# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import copy
import numpy as np
import string
from shapely.geometry import LineString, Point, Polygon
import json
import copy
from ppocr.utils.logging import get_logger
class ClsLabelEncode(object):
def __init__(self, label_list, **kwargs):
self.label_list = label_list
def __call__(self, data):
label = data['label']
if label not in self.label_list:
return None
label = self.label_list.index(label)
data['label'] = label
return data
class DetLabelEncode(object):
def __init__(self, **kwargs):
pass
def __call__(self, data):
label = data['label']
label = json.loads(label)
nBox = len(label)
boxes, txts, txt_tags = [], [], []
for bno in range(0, nBox):
box = label[bno]['points']
txt = label[bno]['transcription']
boxes.append(box)
txts.append(txt)
if txt in ['*', '###']:
txt_tags.append(True)
else:
txt_tags.append(False)
if len(boxes) == 0:
return None
boxes = self.expand_points_num(boxes)
boxes = np.array(boxes, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool)
data['polys'] = boxes
data['texts'] = txts
data['ignore_tags'] = txt_tags
return data
def order_points_clockwise(self, pts):
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0)
diff = np.diff(np.array(tmp), axis=1)
rect[1] = tmp[np.argmin(diff)]
rect[3] = tmp[np.argmax(diff)]
return rect
def expand_points_num(self, boxes):
max_points_num = 0
for box in boxes:
if len(box) > max_points_num:
max_points_num = len(box)
ex_boxes = []
for box in boxes:
ex_box = box + [box[-1]] * (max_points_num - len(box))
ex_boxes.append(ex_box)
return ex_boxes
class BaseRecLabelEncode(object):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
use_space_char=False):
self.max_text_len = max_text_length
self.beg_str = "sos"
self.end_str = "eos"
self.lower = False
if character_dict_path is None:
logger = get_logger()
logger.warning(
"The character_dict_path is None, model can only recognize number and lower letters"
)
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
self.lower = True
else:
self.character_str = []
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
for line in lines:
line = line.decode('utf-8').strip("\n").strip("\r\n")
self.character_str.append(line)
if use_space_char:
self.character_str.append(" ")
dict_character = list(self.character_str)
dict_character = self.add_special_char(dict_character)
self.dict = {}
for i, char in enumerate(dict_character):
self.dict[char] = i
self.character = dict_character
def add_special_char(self, dict_character):
return dict_character
def encode(self, text):
"""convert text-label into text-index.
input:
text: text labels of each image. [batch_size]
output:
text: concatenated text index for CTCLoss.
[sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
length: length of each text. [batch_size]
"""
if len(text) == 0 or len(text) > self.max_text_len:
return None
if self.lower:
text = text.lower()
text_list = []
for char in text:
if char not in self.dict:
# logger = get_logger()
# logger.warning('{} is not in dict'.format(char))
continue
text_list.append(self.dict[char])
if len(text_list) == 0:
return None
return text_list
class CTCLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
use_space_char=False,
**kwargs):
super(CTCLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char)
def __call__(self, data):
text = data['label']
text = self.encode(text)
if text is None:
return None
data['length'] = np.array(len(text))
