""" This code is refer from: https://github.com/whai362/PSENet/blob/python3/models/loss/iou.py """ import paddle EPS = 1e-6 def iou_single(a, b, mask, n_class): valid = mask == 1 a = a.masked_select(valid) b = b.masked_select(valid) miou = [] for i in range(n_class): if a.shape == [0] and a.shape == b.shape: inter = paddle.to_tensor(0.0) union = paddle.to_tensor(0.0) else: inter = ((a == i).logical_and(b == i)).astype('float32') union = ((a == i).logical_or(b == i)).astype('float32') miou.append(paddle.sum(inter) / (paddle.sum(union) + EPS)) miou = sum(miou) / len(miou) return miou def iou(a, b, mask, n_class=2, reduce=True): batch_size = a.shape[0] a = a.reshape([batch_size, -1]) b = b.reshape([batch_size, -1]) mask = mask.reshape([batch_size, -1]) iou = paddle.zeros((batch_size, ), dtype='float32') for i in range(batch_size): iou[i] = iou_single(a[i], b[i], mask[i], n_class) if reduce: iou = paddle.mean(iou) return iou