Global: use_gpu: True epoch_num: 6 log_smooth_window: 50 print_batch_step: 50 save_model_dir: ./output/rec/rec_r32_gaspin_bilstm_att/ save_epoch_step: 3 # evaluation is run every 2000 iterations after the 4000th iteration eval_batch_step: [0, 2000] cal_metric_during_train: True pretrained_model: checkpoints: save_inference_dir: use_visualdl: False infer_img: doc/imgs_words/ch/word_1.jpg # for data or label process character_dict_path: ./ppocr/utils/dict/spin_dict.txt max_text_length: 25 infer_mode: False use_space_char: False save_res_path: ./output/rec/predicts_r32_gaspin_bilstm_att.txt Optimizer: name: AdamW beta1: 0.9 beta2: 0.999 lr: name: Piecewise decay_epochs: [3, 4, 5] values: [0.001, 0.0003, 0.00009, 0.000027] clip_norm: 5 Architecture: model_type: rec algorithm: SPIN in_channels: 1 Transform: name: GA_SPIN offsets: True default_type: 6 loc_lr: 0.1 stn: True Backbone: name: ResNet32 out_channels: 512 Neck: name: SequenceEncoder encoder_type: cascadernn hidden_size: 256 out_channels: [256, 512] with_linear: True Head: name: SPINAttentionHead hidden_size: 256 Loss: name: SPINAttentionLoss ignore_index: 0 PostProcess: name: SPINAttnLabelDecode use_space_char: False Metric: name: RecMetric main_indicator: acc is_filter: True Train: dataset: name: SimpleDataSet data_dir: ./train_data/ic15_data/ label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"] transforms: - NRTRDecodeImage: # load image img_mode: BGR channel_first: False - SPINAttnLabelEncode: # Class handling label - SPINRecResizeImg: image_shape: [100, 32] interpolation : 2 mean: [127.5] std: [127.5] - KeepKeys: keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order loader: shuffle: True batch_size_per_card: 8 drop_last: True num_workers: 4 Eval: dataset: name: SimpleDataSet data_dir: ./train_data/ic15_data label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"] transforms: - NRTRDecodeImage: # load image img_mode: BGR channel_first: False - SPINAttnLabelEncode: # Class handling label - SPINRecResizeImg: image_shape: [100, 32] interpolation : 2 mean: [127.5] std: [127.5] - KeepKeys: keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order loader: shuffle: False drop_last: False batch_size_per_card: 8 num_workers: 2