text = text + [0] * (self.max_text_len - len(text))
data['label'] = np.array(text)
label = [0] * len(self.character)
for x in text:
label[x] += 1
data['label_ace'] = np.array(label)
return data
def add_special_char(self, dict_character):
dict_character = ['blank'] + dict_character
return dict_character
class E2ELabelEncodeTest(BaseRecLabelEncode):
def __init__(self,
max_text_length,
character_dict_path=None,
use_space_char=False,
**kwargs):
super(E2ELabelEncodeTest, self).__init__(
max_text_length, character_dict_path, use_space_char)
def __call__(self, data):
import json
padnum = len(self.dict)
label = data['label']
label = json.loads(label)
nBox = len(label)
boxes, txts, txt_tags = [], [], []
for bno in range(0, nBox):
box = label[bno]['points']
txt = label[bno]['transcription']
boxes.append(box)
txts.append(txt)
if txt in ['*', '###']:
txt_tags.append(True)
else:
txt_tags.append(False)
boxes = np.array(boxes, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool)
data['polys'] = boxes
data['ignore_tags'] = txt_tags
temp_texts = []
for text in txts:
text = text.lower()
text = self.encode(text)
if text is None:
return None
text = text + [padnum] * (self.max_text_len - len(text)
) # use 36 to pad
temp_texts.append(text)
data['texts'] = np.array(temp_texts)
return data
class E2ELabelEncodeTrain(object):
def __init__(self, **kwargs):
pass
def __call__(self, data):
import json
label = data['label']
label = json.loads(label)
nBox = len(label)
boxes, txts, txt_tags = [], [], []
for bno in range(0, nBox):
box = label[bno]['points']
txt = label[bno]['transcription']
boxes.append(box)
txts.append(txt)
if txt in ['*', '###']:
txt_tags.append(True)
else:
txt_tags.append(False)
boxes = np.array(boxes, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool)
data['polys'] = boxes
data['texts'] = txts
data['ignore_tags'] = txt_tags
return data
class KieLabelEncode(object):
def __init__(self,
character_dict_path,
class_path,
norm=10,
directed=False,
**kwargs):
super(KieLabelEncode, self).__init__()
self.dict = dict({'': 0})
self.label2classid_map = dict()
with open(character_dict_path, 'r', encoding='utf-8') as fr:
idx = 1
for line in fr:
char = line.strip()
self.dict[char] = idx
idx += 1
with open(class_path, "r") as fin:
lines = fin.readlines()
for idx, line in enumerate(lines):
line = line.strip("\n")
self.label2classid_map[line] = idx
self.norm = norm
self.directed = directed
def compute_relation(self, boxes):
"""Compute relation between every two boxes."""
x1s, y1s = boxes[:, 0:1], boxes[:, 1:2]
x2s, y2s = boxes[:, 4:5], boxes[:, 5:6]
ws, hs = x2s - x1s + 1, np.maximum(y2s - y1s + 1, 1)
dxs = (x1s[:, 0][None] - x1s) / self.norm
dys = (y1s[:, 0][None] - y1s) / self.norm
xhhs, xwhs = hs[:, 0][None] / hs, ws[:, 0][None] / hs
whs = ws / hs + np.zeros_like(xhhs)
relations = np.stack([dxs, dys, whs, xhhs, xwhs], -1)
bboxes = np.concatenate([x1s, y1s, x2s, y2s], -1).astype(np.float32)
return relations, bboxes
def pad_text_indices(self, text_inds):
"""Pad text index to same length."""
max_len = 300
recoder_len = max([len(text_ind) for text_ind in text_inds])
padded_text_inds = -np.ones((len(text_inds), max_len), np.int32)
for idx, text_ind in enumerate(text_inds):
padded_text_inds[idx, :len(text_ind)] = np.array(text_ind)
return padded_text_inds, recoder_len
def list_to_numpy(self, ann_infos):
"""Convert bboxes, relations, texts and labels to ndarray."""
