/** * \file dnn/src/armv7/matrix_mul/algos.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "src/armv7/matrix_mul/algos.h" #include "src/armv7/matrix_mul/fp16/strategy.h" #include "src/armv7/matrix_mul/fp32/strategy.h" #include "src/armv7/matrix_mul/int16x16x32/strategy.h" #include "src/armv7/matrix_mul/int8/strategy.h" #include "src/armv7/matrix_mul/int8x8x16/strategy.h" #include "src/armv7/matrix_mul/quint8/strategy.h" #include "src/common/utils.h" #include "src/fallback/matrix_mul/gemm_impl.h" #include "midout.h" MIDOUT_DECL(megdnn_armv7_matmul_kern) using namespace megdnn; using namespace armv7; /* ===================== F32 algo ===================== */ namespace { void f32_kern(const MatrixMulImpl::KernParam& kern_param) { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("f32_kern"_hash)) { auto M = kern_param.M, N = kern_param.N, K = kern_param.K; auto trA = kern_param.trA, trB = kern_param.trB; auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC; auto A_type = kern_param.A_type, B_type = kern_param.B_type, C_type = kern_param.C_type; const auto Aptr = kern_param.A(), Bptr = kern_param.B(); auto Cptr = kern_param.C(); armv7::matmul::sgemm_4x12 strategy(M, N, K, A_type, B_type, C_type); megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy) .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr); } MIDOUT_END(); } } // anonymous namespace bool MatrixMulImpl::AlgoF32::usable( const KernSizeParam& kern_size_param) const { return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT && kern_size_param.format == param::MatrixMul::Format::DEFAULT && kern_size_param.B_type == kern_size_param.A_type && kern_size_param.C_type == kern_size_param.A_type && kern_size_param.A_type == dtype::Float32(); } size_t MatrixMulImpl::AlgoF32::get_workspace( const KernSizeParam& kern_size_param) const { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("AlgoF32::get_workspace"_hash)) { auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K; auto trA = kern_size_param.trA, trB = kern_size_param.trB; auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type, C_type = kern_size_param.C_type; armv7::matmul::sgemm_4x12 strategy(M, N, K, A_type, B_type, C_type); return megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy) .get_workspace_size(); } MIDOUT_END(); } MatrixMulImpl::kern_t MatrixMulImpl::AlgoF32::get_kern( const KernSizeParam&) const { return f32_kern; } MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoF32, megdnn_armv7_matmul_kern, "AlgoF32Impl"_hash, armv7::matmul::sgemm_4x12, float, float); /* ===================== F32 algo mk4 K4x12 ===================== */ namespace { void f32_mk4_pack_4x12_kern(const MatrixMulImpl::KernParam& kern_param) { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("f32_mk4_pack_4x12_kern"_hash)) { auto M = kern_param.M, N = kern_param.N, K = kern_param.K; auto trA = kern_param.trA, trB = kern_param.trB; auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC; auto A_type = kern_param.A_type, B_type = kern_param.B_type, C_type = kern_param.C_type; const auto Aptr = kern_param.A(), Bptr = kern_param.B(); auto Cptr = kern_param.C(); armv7::matmul::sgemm_mk4_pack_4x12 strategy(M, N, K, A_type, B_type, C_type); megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy) .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr); } MIDOUT_END(); } } // anonymous namespace bool MatrixMulImpl::AlgoF32MK4Pack4x12::usable( const KernSizeParam& kern_size_param) const { return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT && kern_size_param.format == param::MatrixMul::Format::MK4 && kern_size_param.B_type == kern_size_param.A_type && kern_size_param.C_type == kern_size_param.A_type && kern_size_param.A_type == dtype::Float32() && !kern_size_param.trA && !kern_size_param.trB && kern_size_param.M % 4 == 0 && kern_size_param.K % 4 == 0 && !kern_size_param.trA && !kern_size_param.trB; } size_t MatrixMulImpl::AlgoF32MK4Pack4x12::get_workspace( const KernSizeParam& kern_size_param) const { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("AlgoF32MK4Pack4x12::get_workspace"_hash)) { auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K; auto trA = kern_size_param.trA, trB = kern_size_param.trB; auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type, C_type = kern_size_param.C_type; armv7::matmul::sgemm_mk4_pack_4x12 strategy(M, N, K, A_type, B_type, C_type); return megdnn::matmul::GemmInterleaved< armv7::matmul::sgemm_mk4_pack_4x12>(M, N, K, trA, trB, strategy) .get_workspace_size(); } MIDOUT_END(); } MatrixMulImpl::kern_t MatrixMulImpl::AlgoF32MK4Pack4x12::get_kern( const KernSizeParam&) const { return f32_mk4_pack_4x12_kern; } MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoF32MK4Pack4x12, megdnn_armv7_matmul_kern, "AlgoF32MK4Pack4x12"_hash, armv7::matmul::sgemm_mk4_pack_4x12, float, float); #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC /* ===================== F16 K4x16x1 algo ===================== */ namespace { void f16_kern(const MatrixMulImpl::KernParam& kern_param) { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("f16_kern"_hash)) { auto M = kern_param.M, N = kern_param.N, K = kern_param.K; auto trA = kern_param.trA, trB = kern_param.trB; auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC; auto A_type = kern_param.A_type, B_type = kern_param.B_type, C_type = kern_param.C_type; const auto Aptr = kern_param.A(), Bptr = kern_param.B(); auto Cptr = kern_param.C(); armv7::matmul::hgemm_4x16 strategy(M, N, K, A_type, B_type, C_type); megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy) .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr); } MIDOUT_END(); } } // anonymous namespace bool MatrixMulImpl::AlgoF16K4x16x1::usable( const KernSizeParam& kern_size_param) const { return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT && kern_size_param.format == param::MatrixMul::Format::DEFAULT && kern_size_param.C_type == kern_size_param.A_type && kern_size_param.B_type == kern_size_param.A_type && kern_size_param.A_type == dtype::Float16(); } size_t MatrixMulImpl::AlgoF16K4x16x1::get_workspace( const KernSizeParam& kern_size_param) const { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("AlgoF16K4x16x1::get_workspace"_hash)) { auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K; auto trA = kern_size_param.trA, trB = kern_size_param.trB; auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type, C_type = kern_size_param.C_type; armv7::matmul::hgemm_4x16 strategy(M, N, K, A_type, B_type, C_type); return megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy) .get_workspace_size(); } MIDOUT_END(); } MatrixMulImpl::kern_t MatrixMulImpl::AlgoF16K4x16x1::get_kern( const KernSizeParam&) const { return f16_kern; } MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoF16K4x16x1, megdnn_armv7_matmul_kern, "AlgoF16K4x16x1"_hash, armv7::matmul::hgemm_4x16, dt_float16, dt_float16); #endif /* ===================== Int8x8x32 Kernel 4x2x16 algo ===================== */ namespace { void kern_int8x8x32_k4x2x16(const MatrixMulImpl::KernParam& kern_param) { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("kern_int8x8x32_k4x2x16"_hash)) { auto M = kern_param.M, N = kern_param.N, K = kern_param.K; auto Aptr = kern_param.A(), Bptr = kern_param.B(); auto Cptr = kern_param.C(); auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC; auto trA = kern_param.trA, trB = kern_param.trB; armv7::matmul::gemm_s8_4x2 strategy(M, N, K, kern_param.A_type, kern_param.B_type, kern_param.C_type); megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy) .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr); } MIDOUT_END(); } } // anonymous namespace bool MatrixMulImpl::AlgoInt8x8x32K4x2x16::usable( const KernSizeParam& kern_size_param) const { return can_be_treated_as_int8x8x32(kern_size_param); } bool MatrixMulImpl::AlgoInt8x8x32K4x2x16::preferred( const KernSizeParam& kern_size_param) const { return kern_size_param.K > 32; } size_t MatrixMulImpl::AlgoInt8x8x32K4x2x16::get_workspace( const KernSizeParam& kern_size_param) const { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("AlgoInt8x8x32K4x2x16::get_workspace"_hash)) { auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K; auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type, C_type = kern_size_param.C_type; auto trA = kern_size_param.trA, trB = kern_size_param.trB; matmul::gemm_s8_4x2 strategy(M, N, K, A_type, B_type, C_type); return megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy) .get_workspace_size(); } MIDOUT_END(); } MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32K4x2x16::get_kern( const