# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import string import paddle from paddle.nn import functional as F class BaseRecLabelDecode(object): """ Convert between text-label and text-index """ def __init__(self, character_dict_path=None, character_type='ch', use_space_char=False): support_character_type = [ 'ch', 'en', 'EN_symbol', 'french', 'german', 'japan', 'korean', 'it', 'xi', 'pu', 'ru', 'ar', 'ta', 'ug', 'fa', 'ur', 'rs', 'oc', 'rsc', 'bg', 'uk', 'be', 'te', 'ka', 'chinese_cht', 'hi', 'mr', 'ne', 'EN', 'latin', 'arabic', 'cyrillic', 'devanagari' ] assert character_type in support_character_type, "Only {} are supported now but get {}".format( support_character_type, character_type) self.beg_str = "sos" self.end_str = "eos" if character_type == "en": self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz" dict_character = list(self.character_str) elif character_type == "EN_symbol": # same with ASTER setting (use 94 char). self.character_str = string.printable[:-6] dict_character = list(self.character_str) elif character_type in support_character_type: self.character_str = "" assert character_dict_path is not None, "character_dict_path should not be None when character_type is {}".format( character_type) with open(character_dict_path, "rb") as fin: lines = fin.readlines() for line in lines: line = line.decode('utf-8').strip("\n").strip("\r\n") self.character_str += line if use_space_char: self.character_str += " " dict_character = list(self.character_str) else: raise NotImplementedError self.character_type = character_type dict_character = self.add_special_char(dict_character) self.dict = {} for i, char in enumerate(dict_character): self.dict[char] = i self.character = dict_character def add_special_char(self, dict_character): return dict_character def decode(self, text_index, text_prob=None, is_remove_duplicate=False): """ convert text-index into text-label. """ result_list = [] ignored_tokens = self.get_ignored_tokens() batch_size = len(text_index) for batch_idx in range(batch_size): char_list = [] conf_list = [] for idx in range(len(text_index[batch_idx])): if text_index[batch_idx][idx] in ignored_tokens: continue if is_remove_duplicate: # only for predict if idx > 0 and text_index[batch_idx][idx - 1] == text_index[ batch_idx][idx]: continue char_list.append(self.character[int(text_index[batch_idx][ idx])]) if text_prob is not None: conf_list.append(text_prob[batch_idx][idx]) else: conf_list.append(1) text = ''.join(char_list) result_list.append((text, np.mean(conf_list))) return result_list def get_ignored_tokens(self): return [0] # for ctc blank class CTCLabelDecode(BaseRecLabelDecode): """ Convert between text-label and text-index """ def __init__(self, character_dict_path=None, character_type='ch', use_space_char=False, **kwargs): super(CTCLabelDecode, self).__init__(character_dict_path, character_type, use_space_char) def __call__(self, preds, label=None, *args, **kwargs): if isinstance(preds, paddle.Tensor): preds = preds.numpy() preds_idx = preds.argmax(axis=2) preds_prob = preds.max(axis=2) text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True) if label is None: return text label = self.decode(label) return text, label def add_special_char(self, dict_character): dict_character = ['blank'] + dict_character return dict_character class DistillationCTCLabelDecode(CTCLabelDecode): """ Convert Convert between text-label and text-index """ def __init__(self, character_dict_path=None, character_type='ch', use_space_char=False, model_name="student", key_out=None, **kwargs): super(DistillationCTCLabelDecode, self).__init__( character_dict_path, character_type, use_space_char) self.model_name = model_name self.key_out = key_out def __call__(self, preds, label=None, *args, **kwargs): pred = preds[self.model_name] if self.key_out is not None: pred = pred[self.key_out] return super().__call__(pred, label=label, *args, **kwargs) class AttnLabelDecode(BaseRecLabelDecode): """ Convert between text-label and text-index """ def __init__(self, character_dict_path=None, character_type='ch', use_space_char=False, **kwargs): super(AttnLabelDecode, self).