boxes, text_inds = ann_infos['points'], ann_infos['text_inds']
boxes = np.array(boxes, np.int32)
relations, bboxes = self.compute_relation(boxes)
labels = ann_infos.get('labels', None)
if labels is not None:
labels = np.array(labels, np.int32)
edges = ann_infos.get('edges', None)
if edges is not None:
labels = labels[:, None]
edges = np.array(edges)
edges = (edges[:, None] == edges[None, :]).astype(np.int32)
if self.directed:
edges = (edges & labels == 1).astype(np.int32)
np.fill_diagonal(edges, -1)
labels = np.concatenate([labels, edges], -1)
padded_text_inds, recoder_len = self.pad_text_indices(text_inds)
max_num = 300
temp_bboxes = np.zeros([max_num, 4])
h, _ = bboxes.shape
temp_bboxes[:h, :] = bboxes
temp_relations = np.zeros([max_num, max_num, 5])
temp_relations[:h, :h, :] = relations
temp_padded_text_inds = np.zeros([max_num, max_num])
temp_padded_text_inds[:h, :] = padded_text_inds
temp_labels = np.zeros([max_num, max_num])
temp_labels[:h, :h + 1] = labels
tag = np.array([h, recoder_len])
return dict(
image=ann_infos['image'],
points=temp_bboxes,
relations=temp_relations,
texts=temp_padded_text_inds,
labels=temp_labels,
tag=tag)
def convert_canonical(self, points_x, points_y):
assert len(points_x) == 4
assert len(points_y) == 4
points = [Point(points_x[i], points_y[i]) for i in range(4)]
polygon = Polygon([(p.x, p.y) for p in points])
min_x, min_y, _, _ = polygon.bounds
points_to_lefttop = [
LineString([points[i], Point(min_x, min_y)]) for i in range(4)
]
distances = np.array([line.length for line in points_to_lefttop])
sort_dist_idx = np.argsort(distances)
lefttop_idx = sort_dist_idx[0]
if lefttop_idx == 0:
point_orders = [0, 1, 2, 3]
elif lefttop_idx == 1:
point_orders = [1, 2, 3, 0]
elif lefttop_idx == 2:
point_orders = [2, 3, 0, 1]
else:
point_orders = [3, 0, 1, 2]
sorted_points_x = [points_x[i] for i in point_orders]
sorted_points_y = [points_y[j] for j in point_orders]
return sorted_points_x, sorted_points_y
def sort_vertex(self, points_x, points_y):
assert len(points_x) == 4
assert len(points_y) == 4
x = np.array(points_x)
y = np.array(points_y)
center_x = np.sum(x) * 0.25
center_y = np.sum(y) * 0.25
x_arr = np.array(x - center_x)
y_arr = np.array(y - center_y)
angle = np.arctan2(y_arr, x_arr) * 180.0 / np.pi
sort_idx = np.argsort(angle)
sorted_points_x, sorted_points_y = [], []
for i in range(4):
sorted_points_x.append(points_x[sort_idx[i]])
sorted_points_y.append(points_y[sort_idx[i]])
return self.convert_canonical(sorted_points_x, sorted_points_y)
def __call__(self, data):
import json
label = data['label']
annotations = json.loads(label)
boxes, texts, text_inds, labels, edges = [], [], [], [], []
for ann in annotations:
box = ann['points']
x_list = [box[i][0] for i in range(4)]
y_list = [box[i][1] for i in range(4)]
sorted_x_list, sorted_y_list = self.sort_vertex(x_list, y_list)
sorted_box = []
for x, y in zip(sorted_x_list, sorted_y_list):
sorted_box.append(x)
sorted_box.append(y)
boxes.append(sorted_box)
text = ann['transcription']
texts.append(ann['transcription'])
text_ind = [self.dict[c] for c in text if c in self.dict]
text_inds.append(text_ind)
if 'label' in ann.keys():
labels.append(self.label2classid_map[ann['label']])
elif 'key_cls' in ann.keys():
labels.append(ann['key_cls'])
else:
raise ValueError(
"Cannot found 'key_cls' in ann.keys(), please check your training annotation."
