#!/usr/bin/env python # This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in # the future. Once extracted, the weights don't require DeepSpeed and can be used in any # application. # # example: python zero_to_fp32.py global_step1 pytorch_model.bin import argparse import torch import glob import os from collections import OrderedDict import deepspeed # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with # DeepSpeed data structures it has to be available in the current python environment. def get_optim_files(checkpoint_dir): if not os.path.isdir(checkpoint_dir): raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") # XXX: need to test that this simple glob rule works for multi-node setup too optim_files = sorted(glob.glob(f"{checkpoint_dir}/*_optim_states.pt")) if len(optim_files) == 0: raise FileNotFoundError( f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'") return optim_files def parse_optim_states(files): state_dicts = [] for f in files: state_dicts.append(torch.load(f)) if not "zero_stage" in state_dicts[0]['optimizer_state_dict']: raise ValueError(f"non zero checkpoint") zero_stage = state_dicts[0]['optimizer_state_dict']["zero_stage"] # the groups are named differently in each stage if zero_stage == 2: fp32_groups_key = "single_partition_of_fp32_groups" elif zero_stage == 3: fp32_groups_key = "fp32_flat_groups" else: raise ValueError(f"unknown zero stage {zero_stage}") param_shapes = state_dicts[0]["param_shapes"] fp32_flat_groups = [ state_dicts[i]['optimizer_state_dict'][fp32_groups_key][0] for i in range(len(state_dicts)) ] world_size = state_dicts[0]['optimizer_state_dict']["partition_count"] return zero_stage, world_size, param_shapes, fp32_flat_groups def zero3_partitioned_param_info(unpartitioned_numel, world_size): remainder = unpartitioned_numel % world_size padding_numel = (world_size - remainder) if remainder else 0 partitioned_numel = int(unpartitioned_numel / world_size) return partitioned_numel, padding_numel def convert_zero_chkpt_to_fp32_consolid_state_dict(checkpoint_dir, output_file): """ Convert zero 2 or 3 checkpoint into a single fp32 consolidated state_dict file that can be loaded with ``torch.load(file)`` and used for training without DeepSpeed. Args: - ``checkpoint_dir``: path to the deepspeed checkpoint folder - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin) """ print(f"Processing zero checkpoint '{checkpoint_dir}'") optim_files = get_optim_files(checkpoint_dir) zero_stage, world_size, param_shapes, fp32_flat_groups = parse_optim_states(optim_files) print( f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") # Reconstruction protocol: # # - for zero2 we just need to concat the partitions back to back and reconsolidate over one huge # flat buffer - no need to deal with padding since if there is any it will be only in the tail # of the last partition so there it will be just left out # # - for zero3 we need to zip the partitions together at boundary of each param, re-consolidating # each param, while dealing with padding if any if zero_stage == 2: # XXX: memory usage doubles here (zero2) full_single_fp32_vector = torch.cat(fp32_flat_groups, 0) # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support # out-of-core computing solution state_dict = OrderedDict() offset = 0 total_numel = 0 for name, shape in param_shapes.items(): unpartitioned_numel = shape.numel() total_numel += unpartitioned_numel if zero_stage == 2: # print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") state_dict[name] = full_single_fp32_vector.narrow( 0, offset, unpartitioned_numel).view(shape) offset += unpartitioned_numel elif zero_stage == 3: partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) # print(f"{name} full shape: {shape} partition0 numel {partitioned_numel} partitioned_padding_numel {partitioned_padding_numel}") # XXX: memory usage doubles here (zero3) state_dict[name] = torch.cat( tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)), 0).view(shape) offset += partitioned_numel + partitioned_padding_numel # the job is done print(f"Saving fp32 state dict to {output_file} (total_numel={total_numel})") torch.save(state_dict, output_file) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "checkpoint_dir", type=str, help= "path to the deepspeed checkpoint folder, e.g., path/checkpoint-1/global_step1") parser.add_argument( "output_file", type=str, help= "path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-1/pytorch_model.bin)" ) args = parser.parse_args() convert_zero_chkpt_to_fp32_consolid_state_dict(args.checkpoint_dir, args.output_file)