# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle.v2 as paddle import paddle.v2.fluid as fluid import paddle.v2.fluid.core as core import paddle.v2.fluid.framework as framework import paddle.v2.fluid.layers as layers from paddle.v2.fluid.executor import Executor dict_size = 30000 source_dict_dim = target_dict_dim = dict_size src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size) hidden_dim = 32 embedding_dim = 16 batch_size = 10 max_length = 50 topk_size = 50 encoder_size = decoder_size = hidden_dim IS_SPARSE = True USE_PEEPHOLES = False def bi_lstm_encoder(input_seq, hidden_size): input_forward_proj = fluid.layers.fc(input=input_seq, size=hidden_size * 4, bias_attr=True) forward, _ = fluid.layers.dynamic_lstm( input=input_forward_proj, size=hidden_size * 4, use_peepholes=USE_PEEPHOLES) input_backward_proj = fluid.layers.fc(input=input_seq, size=hidden_size * 4, bias_attr=True) backward, _ = fluid.layers.dynamic_lstm( input=input_backward_proj, size=hidden_size * 4, is_reverse=True, use_peepholes=USE_PEEPHOLES) return forward, backward # FIXME(peterzhang2029): Replace this function with the lstm_unit_op. def lstm_step(x_t, hidden_t_prev, cell_t_prev, size): def linear(inputs): return fluid.layers.fc(input=inputs, size=size, bias_attr=True) forget_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t])) input_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t])) output_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t])) cell_tilde = fluid.layers.tanh(x=linear([hidden_t_prev, x_t])) cell_t = fluid.layers.sums(input=[ fluid.layers.elementwise_mul( x=forget_gate, y=cell_t_prev), fluid.layers.elementwise_mul( x=input_gate, y=cell_tilde) ]) hidden_t = fluid.layers.elementwise_mul( x=output_gate, y=fluid.layers.tanh(x=cell_t)) return hidden_t, cell_t def lstm_decoder_without_attention(target_embedding, decoder_boot, context, decoder_size): rnn = fluid.layers.DynamicRNN() cell_init = fluid.layers.fill_constant_batch_size_like( input=decoder_boot, value=0.0, shape=[-1, decoder_size], dtype='float32') cell_init.stop_gradient = False with rnn.block(): current_word = rnn.step_input(target_embedding) context = rnn.static_input(context) hidden_mem = rnn.memory(init=decoder_boot, need_reorder=True) cell_mem = rnn.memory(init=cell_init) decoder_inputs = fluid.layers.concat( input=[context, current_word], axis=1) h, c = lstm_step(decoder_inputs, hidden_mem, cell_mem, decoder_size) rnn.update_memory(hidden_mem, h) rnn.update_memory(cell_mem, c) out = fluid.layers.fc(input=h, size=target_dict_dim, bias_attr=True, act='softmax') rnn.output(out) return rnn() def seq_to_seq_net(): """Construct a seq2seq network.""" src_word_idx = fluid.layers.data( name='source_sequence', shape=[1], dtype='int64', lod_level=1) src_embedding = fluid.layers.embedding( input=src_word_idx, size=[source_dict_dim, embedding_dim], dtype='float32') src_forward, src_backward = bi_lstm_encoder( input_seq=src_embedding, hidden_size=encoder_size) encoded_vector = fluid.layers.concat( input=[src_forward, src_backward], axis=1) enc_vec_last = fluid.layers.sequence_last_step(input=encoded_vector) decoder_boot = fluid.layers.fc(input=enc_vec_last, size=decoder_size, bias_attr=False, act='tanh') trg_word_idx = fluid.layers.data( name='target_sequence', shape=[1], dtype='int64', lod_level=1) trg_embedding = fluid.layers.embedding( input=trg_word_idx, size=[target_dict_dim, embedding_dim], dtype='float32') prediction = lstm_decoder_without_attention(trg_embedding, decoder_boot, enc_vec_last, decoder_size) label = fluid.layers.data( name='label_sequence', shape=[1], dtype='int64', lod_level=1) cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = fluid.layers.mean(x=cost) return avg_cost def to_lodtensor(data, place): seq_lens = [len(seq) for seq in data] cur_len = 0 lod = [cur_len] for l in seq_lens: cur_len += l lod.append(cur_len) flattened_data = np.concatenate(data, axis=0).astype("int64") flattened_data = flattened_data.reshape([len(flattened_data), 1]) res = core.LoDTensor() res.set(flattened_data, place) res.set_lod([lod]) return res def main(): avg_cost = seq_to_seq_net() optimizer = fluid.optimizer.Adagrad(learning_rate=1e-4) optimizer.minimize(avg_cost) train_data = paddle.batch( paddle.reader.shuffle( paddle.dataset.wmt14.train(dict_size), buf_size=1000), batch_size=batch_size) place = core.CPUPlace() exe = Executor(place) exe.run(framework.default_startup_program()) batch_id = 0 for pass_id in xrange(2): for data in train_data(): word_data = to_lodtensor(map(lambda x: x[0], data), place) trg_word = to_lodtensor(map(lambda x: x[1], data), place) trg_word_next = to_lodtensor(map(lambda x: x[2], data), place) outs = exe.run(framework.default_main_program(), feed={ 'source_sequence': word_data, 'target_sequence': trg_word, 'label_sequence': trg_word_next }, fetch_list=[avg_cost]) avg_cost_val = np.array(outs[0]) print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) + " avg_cost=" + str(avg_cost_val)) if batch_id > 3: exit(0) batch_id += 1 if __name__ == '__main__': main()