)
edges.append(ann.get('edge', 0))
ann_infos = dict(
image=data['image'],
points=boxes,
texts=texts,
text_inds=text_inds,
edges=edges,
labels=labels)
return self.list_to_numpy(ann_infos)
class AttnLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
use_space_char=False,
**kwargs):
super(AttnLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char)
def add_special_char(self, dict_character):
self.beg_str = "sos"
self.end_str = "eos"
dict_character = [self.beg_str] + dict_character + [self.end_str]
return dict_character
def __call__(self, data):
text = data['label']
text = self.encode(text)
if text is None:
return None
if len(text) >= self.max_text_len:
return None
data['length'] = np.array(len(text))
text = [0] + text + [len(self.character) - 1] + [0] * (self.max_text_len
- len(text) - 2)
data['label'] = np.array(text)
return data
def get_ignored_tokens(self):
beg_idx = self.get_beg_end_flag_idx("beg")
end_idx = self.get_beg_end_flag_idx("end")
return [beg_idx, end_idx]
def get_beg_end_flag_idx(self, beg_or_end):
if beg_or_end == "beg":
idx = np.array(self.dict[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict[self.end_str])
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx" \
% beg_or_end
return idx
class SEEDLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
use_space_char=False,
**kwargs):
super(SEEDLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char)
def add_special_char(self, dict_character):
self.padding = "padding"
self.end_str = "eos"
self.unknown = "unknown"
dict_character = dict_character + [
self.end_str, self.padding, self.unknown
]
return dict_character
def __call__(self, data):
text = data['label']
text = self.encode(text)
if text is None:
return None
if len(text) >= self.max_text_len:
return None
data['length'] = np.array(len(text)) + 1 # conclude eos
text = text + [len(self.character) - 3] + [len(self.character) - 2] * (
self.max_text_len - len(text) - 1)
data['label'] = np.array(text)
return data
class SRNLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length=25,
character_dict_path=None,
use_space_char=False,
**kwargs):
super(SRNLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char)
def add_special_char(self, dict_character):
dict_character = dict_character + [self.beg_str, self.end_str]
return dict_character
def __call__(self, data):
text = data['label']
text = self.encode(text)
char_num = len(self.character)
if text is None:
return None
if len(text) > self.max_text_len:
return None
data['length'] = np.array(len(text))
text = text + [char_num - 1] * (self.max_text_len - len(text))
data['label'] = np.array(text)
return data
def get_ignored_tokens(self):
beg_idx = self.get_beg_end_flag_idx("beg")
end_idx = self.get_beg_end_flag_idx("end")
return [beg_idx, end_idx]
def get_beg_end_flag_idx(self, beg_or_end):
if beg_or_end == "beg":
idx = np.array(self.dict[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict[self.end_str])
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx" \
% beg_or_end
return idx
class TableLabelEncode(AttnLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path,
replace_empty_cell_token=False,
merge_no_span_structure=False,
learn_empty_box=False,
point_num=2,
**kwargs):
self.max_text_len = max_text_length
self.lower = False
self.learn_empty_box = learn_empty_box
self.merge_no_span_structure = merge_no_span_structure
self.replace_empty_cell_token = replace_empty_cell_token
dict_character = []
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
for line in lines:
line = line.decode('utf-8').strip("\n").strip("\r\n")
dict_character.append(line)
dict_character = self.add_special_char(dict_character)
self.dict = {}
for i, char in enumerate(dict_character):
self.dict[char] = i
self.idx2char = {v: k for k, v in self.dict.items()}
self.character = dict_character
self.point_num = point_num
self.pad_idx = self.dict[self.beg_str]
self.start_idx = self.dict[self.beg_str]
self.end_idx = self.dict[self.end_str]
self.td_token = ['