KernSizeParam&) const { return kern_int8x8x32_k4x2x16; } MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoInt8x8x32K4x2x16, megdnn_armv7_matmul_kern, "AlgoInt8x8x32K4x2x16"_hash, armv7::matmul::gemm_s8_4x2, int8_t, int32_t); /* ===================== Int8x8x32 Kernel 4x8x8 algo ===================== */ namespace { void kern_int8x8x32_k4x8x8(const MatrixMulImpl::KernParam& kern_param) { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("kern_int8x8x32_k4x8x8"_hash)) { auto M = kern_param.M, N = kern_param.N, K = kern_param.K; auto Aptr = kern_param.A(), Bptr = kern_param.B(); auto Cptr = kern_param.C(); auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC; auto trA = kern_param.trA, trB = kern_param.trB; armv7::matmul::gemm_s8_4x8 strategy(M, N, K, kern_param.A_type, kern_param.B_type, kern_param.C_type); megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy) .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr); } MIDOUT_END(); } } // anonymous namespace bool MatrixMulImpl::AlgoInt8x8x32K4x8x8::usable( const KernSizeParam& kern_size_param) const { return can_be_treated_as_int8x8x32(kern_size_param); } bool MatrixMulImpl::AlgoInt8x8x32K4x8x8::preferred( const KernSizeParam& kern_size_param) const { return kern_size_param.K <= 32; } size_t MatrixMulImpl::AlgoInt8x8x32K4x8x8::get_workspace( const KernSizeParam& kern_size_param) const { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("AlgoInt8x8x32K4x8x8::get_workspace"_hash)) { auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K; auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type, C_type = kern_size_param.C_type; auto trA = kern_size_param.trA, trB = kern_size_param.trB; matmul::gemm_s8_4x8 strategy(M, N, K, A_type, B_type, C_type); return megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy) .get_workspace_size(); } MIDOUT_END(); } MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32K4x8x8::get_kern( const KernSizeParam&) const { return kern_int8x8x32_k4x8x8; } MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoInt8x8x32K4x8x8, megdnn_armv7_matmul_kern, "AlgoInt8x8x32K4x8x8"_hash, armv7::matmul::gemm_s8_4x8, int8_t, int32_t); /* ===================== Quint8 Kernel 4x8x8 algo ===================== */ namespace { void kern_quint8_k4x8x8(const MatrixMulImpl::KernParam& kern_param) { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("kern_quint8_k4x8x8"_hash)) { auto M = kern_param.M, N = kern_param.N, K = kern_param.K; auto Aptr = kern_param.A(), Bptr = kern_param.B(); auto Cptr = kern_param.C(); auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC; auto trA = kern_param.trA, trB = kern_param.trB; armv7::matmul::gemm_u8_4x8 strategy(M, N, K, kern_param.A_type, kern_param.B_type, kern_param.C_type); megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy) .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr); } MIDOUT_END(); } } // anonymous namespace bool MatrixMulImpl::AlgoQuint8K4x8x8::usable( const KernSizeParam& kern_size_param) const { return kern_size_param.A_type.enumv() == DTypeEnum::Quantized8Asymm && kern_size_param.B_type.enumv() == DTypeEnum::Quantized8Asymm && kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32 && kern_size_param.format == param::MatrixMul::Format::DEFAULT && kern_size_param.compute_mode == Param::ComputeMode::DEFAULT; } size_t MatrixMulImpl::AlgoQuint8K4x8x8::get_workspace( const KernSizeParam& kern_size_param) const { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("AlgoQuint8K4x8x8::get_workspace"_hash)) { auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K; auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type, C_type = kern_size_param.C_type; auto trA = kern_size_param.trA, trB = kern_size_param.trB; matmul::gemm_u8_4x8 strategy(M, N, K, A_type, B_type, C_type); return megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy) .get_workspace_size(); } MIDOUT_END(); } MatrixMulImpl::kern_t MatrixMulImpl::AlgoQuint8K4x8x8::get_kern( const KernSizeParam&) const { return kern_quint8_k4x8x8; } MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoQuint8K4x8x8, megdnn_armv7_matmul_kern, "AlgoQuint8K4x8x8"_hash, armv7::matmul::gemm_u8_4x8, uint8_t, int32_t); /* ===================== Int8x8x16 