__init__(character_dict_path, character_type, use_space_char) def add_special_char(self, dict_character): self.beg_str = "sos" self.end_str = "eos" dict_character = dict_character dict_character = [self.beg_str] + dict_character + [self.end_str] return dict_character def decode(self, text_index, text_prob=None, is_remove_duplicate=False): """ convert text-index into text-label. """ result_list = [] ignored_tokens = self.get_ignored_tokens() [beg_idx, end_idx] = self.get_ignored_tokens() batch_size = len(text_index) for batch_idx in range(batch_size): char_list = [] conf_list = [] for idx in range(len(text_index[batch_idx])): if text_index[batch_idx][idx] in ignored_tokens: continue if int(text_index[batch_idx][idx]) == int(end_idx): break if is_remove_duplicate: # only for predict if idx > 0 and text_index[batch_idx][idx - 1] == text_index[ batch_idx][idx]: continue char_list.append(self.character[int(text_index[batch_idx][ idx])]) if text_prob is not None: conf_list.append(text_prob[batch_idx][idx]) else: conf_list.append(1) text = ''.join(char_list) result_list.append((text, np.mean(conf_list))) return result_list def __call__(self, preds, label=None, *args, **kwargs): """ text = self.decode(text) if label is None: return text else: label = self.decode(label, is_remove_duplicate=False) return text, label """ if isinstance(preds, paddle.Tensor): preds = preds.numpy() preds_idx = preds.argmax(axis=2) preds_prob = preds.max(axis=2) text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False) if label is None: return text label = self.decode(label, is_remove_duplicate=False) return text, label def get_ignored_tokens(self): beg_idx = self.get_beg_end_flag_idx("beg") end_idx = self.get_beg_end_flag_idx("end") return [beg_idx, end_idx] def get_beg_end_flag_idx(self, beg_or_end): if beg_or_end == "beg": idx = np.array(self.dict[self.beg_str]) elif beg_or_end == "end": idx = np.array(self.dict[self.end_str]) else: assert False, "unsupport type %s in get_beg_end_flag_idx" \ % beg_or_end return idx class SRNLabelDecode(BaseRecLabelDecode): """ Convert between text-label and text-index """ def __init__(self, character_dict_path=None, character_type='en', use_space_char=False, **kwargs): super(SRNLabelDecode, self).__init__(character_dict_path, character_type, use_space_char) self.max_text_length = kwargs.get('max_text_length', 25) def __call__(self, preds, label=None, *args, **kwargs): pred = preds['predict'] char_num = len(self.character_str) + 2 if isinstance(pred, paddle.Tensor): pred = pred.numpy() pred = np.reshape(pred, [-1, char_num]) preds_idx = np.argmax(pred, axis=1) preds_prob = np.max(pred, axis=1) preds_idx = np.reshape(preds_idx, [-1, self.max_text_length]) preds_prob = np.reshape(preds_prob, [-1, self.max_text_length]) text = self.decode(preds_idx, preds_prob) if label is None: text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False) return text label = self.decode(label) return text, label def decode(self, text_index, text_prob=None, is_remove_duplicate=False): """ convert text-index into text-label. """ result_list = [] ignored_tokens = self.get_ignored_tokens() batch_size = len(text_index) for batch_idx in range(batch_size): char_list = [] conf_list = [] for idx in range(len(text_index[batch_idx])): if text_index[batch_idx][idx] in ignored_tokens: continue if is_remove_duplicate: # only for predict if idx > 0 and text_index[batch_idx][idx - 1] == text_index[ batch_idx][idx]: continue char_list.append(self.character[int(text_index[batch_idx][ idx])]) if text_prob is not None: conf_list.append(text_prob[batch_idx][idx]) else: conf_list.append(1) text = ''.join(char_list) result_list.append((text, np.mean(conf_list))) return result_list def add_special_char(self, dict_character): dict_character = dict_character + [self.beg_str, self.end_str] return dict_character def get_ignored_tokens(self): beg_idx = self.get_beg_end_flag_idx("beg") end_idx = self.get_beg_end_flag_idx("end") return [beg_idx, end_idx] def get_beg_end_flag_idx(self, beg_or_end): if beg_or_end == "beg": idx = np.array(self.dict[self.beg_str]) elif beg_or_end == "end": idx = np.array(self.dict[self.end_str]) else: assert False, "unsupport type %s in get_beg_end_flag_idx" \ % beg_or_end return idx