', ' | ', ' | | ']
self.empty_bbox_token_dict = {
"[]": '',
"[' ']": '',
"['', ' ', '']": '',
"['\\u2028', '\\u2028']": '',
"['', ' ', '']": '',
"['', '']": '',
"['', ' ', '']": '',
"['', '', '', '']": '',
"['', '', ' ', '', '']": '',
"['', '']": '',
"['', ' ', '\\u2028', ' ', '\\u2028', ' ', '']":
'',
}
@property
def _max_text_len(self):
return self.max_text_len + 2
def __call__(self, data):
cells = data['cells']
structure = data['structure']
if self.merge_no_span_structure:
structure = self._merge_no_span_structure(structure)
if self.replace_empty_cell_token:
structure = self._replace_empty_cell_token(structure, cells)
# remove empty token and add " " to span token
new_structure = []
for token in structure:
if token != '':
if 'span' in token and token[0] != ' ':
token = ' ' + token
new_structure.append(token)
# encode structure
structure = self.encode(new_structure)
if structure is None:
return None
structure = [self.start_idx] + structure + [self.end_idx
] # add sos abd eos
structure = structure + [self.pad_idx] * (self._max_text_len -
len(structure)) # pad
structure = np.array(structure)
data['structure'] = structure
if len(structure) > self._max_text_len:
return None
# encode box
bboxes = np.zeros(
(self._max_text_len, self.point_num * 2), dtype=np.float32)
bbox_masks = np.zeros((self._max_text_len, 1), dtype=np.float32)
bbox_idx = 0
for i, token in enumerate(structure):
if self.idx2char[token] in self.td_token:
if 'bbox' in cells[bbox_idx] and len(cells[bbox_idx][
'tokens']) > 0:
bbox = cells[bbox_idx]['bbox'].copy()
bbox = np.array(bbox, dtype=np.float32).reshape(-1)
bboxes[i] = bbox
bbox_masks[i] = 1.0
if self.learn_empty_box:
bbox_masks[i] = 1.0
bbox_idx += 1
data['bboxes'] = bboxes
data['bbox_masks'] = bbox_masks
return data
def _merge_no_span_structure(self, structure):
"""
This code is refer from:
https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/table_recognition/data_preprocess.py
"""
new_structure = []
i = 0
while i < len(structure):
token = structure[i]
if token == '':
token = ' | | '
i += 1
new_structure.append(token)
i += 1
return new_structure
def _replace_empty_cell_token(self, token_list, cells):
"""
This fun code is refer from:
https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/table_recognition/data_preprocess.py
"""
bbox_idx = 0
add_empty_bbox_token_list = []
for token in token_list:
if token in [' | ', '']:
if 'bbox' not in cells[bbox_idx].keys():
content = str(cells[bbox_idx]['tokens'])
token = self.empty_bbox_token_dict[content]
add_empty_bbox_token_list.append(token)
bbox_idx += 1
else:
add_empty_bbox_token_list.append(token)
return add_empty_bbox_token_list
class TableMasterLabelEncode(TableLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path,
replace_empty_cell_token=False,
merge_no_span_structure=False,
learn_empty_box=False,
point_num=2,
**kwargs):
super(TableMasterLabelEncode, self).__init__(
max_text_length, character_dict_path, replace_empty_cell_token,
merge_no_span_structure, learn_empty_box, point_num, **kwargs)
self.pad_idx = self.dict[self.pad_str]
self.unknown_idx = self.dict[self.unknown_str]
@property
def _max_text_len(self):
return self.max_text_len
def add_special_char(self, dict_character):
self.beg_str = ''
self.end_str = ''
self.unknown_str = ''
self.pad_str = ''
dict_character = dict_character
dict_character = dict_character + [
self.unknown_str, self.beg_str, self.end_str, self.pad_str
]
return dict_character
class TableBoxEncode(object):
def __init__(self, use_xywh=False, **kwargs):
self.use_xywh = use_xywh
def __call__(self, data):
img_height, img_width = data['image'].shape[:2]
bboxes = data['bboxes']
if self.use_xywh and bboxes.shape[1] == 4:
bboxes = self.xyxy2xywh(bboxes)
bboxes[:, 0::2] /= img_width
bboxes[:, 1::2] /= img_height
data['bboxes'] = bboxes
return data
def xyxy2xywh(self, bboxes):
"""
Convert coord (x1,y1,x2,y2) to (x,y,w,h).
where (x1,y1) is top-left, (x2,y2) is bottom-right.
(x,y) is bbox center and (w,h) is width and height.