Kernel 2x4x16 algo ===================== */ namespace { void kern_int8x8x16_k2x4x16(const MatrixMulImpl::KernParam& kern_param) { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("kern_int8x8x16_k2x4x16"_hash)) { auto M = kern_param.M, N = kern_param.N, K = kern_param.K; auto Aptr = kern_param.A(), Bptr = kern_param.B(); auto Cptr = kern_param.C(); auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC; auto trA = kern_param.trA, trB = kern_param.trB; armv7::matmul::gemm_s8x8x16_4x2 strategy(M, N, K, kern_param.A_type, kern_param.B_type, kern_param.C_type); megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy) .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr); } MIDOUT_END(); } } // anonymous namespace bool MatrixMulImpl::AlgoInt8x8x16K4x2x16::usable( const KernSizeParam& kern_size_param) const { return kern_size_param.A_type == kern_size_param.B_type && kern_size_param.A_type == dtype::Int8() && kern_size_param.C_type == dtype::Int16() && kern_size_param.format == param::MatrixMul::Format::DEFAULT && kern_size_param.compute_mode == Param::ComputeMode::DEFAULT; } size_t MatrixMulImpl::AlgoInt8x8x16K4x2x16::get_workspace( const KernSizeParam& kern_size_param) const { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("AlgoInt8x8x16K4x2x16::get_workspace"_hash)) { auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K; auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type, C_type = kern_size_param.C_type; auto trA = kern_size_param.trA, trB = kern_size_param.trB; matmul::gemm_s8x8x16_4x2 strategy(M, N, K, A_type, B_type, C_type); return megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy) .get_workspace_size(); } MIDOUT_END(); } MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x16K4x2x16::get_kern( const KernSizeParam&) const { return kern_int8x8x16_k2x4x16; } bool MatrixMulImpl::AlgoInt8x8x16K4x2x16::preferred( const KernSizeParam& kern_size_param) const { return kern_size_param.K > 128; } MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoInt8x8x16K4x2x16, megdnn_armv7_matmul_kern, "AlgoInt8x8x16K4x2x16"_hash, armv7::matmul::gemm_s8x8x16_4x2, int8_t, int16_t); /* ===================== Int8x8x16 Kernel 4x8x8 algo ===================== */ namespace { void kern_int8x8x16_k4x8x8(const MatrixMulImpl::KernParam& kern_param) { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("kern_int8x8x16_k4x8x8"_hash)) { auto M = kern_param.M, N = kern_param.N, K = kern_param.K; auto Aptr = kern_param.A(), Bptr = kern_param.B(); auto Cptr = kern_param.C(); auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC; auto trA = kern_param.trA, trB = kern_param.trB; armv7::matmul::gemm_s8x8x16_4x8 strategy(M, N, K, kern_param.A_type, kern_param.B_type, kern_param.C_type); megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy) .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr); } MIDOUT_END(); } } // anonymous namespace bool MatrixMulImpl::AlgoInt8x8x16K4x8x8::usable( const KernSizeParam& kern_size_param) const { return kern_size_param.A_type == kern_size_param.B_type && kern_size_param.A_type == dtype::Int8() && kern_size_param.C_type == dtype::Int16() && kern_size_param.format == param::MatrixMul::Format::DEFAULT && kern_size_param.compute_mode == Param::ComputeMode::DEFAULT; } size_t MatrixMulImpl::AlgoInt8x8x16K4x8x8::get_workspace( const KernSizeParam& kern_size_param) const { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("AlgoInt8x8x16K4x8x8::get_workspace"_hash)) { auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K; auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type, C_type = kern_size_param.C_type; auto trA = kern_size_param.trA, trB = kern_size_param.trB; matmul::gemm_s8x8x16_4x8 strategy(M, N, K, A_type, B_type, C_type); return megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy) .get_workspace_size(); } MIDOUT_END(); } MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x16K4x8x8::get_kern( const KernSizeParam&) const { return kern_int8x8x16_k4x8x8; } bool MatrixMulImpl::AlgoInt8x8x16K4x8x8::preferred( const KernSizeParam& kern_size_param) const { return kern_size_param.K >= 8 && kern_size_param.K <= 128; } MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoInt8x8x16K4x8x8, megdnn_armv7_matmul_kern, "AlgoInt8x8x16K4x8x8"_hash, armv7::matmul::gemm_s8x8x16_4x8, int8_t, int16_t); /* ===================== Int16x16x32 Kernel 12x4x1 algo ===================== */ namespace { void kern_int16x16x32K12x4x1(const MatrixMulImpl::KernParam& kern_param) { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("kern_int16x16x32K12x4x1"_hash)) { auto M = kern_param.M, N = kern_param.N, K = kern_param.K; auto Aptr = kern_param.A(), Bptr = kern_param.B(); auto Cptr = kern_param.C(); auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC; auto trA = kern_param.trA, trB = kern_param.trB; armv7::matmul::gemm_s16x16x32_12x4 strategy(M, N, K, kern_param.A_type, kern_param.B_type, kern_param.C_type); megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy) .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr); } MIDOUT_END(); } } // anonymous namespace bool MatrixMulImpl::AlgoInt16x16x32K12x4x1::usable( const KernSizeParam& kern_size_param) const { return kern_size_param.A_type == kern_size_param.B_type && kern_size_param.A_type == dtype::Int16() && kern_size_param.C_type == dtype::Int32() && kern_size_param.format == param::MatrixMul::Format::DEFAULT && kern_size_param.compute_mode == Param::ComputeMode::DEFAULT; } size_t MatrixMulImpl::AlgoInt16x16x32K12x4x1::get_workspace( const KernSizeParam& kern_size_param) const { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("AlgoInt16x16x32K12x4x1::get_workspace"_hash)) { auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K; auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type, C_type = kern_size_param.C_type; auto trA = kern_size_param.trA, trB = kern_size_param.trB; matmul::gemm_s16x16x32_12x4 strategy(M, N, K, A_type, B_type, C_type); return megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy) .get_workspace_size(); } MIDOUT_END(); } MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt16x16x32K12x4x1::get_kern( const KernSizeParam&) const { return kern_int16x16x32K12x4x1; } bool MatrixMulImpl::AlgoInt16x16x32K12x4x1::preferred( const KernSizeParam& /*kern_size_param*/) const { return true; } MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoInt16x16x32K12x4x1, megdnn_armv7_matmul_kern, "AlgoInt16x16x32K12x4x1"_hash, armv7::matmul::gemm_s16x16x32_12x4, int16_t, int32_t); #if __ARM_FEATURE_DOTPROD /* ===================== Int8 K6x8x4 algo ===================== */ namespace { void int8_k6x8x4_kern(const MatrixMulImpl::KernParam& kern_param) { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("int8_k6x8x4_kern"_hash)) { auto M = kern_param.M, N = kern_param.N, K = kern_param.K; auto trA = kern_param.trA, trB = kern_param.trB; auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC; auto A_type = kern_param.A_type, B_type = kern_param.B_type, C_type = kern_param.C_type; const auto Aptr = kern_param.A(), Bptr = kern_param.B(); auto Cptr = kern_param.C(); armv7::matmul::gemm_dots8_6x8 strategy(M, N, K, A_type, B_type, C_type); megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy) .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr); } MIDOUT_END(); } } // namespace bool MatrixMulImpl::AlgoInt8x8x32K6x8x4::usable( const KernSizeParam& kern_size_param) const { return can_be_treated_as_int8x8x32(kern_size_param); } size_t MatrixMulImpl::AlgoInt8x8x32K6x8x4::get_workspace( const KernSizeParam& kern_size_param) const { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("AlgoInt8x8x32K6x8x4::get_workspace"_hash)) { auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K; auto trA = kern_size_param.trA, trB = kern_size_param.trB; auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type, C_type = kern_size_param.C_type; armv7::matmul::gemm_dots8_6x8 strategy(M, N, K, A_type, B_type, C_type); return megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy) .get_workspace_size(); } MIDOUT_END(); } MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32K6x8x4::get_kern( const KernSizeParam&) const { return int8_k6x8x4_kern; } MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoInt8x8x32K6x8x4, megdnn_armv7_matmul_kern, "AlgoInt8x8x32K6x8x4"_hash, armv7::matmul::gemm_dots8_6x8, int8_t, int32_t); /* ===================== Quint8 K4x8x4 algo ===================== */ namespace { void quint8_dot_k4x8x4_kern(const MatrixMulImpl::KernParam& kern_param) { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("quint8_dot_k4x8x4_kern"_hash)) { auto M = kern_param.M, N = kern_param.N, K = kern_param.K; auto trA = kern_param.trA, trB = kern_param.trB; auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC; auto A_type = kern_param.A_type, B_type = kern_param.B_type, C_type = kern_param.C_type; const auto Aptr = kern_param.A(), Bptr = kern_param.B(); auto Cptr = kern_param.C(); armv7::matmul::gemm_dot_quint8_4x8 strategy(M, N, K, A_type, B_type, C_type); megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy) .