, float* medianValue, float* decData)
{
	float valueRangeSize;
	
	computeRangeSize_float(oriData, nbEle, &valueRangeSize, medianValue);
	short radExpo = getExponent_float(valueRangeSize/2);
	
	int reqLength;
	computeReqLength_float(precision, radExpo, &reqLength, medianValue);
	
	*reqBytesLength = reqLength/8;
	*resiBitsLength = reqLength%8;
	
	size_t i = 0;
	for(i = 0;i < nbEle;i++)
	{
		float normValue = oriData[i] - *medianValue;

		lfloat lfBuf;
		lfBuf.value = normValue;
				
		int ignBytesLength = 32 - reqLength;
		if(ignBytesLength<0)
			ignBytesLength = 0;
			
		lfBuf.ivalue = (lfBuf.ivalue >> ignBytesLength) << ignBytesLength;
		
		//float tmpValue = lfBuf.value;
		
		decData[i] = lfBuf.value + *medianValue;
	}
	return reqLength;
}	
		
/**
 * @param float* oriData: inplace argument (input / output)
 * 
 * */		
int compressExactDataArray_float(float* oriData, double precision, size_t nbEle, unsigned char** leadArray, unsigned char** midArray, unsigned char** resiArray, 
int reqLength, int reqBytesLength, int resiBitsLength, float medianValue)
{
	//allocate memory for coefficient compression arrays
	DynamicIntArray *exactLeadNumArray;
	new_DIA(&exactLeadNumArray, DynArrayInitLen);	
	DynamicByteArray *exactMidByteArray;
	new_DBA(&exactMidByteArray, DynArrayInitLen);
	DynamicIntArray *resiBitArray;
	new_DIA(&resiBitArray, DynArrayInitLen);
	unsigned char preDataBytes[4] = {0,0,0,0};	

	//allocate memory for vce and lce
	FloatValueCompressElement *vce = (FloatValueCompressElement*)malloc(sizeof(FloatValueCompressElement));
	LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement));	

	size_t i = 0;
	for(i = 0;i < nbEle;i++)
	{
		compressSingleFloatValue(vce, oriData[i], precision, medianValue, reqLength, reqBytesLength, resiBitsLength);
		updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce);
		memcpy(preDataBytes,vce->curBytes,4);
		addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce);
		oriData[i] = vce->data;
	}
	convertDIAtoInts(exactLeadNumArray, leadArray);
	convertDBAtoBytes(exactMidByteArray,midArray);
	convertDIAtoInts(resiBitArray, resiArray);

	size_t midArraySize = exactMidByteArray->size;
	
	free(vce);
	free(lce);
	
	free_DIA(exactLeadNumArray);
	free_DBA(exactMidByteArray);
	free_DIA(resiBitArray);
	
	return midArraySize;
}

void decompressExactDataArray_float(unsigned char* leadNum, unsigned char* exactMidBytes, unsigned char* residualMidBits, size_t nbEle, int reqLength, float medianValue, float** decData)
{
	*decData = (float*)malloc(nbEle*sizeof(float));
	size_t i = 0, j = 0, k = 0, l = 0, p = 0, curByteIndex = 0;
	float exactData = 0;
	unsigned char preBytes[4] = {0,0,0,0};
	unsigned char curBytes[4];
	int resiBits; 
	unsigned char leadingNum;		
	
	int reqBytesLength = reqLength/8;
	int resiBitsLength = reqLength%8;
	
	for(i = 0; i<nbEle;i++)
	{
		// compute resiBits
		resiBits = 0;
		if (resiBitsLength != 0) {
			int kMod8 = k % 8;
			int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength);
			if (rightMovSteps > 0) {
				int code = getRightMovingCode(kMod8, resiBitsLength);
				resiBits = (residualMidBits[p] & code) >> rightMovSteps;
			} else if (rightMovSteps < 0) {
				int code1 = getLeftMovingCode(kMod8);
				int code2 = getRightMovingCode(kMod8, resiBitsLength);
				int leftMovSteps = -rightMovSteps;
				rightMovSteps = 8 - leftMovSteps;
				resiBits = (residualMidBits[p] & code1) << leftMovSteps;
				p++;
				resiBits = resiBits
						| ((residualMidBits[p] & code2) >> rightMovSteps);
			} else // rightMovSteps == 0
			{
				int code = getRightMovingCode(kMod8, resiBitsLength);
				resiBits = (residualMidBits[p] & code);
				p++;
			}
			k += resiBitsLength;
		}

		// recover the exact data	
		memset(curBytes, 0, 4);
		leadingNum = leadNum[l++];
		memcpy(curBytes, preBytes, leadingNum);
		for (j = leadingNum; j < reqBytesLength; j++)
			curBytes[j] = exactMidBytes[curByteIndex++];
		if (resiBitsLength != 0) {
			unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength));
			curBytes[reqBytesLength] = resiByte;
		}

		exactData = bytesToFloat(curBytes);
		(*decData)[i] = exactData + medianValue;
		memcpy(preBytes,curBytes,4);
	}	
}