:param bboxes: (x1, y1, x2, y2)
:return:
"""
new_bboxes = np.empty_like(bboxes)
new_bboxes[:, 0] = (bboxes[:, 0] + bboxes[:, 2]) / 2 # x center
new_bboxes[:, 1] = (bboxes[:, 1] + bboxes[:, 3]) / 2 # y center
new_bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0] # width
new_bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1] # height
return new_bboxes
class SARLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
use_space_char=False,
**kwargs):
super(SARLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char)
def add_special_char(self, dict_character):
beg_end_str = ""
unknown_str = ""
padding_str = ""
dict_character = dict_character + [unknown_str]
self.unknown_idx = len(dict_character) - 1
dict_character = dict_character + [beg_end_str]
self.start_idx = len(dict_character) - 1
self.end_idx = len(dict_character) - 1
dict_character = dict_character + [padding_str]
self.padding_idx = len(dict_character) - 1
return dict_character
def __call__(self, data):
text = data['label']
text = self.encode(text)
if text is None:
return None
if len(text) >= self.max_text_len - 1:
return None
data['length'] = np.array(len(text))
target = [self.start_idx] + text + [self.end_idx]
padded_text = [self.padding_idx for _ in range(self.max_text_len)]
padded_text[:len(target)] = target
data['label'] = np.array(padded_text)
return data
def get_ignored_tokens(self):
return [self.padding_idx]
class PRENLabelEncode(BaseRecLabelEncode):
def __init__(self,
max_text_length,
character_dict_path,
use_space_char=False,
**kwargs):
super(PRENLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char)
def add_special_char(self, dict_character):
padding_str = '' # 0
end_str = '' # 1
unknown_str = '' # 2
dict_character = [padding_str, end_str, unknown_str] + dict_character
self.padding_idx = 0
self.end_idx = 1
self.unknown_idx = 2
return dict_character
def encode(self, text):
if len(text) == 0 or len(text) >= self.max_text_len:
return None
if self.lower:
text = text.lower()
text_list = []
for char in text:
if char not in self.dict:
text_list.append(self.unknown_idx)
else:
text_list.append(self.dict[char])
text_list.append(self.end_idx)
if len(text_list) < self.max_text_len:
text_list += [self.padding_idx] * (
self.max_text_len - len(text_list))
return text_list
def __call__(self, data):
text = data['label']
encoded_text = self.encode(text)
if encoded_text is None:
return None
data['label'] = np.array(encoded_text)
return data
class VQATokenLabelEncode(object):
"""
Label encode for NLP VQA methods
"""
def __init__(self,
class_path,
contains_re=False,
add_special_ids=False,
algorithm='LayoutXLM',
use_textline_bbox_info=True,
infer_mode=False,
ocr_engine=None,
**kwargs):
super(VQATokenLabelEncode, self).__init__()
from paddlenlp.transformers import LayoutXLMTokenizer, LayoutLMTokenizer, LayoutLMv2Tokenizer
from ppocr.utils.utility import load_vqa_bio_label_maps
tokenizer_dict = {
'LayoutXLM': {
'class': LayoutXLMTokenizer,
'pretrained_model': 'layoutxlm-base-uncased'
},
'LayoutLM': {
'class': LayoutLMTokenizer,
'pretrained_model': 'layoutlm-base-uncased'
},
'LayoutLMv2': {
'class': LayoutLMv2Tokenizer,
'pretrained_model': 'layoutlmv2-base-uncased'
}
}
self.contains_re = contains_re
tokenizer_config = tokenizer_dict[algorithm]
self.tokenizer = tokenizer_config['class'].from_pretrained(
tokenizer_config['pretrained_model'])
self.label2id_map, id2label_map = load_vqa_bio_label_maps(class_path)
self.add_special_ids = add_special_ids
self.infer_mode = infer_mode
self.ocr_engine = ocr_engine
self.use_textline_bbox_info = use_textline_bbox_info
def split_bbox(self, bbox, text, tokenizer):
words = text.split()
token_bboxes = []
curr_word_idx = 0
x1, y1, x2, y2 = bbox
unit_w = (x2 - x1) / len(text)
for idx, word in enumerate(words):