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr); } MIDOUT_END(); } } // namespace bool MatrixMulImpl::AlgoQuint8DotK4x8x4::usable( const KernSizeParam& kern_size_param) const { return kern_size_param.A_type.enumv() == DTypeEnum::Quantized8Asymm && kern_size_param.B_type.enumv() == DTypeEnum::Quantized8Asymm && kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32 && kern_size_param.format == param::MatrixMul::Format::DEFAULT && kern_size_param.compute_mode == Param::ComputeMode::DEFAULT; } size_t MatrixMulImpl::AlgoQuint8DotK4x8x4::get_workspace( const KernSizeParam& kern_size_param) const { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("AlgoQuint8DotK4x8x4::get_workspace"_hash)) { auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K; auto trA = kern_size_param.trA, trB = kern_size_param.trB; auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type, C_type = kern_size_param.C_type; armv7::matmul::gemm_dot_quint8_4x8 strategy(M, N, K, A_type, B_type, C_type); return megdnn::matmul::GemmInterleaved< armv7::matmul::gemm_dot_quint8_4x8>(M, N, K, trA, trB, strategy) .get_workspace_size(); } MIDOUT_END(); } MatrixMulImpl::kern_t MatrixMulImpl::AlgoQuint8DotK4x8x4::get_kern( const KernSizeParam&) const { return quint8_dot_k4x8x4_kern; } MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoQuint8DotK4x8x4, megdnn_armv7_matmul_kern, "AlgoQuint8DotK4x8x4"_hash, armv7::matmul::gemm_dot_quint8_4x8, uint8_t, int32_t); /* ======================== Int8 MK4 8x4x4 dot algo ======================== */ namespace { void int8_mk4_8x4x4_dotprod_kern(const MatrixMulImpl::KernParam& kern_param) { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("int8_mk4_8x4x4_dotprod_kern"_hash)) { auto M = kern_param.M, N = kern_param.N, K = kern_param.K; auto trA = kern_param.trA, trB = kern_param.trB; auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC; auto A_type = kern_param.A_type, B_type = kern_param.B_type, C_type = kern_param.C_type; const auto Aptr = kern_param.A(), Bptr = kern_param.B(); auto Cptr = kern_param.C(); armv7::matmul::gemm_mk4_dots8_8x4 strategy(M, N, K, A_type, B_type, C_type); megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy) .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr); } MIDOUT_END(); } } // namespace bool MatrixMulImpl::AlgoInt8x8x32MK4_8x4x4DotProd::usable( const KernSizeParam& kern_size_param) const { return kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() && (kern_size_param.A_type.enumv() == DTypeEnum::Int8 || kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8) && (kern_size_param.C_type.enumv() == DTypeEnum::Int32 || kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32) && kern_size_param.compute_mode == Param::ComputeMode::DEFAULT && kern_size_param.format == param::MatrixMul::Format::MK4_DOT && !kern_size_param.trA && !kern_size_param.trB; } size_t MatrixMulImpl::AlgoInt8x8x32MK4_8x4x4DotProd::get_workspace( const KernSizeParam& kern_size_param) const { MIDOUT_BEGIN( megdnn_armv7_matmul_kern, midout_iv("AlgoInt8x8x32MK4_8x4x4DotProd::get_workspace"_hash)) { auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K; auto trA = kern_size_param.trA, trB = kern_size_param.trB; auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type, C_type = kern_size_param.C_type; armv7::matmul::gemm_mk4_dots8_8x4 strategy(M, N, K, A_type, B_type, C_type); return megdnn::matmul::GemmInterleaved< armv7::matmul::gemm_mk4_dots8_8x4>(M, N, K, trA, trB, strategy) .get_workspace_size(); } MIDOUT_END(); } MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32MK4_8x4x4DotProd::get_kern( const KernSizeParam&) const { return