//double-precision version of dealing with unpredictable data points in sz 2.0
int generateLossyCoefficients_double(double* oriData, double precision, size_t nbEle, int* reqBytesLength, int* resiBitsLength, double* medianValue, double* decData)
{
	double valueRangeSize;
	
	computeRangeSize_double(oriData, nbEle, &valueRangeSize, medianValue);
	short radExpo = getExponent_double(valueRangeSize/2);
	
	int reqLength;
	computeReqLength_double(precision, radExpo, &reqLength, medianValue);
	
	*reqBytesLength = reqLength/8;
	*resiBitsLength = reqLength%8;
	
	size_t i = 0;
	for(i = 0;i < nbEle;i++)
	{
		double normValue = oriData[i] - *medianValue;

		ldouble ldBuf;
		ldBuf.value = normValue;
				
		int ignBytesLength = 64 - reqLength;
		if(ignBytesLength<0)
			ignBytesLength = 0;
			
		ldBuf.lvalue = (ldBuf.lvalue >> ignBytesLength) << ignBytesLength;
		
		decData[i] = ldBuf.value + *medianValue;
	}
	return reqLength;
}	
		
/**
 * @param double* oriData: inplace argument (input / output)
 * 
 * */		
int compressExactDataArray_double(double* oriData, double precision, size_t nbEle, unsigned char** leadArray, unsigned char** midArray, unsigned char** resiArray, 
int reqLength, int reqBytesLength, int resiBitsLength, double medianValue)
{
	//allocate memory for coefficient compression arrays
	DynamicIntArray *exactLeadNumArray;
	new_DIA(&exactLeadNumArray, DynArrayInitLen);	
	DynamicByteArray *exactMidByteArray;
	new_DBA(&exactMidByteArray, DynArrayInitLen);
	DynamicIntArray *resiBitArray;
	new_DIA(&resiBitArray, DynArrayInitLen);
	unsigned char preDataBytes[8] = {0,0,0,0,0,0,0,0};	

	//allocate memory for vce and lce
	DoubleValueCompressElement *vce = (DoubleValueCompressElement*)malloc(sizeof(DoubleValueCompressElement));
	LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement));	

	size_t i = 0;
	for(i = 0;i < nbEle;i++)
	{
		compressSingleDoubleValue(vce, oriData[i], precision, medianValue, reqLength, reqBytesLength, resiBitsLength);
		updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce);
		memcpy(preDataBytes,vce->curBytes,8);
		addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce);
		oriData[i] = vce->data;
	}
	convertDIAtoInts(exactLeadNumArray, leadArray);
	convertDBAtoBytes(exactMidByteArray,midArray);
	convertDIAtoInts(resiBitArray, resiArray);

	size_t midArraySize = exactMidByteArray->size;
	
	free(vce);
	free(lce);
	
	free_DIA(exactLeadNumArray);
	free_DBA(exactMidByteArray);
	free_DIA(resiBitArray);
	
	return midArraySize;
}

void decompressExactDataArray_double(unsigned char* leadNum, unsigned char* exactMidBytes, unsigned char* residualMidBits, size_t nbEle, int reqLength, double medianValue, double** decData)
{
	*decData = (double*)malloc(nbEle*sizeof(double));
	size_t i = 0, j = 0, k = 0, l = 0, p = 0, curByteIndex = 0;
	double exactData = 0;
	unsigned char preBytes[8] = {0,0,0,0,0,0,0,0};
	unsigned char curBytes[8];
	int resiBits; 
	unsigned char leadingNum;		
	
	int reqBytesLength = reqLength/8;
	int resiBitsLength = reqLength%8;
	
	for(i = 0; i<nbEle;i++)
	{
		// compute resiBits
		resiBits = 0;
		if (resiBitsLength != 0) {
			int kMod8 = k % 8;
			int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength);
			if (rightMovSteps > 0) {
				int code = getRightMovingCode(kMod8, resiBitsLength);
				resiBits = (residualMidBits[p] & code) >> rightMovSteps;
			} else if (rightMovSteps < 0) {
				int code1 = getLeftMovingCode(kMod8);
				int code2 = getRightMovingCode(kMod8, resiBitsLength);
				int leftMovSteps = -rightMovSteps;
				rightMovSteps = 8 - leftMovSteps;
				resiBits = (residualMidBits[p] & code1) << leftMovSteps;
				p++;
				resiBits = resiBits
						| ((residualMidBits[p] & code2) >> rightMovSteps);
			} else // rightMovSteps == 0
			{
				int code = getRightMovingCode(kMod8, resiBitsLength);
				resiBits = (residualMidBits[p] & code);
				p++;
			}
			k += resiBitsLength;
		}

		// recover the exact data	
		memset(curBytes, 0, 8);
		leadingNum = leadNum[l++];
		memcpy(curBytes, preBytes, leadingNum);
		for (j = leadingNum; j < reqBytesLength; j++)
			curBytes[j] = exactMidBytes[curByteIndex++];
		if (resiBitsLength != 0) {
			unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength));
			curBytes[reqBytesLength] = resiByte;
		}

		exactData = bytesToDouble(curBytes);
		(*decData)[i] = exactData + medianValue;
		memcpy(preBytes,curBytes,8);
	}
}