curr_w = len(word) * unit_w
word_bbox = [x1, y1, x1 + curr_w, y2]
token_bboxes.extend([word_bbox] * len(tokenizer.tokenize(word)))
x1 += (len(word) + 1) * unit_w
return token_bboxes
def filter_empty_contents(self, ocr_info):
"""
find out the empty texts and remove the links
"""
new_ocr_info = []
empty_index = []
for idx, info in enumerate(ocr_info):
if len(info["transcription"]) > 0:
new_ocr_info.append(copy.deepcopy(info))
else:
empty_index.append(info["id"])
for idx, info in enumerate(new_ocr_info):
new_link = []
for link in info["linking"]:
if link[0] in empty_index or link[1] in empty_index:
continue
new_link.append(link)
new_ocr_info[idx]["linking"] = new_link
return new_ocr_info
def __call__(self, data):
# load bbox and label info
ocr_info = self._load_ocr_info(data)
# for re
train_re = self.contains_re and not self.infer_mode
if train_re:
ocr_info = self.filter_empty_contents(ocr_info)
height, width, _ = data['image'].shape
words_list = []
bbox_list = []
input_ids_list = []
token_type_ids_list = []
segment_offset_id = []
gt_label_list = []
entities = []
if train_re:
relations = []
id2label = {}
entity_id_to_index_map = {}
empty_entity = set()
data['ocr_info'] = copy.deepcopy(ocr_info)
for info in ocr_info:
text = info["transcription"]
if len(text) <= 0:
continue
if train_re:
# for re
if len(text) == 0:
empty_entity.add(info["id"])
continue
id2label[info["id"]] = info["label"]
relations.extend([tuple(sorted(l)) for l in info["linking"]])
# smooth_box
info["bbox"] = self.trans_poly_to_bbox(info["points"])
encode_res = self.tokenizer.encode(
text, pad_to_max_seq_len=False, return_attention_mask=True)
if not self.add_special_ids:
# TODO: use tok.all_special_ids to remove
encode_res["input_ids"] = encode_res["input_ids"][1:-1]
encode_res["token_type_ids"] = encode_res["token_type_ids"][1:
-1]
encode_res["attention_mask"] = encode_res["attention_mask"][1:
-1]
if self.use_textline_bbox_info:
bbox = [info["bbox"]] * len(encode_res["input_ids"])
else:
bbox = self.split_bbox(info["bbox"], info["transcription"],
self.tokenizer)
if len(bbox) <= 0:
continue
bbox = self._smooth_box(bbox, height, width)
if self.add_special_ids:
bbox.insert(0, [0, 0, 0, 0])
bbox.append([0, 0, 0, 0])
# parse label
if not self.infer_mode:
label = info['label']
gt_label = self._parse_label(label, encode_res)
# construct entities for re
if train_re:
if gt_label[0] != self.label2id_map["O"]:
entity_id_to_index_map[info["id"]] = len(entities)
label = label.upper()
entities.append({
"start": len(input_ids_list),
"end":
len(input_ids_list) + len(encode_res["input_ids"]),
"label": label.upper(),
})
else:
entities.append({
"start": len(input_ids_list),
"end": len(input_ids_list) + len(encode_res["input_ids"]),
"label": 'O',
})
input_ids_list.extend(encode_res["input_ids"])
token_type_ids_list.extend(encode_res["token_type_ids"])
bbox_list.extend(bbox)
words_list.append(text)
segment_offset_id.append(len(input_ids_list))
if not self.infer_mode:
gt_label_list.extend(gt_label)
data['input_ids'] = input_ids_list
data['token_type_ids'] = token_type_ids_list
data['bbox'] = bbox_list
data['attention_mask'] = [1] * len(input_ids_list)
data['labels'] = gt_label_list
data['segment_offset_id'] = segment_offset_id
data['tokenizer_params'] = dict(
padding_side=self.tokenizer.padding_side,
pad_token_type_id=self.tokenizer.pad_token_type_id,
pad_token_id=self.tokenizer.pad_token_id)
data['entities'] = entities
if train_re:
data['relations'] = relations
data['id2label'] = id2label
data['empty_entity'] = empty_entity
data['entity_id_to_index_map'] = entity_id_to_index_map
return data
def trans_poly_to_bbox(self, poly):
x1 = np.min([p[0] for p in poly])
x2 = np.max([p[0] for p in poly])
y1 = np.min([p[1] for p in poly])
y2 = np.max([p[1] for p in poly])
return [x1, y1, x2, y2]