int8_mk4_8x4x4_dotprod_kern; } MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoInt8x8x32MK4_8x4x4DotProd, megdnn_armv7_matmul_kern, "AlgoInt8x8x32MK4_8x4x4DotProd"_hash, armv7::matmul::gemm_mk4_dots8_8x4, int8_t, int32_t); #endif /* ===================== F32 algo K4x8 ===================== */ namespace { void f32_mk4_4x8_kern(const MatrixMulImpl::KernParam& kern_param) { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("f32_mk4_4x8_kern"_hash)) { auto M = kern_param.M, N = kern_param.N, K = kern_param.K; auto trA = kern_param.trA, trB = kern_param.trB; auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC; auto A_type = kern_param.A_type, B_type = kern_param.B_type, C_type = kern_param.C_type; const auto Aptr = kern_param.A(), Bptr = kern_param.B(); auto Cptr = kern_param.C(); armv7::matmul::sgemm_nopack_4x8 strategy(A_type, B_type, C_type); megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy) .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr); } MIDOUT_END(); } } // anonymous namespace bool MatrixMulImpl::AlgoF32MK4_4x8::usable( const KernSizeParam& kern_size_param) const { return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT && kern_size_param.format == param::MatrixMul::Format::MK4 && kern_size_param.B_type == kern_size_param.A_type && kern_size_param.C_type == kern_size_param.A_type && kern_size_param.A_type == dtype::Float32() && kern_size_param.N % 4 == 0 && !kern_size_param.trA && !kern_size_param.trB; } size_t MatrixMulImpl::AlgoF32MK4_4x8::get_workspace( const KernSizeParam& kern_size_param) const { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("AlgoF32MK4_4x8::get_workspace"_hash)) { auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K; auto trA = kern_size_param.trA, trB = kern_size_param.trB; auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type, C_type = kern_size_param.C_type; armv7::matmul::sgemm_nopack_4x8 strategy(A_type, B_type, C_type); return megdnn::matmul::GemmInterleaved(M, N, K, trA, trB, strategy) .get_workspace_size(); } MIDOUT_END(); } MatrixMulImpl::kern_t MatrixMulImpl::AlgoF32MK4_4x8::get_kern( const KernSizeParam&) const { return f32_mk4_4x8_kern; } /* ===================== Int16x16x32 MK8 4x8 algo ===================== */ bool MatrixMulImpl::AlgoInt16x16x32MK8_4x8::usable( const KernSizeParam& kern_size_param) const { return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT && kern_size_param.format == param::MatrixMul::Format::MK8 && kern_size_param.A_type == dtype::Int16() && kern_size_param.B_type == dtype::Int16() && kern_size_param.C_type == dtype::Int32() && kern_size_param.N % 4 == 0 && !kern_size_param.trA && !kern_size_param.trB; } size_t MatrixMulImpl::AlgoInt16x16x32MK8_4x8::get_workspace( const KernSizeParam& kern_size_param) const { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("AlgoInt16x16x32MK8_4x8::get_workspace"_hash)) { auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K; auto trA = kern_size_param.trA, trB = kern_size_param.trB; auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type, C_type = kern_size_param.C_type; armv7::matmul::gemm_nopack_s16_4x8 strategy(A_type, B_type, C_type); return megdnn::matmul::GemmInterleaved< armv7::matmul::gemm_nopack_s16_4x8, false>(M, N, K, trA, trB, strategy) .get_workspace_size(); } MIDOUT_END(); } MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt16x16x32MK8_4x8::get_kern( const KernSizeParam&) const { auto kern_mk8_4x8 = [](const MatrixMulImpl::KernParam& kern_param) { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("AlgoInt16x16x32MK8_4x8::get_kern"_hash)) { auto M = kern_param.M, N = kern_param.N, K = kern_param.K; auto trA = kern_param.trA, trB = kern_param.trB; auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC; auto A_type = kern_param.A_type, B_type = kern_param.B_type, C_type = kern_param.C_type; const auto Aptr = kern_param.A(), Bptr = kern_param.B(); auto Cptr = kern_param.C(); armv7::matmul::gemm_nopack_s16_4x8 strategy(A_type, B_type, C_type); megdnn::matmul::GemmInterleaved(M, N, K, trA, trB, strategy) .