def _load_ocr_info(self, data):
if self.infer_mode:
ocr_result = self.ocr_engine.ocr(data['image'], cls=False)
ocr_info = []
for res in ocr_result:
ocr_info.append({
"transcription": res[1][0],
"bbox": self.trans_poly_to_bbox(res[0]),
"points": res[0],
})
return ocr_info
else:
info = data['label']
# read text info
info_dict = json.loads(info)
return info_dict
def _smooth_box(self, bboxes, height, width):
bboxes = np.array(bboxes)
bboxes[:, 0] = bboxes[:, 0] * 1000 / width
bboxes[:, 2] = bboxes[:, 2] * 1000 / width
bboxes[:, 1] = bboxes[:, 1] * 1000 / height
bboxes[:, 3] = bboxes[:, 3] * 1000 / height
bboxes = bboxes.astype("int64").tolist()
return bboxes
def _parse_label(self, label, encode_res):
gt_label = []
if label.lower() in ["other", "others", "ignore"]:
gt_label.extend([0] * len(encode_res["input_ids"]))
else:
gt_label.append(self.label2id_map[("b-" + label).upper()])
gt_label.extend([self.label2id_map[("i-" + label).upper()]] *
(len(encode_res["input_ids"]) - 1))
return gt_label
class MultiLabelEncode(BaseRecLabelEncode):
def __init__(self,
max_text_length,
character_dict_path=None,
use_space_char=False,
**kwargs):
super(MultiLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char)
self.ctc_encode = CTCLabelEncode(max_text_length, character_dict_path,
use_space_char, **kwargs)
self.sar_encode = SARLabelEncode(max_text_length, character_dict_path,
use_space_char, **kwargs)
def __call__(self, data):
data_ctc = copy.deepcopy(data)
data_sar = copy.deepcopy(data)
data_out = dict()
data_out['img_path'] = data.get('img_path', None)
data_out['image'] = data['image']
ctc = self.ctc_encode.__call__(data_ctc)
sar = self.sar_encode.__call__(data_sar)
if ctc is None or sar is None:
return None
data_out['label_ctc'] = ctc['label']
data_out['label_sar'] = sar['label']
data_out['length'] = ctc['length']
return data_out
class NRTRLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
use_space_char=False,
**kwargs):
super(NRTRLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char)
def __call__(self, data):
text = data['label']
text = self.encode(text)
if text is None:
return None
if len(text) >= self.max_text_len - 1:
return None
data['length'] = np.array(len(text))
text.insert(0, 2)
text.append(3)
text = text + [0] * (self.max_text_len - len(text))
data['label'] = np.array(text)
return data
def add_special_char(self, dict_character):
dict_character = ['blank', '', '', ''] + dict_character
return dict_character
class ViTSTRLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
use_space_char=False,
ignore_index=0,
**kwargs):
super(ViTSTRLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char)
self.ignore_index = ignore_index
def __call__(self, data):
text = data['label']
text = self.encode(text)
if text is None:
return None
if len(text) >= self.max_text_len:
return None
data['length'] = np.array(len(text))
text.insert(0, self.ignore_index)
text.append(1)
text = text + [self.ignore_index] * (self.max_text_len + 2 - len(text))
data['label'] = np.array(text)
return data
def add_special_char(self, dict_character):
dict_character = ['', ''] + dict_character
return dict_character
class ABINetLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
use_space_char=False,
ignore_index=100,
**kwargs):
super(ABINetLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char)
self.ignore_index = ignore_index
def __call__(self, data):
text = data['label']
text = self.encode(text)
if text is None:
return None
if len(text) >= self.max_text_len:
return None
data['length'] = np.array(len(text))
text.append(0)
text = text + [self.ignore_index] * (self.max_text_len + 1 - len(text))
data['label'] = np.array(text)
return data
def add_special_char(self, dict_character):
dict_character = [''] + dict_character
return dict_character
|