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr); } MIDOUT_END(); }; return kern_mk8_4x8; } #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC /* ===================== F16_MK8_4x8 algo ===================== */ bool MatrixMulImpl::AlgoF16MK8_4x8::usable( const KernSizeParam& kern_size_param) const { return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT && kern_size_param.C_type == kern_size_param.A_type && kern_size_param.B_type == kern_size_param.A_type && kern_size_param.A_type == dtype::Float16() && kern_size_param.format == param::MatrixMul::Format::MK8 && !kern_size_param.trA && !kern_size_param.trB && kern_size_param.N % 4 == 0; } size_t MatrixMulImpl::AlgoF16MK8_4x8::get_workspace( const KernSizeParam& kern_size_param) const { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("AlgoF16MK8_4x8::get_workspace"_hash)) { auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K; auto trA = kern_size_param.trA, trB = kern_size_param.trB; auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type, C_type = kern_size_param.C_type; armv7::matmul::gemm_nopack_f16_4x8 strategy(A_type, B_type, C_type); return megdnn::matmul::GemmInterleaved< armv7::matmul::gemm_nopack_f16_4x8, false>(M, N, K, trA, trB, strategy) .get_workspace_size(); } MIDOUT_END(); } MatrixMulImpl::kern_t MatrixMulImpl::AlgoF16MK8_4x8::get_kern( const KernSizeParam&) const { auto kern_mk8_4x8 = [](const MatrixMulImpl::KernParam& kern_param) { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("AlgoF16MK8_4x8::get_kern"_hash)) { auto M = kern_param.M, N = kern_param.N, K = kern_param.K; auto trA = kern_param.trA, trB = kern_param.trB; auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC; auto A_type = kern_param.A_type, B_type = kern_param.B_type, C_type = kern_param.C_type; const auto Aptr = kern_param.A(), Bptr = kern_param.B(); auto Cptr = kern_param.C(); armv7::matmul::gemm_nopack_f16_4x8 strategy(A_type, B_type, C_type); megdnn::matmul::GemmInterleaved< armv7::matmul::gemm_nopack_f16_4x8, false>(M, N, K, trA, trB, strategy) .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr); } MIDOUT_END(); }; return kern_mk8_4x8; } #endif /* ===================== Int8x8x16 Kernel 2x4x16 algo ===================== */ namespace { void kern_int8x8x32_mk4_4x2x16(const MatrixMulImpl::KernParam& kern_param) { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("kern_int8x8x32_mk4_4x2x16"_hash)) { auto M = kern_param.M, N = kern_param.N, K = kern_param.K; auto Aptr = kern_param.A(), Bptr = kern_param.B(); auto Cptr = kern_param.C(); auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC; auto trA = kern_param.trA, trB = kern_param.trB; armv7::matmul::gemm_mk4_s8_4x2 strategy(M, N, K, kern_param.A_type, kern_param.B_type, kern_param.C_type); megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy) .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr); } MIDOUT_END(); } } // anonymous namespace bool MatrixMulImpl::AlgoInt8x8x32MK4_4x2x16::usable( const KernSizeParam& param) const { return param.A_type.enumv() == param.B_type.enumv() && (param.A_type.enumv() == DTypeEnum::Int8 || param.A_type.enumv() == DTypeEnum::QuantizedS8) && (param.C_type.enumv() == DTypeEnum::Int32 || param.C_type.enumv() == DTypeEnum::QuantizedS32) && param.compute_mode == Param::ComputeMode::DEFAULT && param.format == param::MatrixMul::Format::MK4 && param.M % 4 == 0 && param.K % 4 == 0 && !param.trA && !param.trB; } size_t MatrixMulImpl::AlgoInt8x8x32MK4_4x2x16::get_workspace( const KernSizeParam& kern_size_param) const { MIDOUT_BEGIN(megdnn_armv7_matmul_kern, midout_iv("AlgoInt8x8x32MK4_4x2x16::get_workspace"_hash)) { auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K; auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type, C_type = kern_size_param.C_type; auto trA = kern_size_param.trA, trB = kern_size_param.trB; matmul::gemm_mk4_s8_4x2 strategy(M, N, K, A_type, B_type, C_type); return megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy) .get_workspace_size(); } MIDOUT_END(); } MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32MK4_4x2x16::get_kern( const KernSizeParam&) const { return kern_int8x8x32_mk4_4x2x16; } bool MatrixMulImpl::AlgoInt8x8x32MK4_4x2x16::preferred( const KernSizeParam& kern_size_param) const { return kern_size_param.K > 16; } MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoInt8x8x32MK4_4x2x16, megdnn_armv7_matmul_kern, "AlgoInt8x8x32MK4_4x2x16"_hash, armv7::matmul::gemm_mk4_s8_4x2, int8_t, int32_t); // vim: syntax=cpp.doxygen