Global: use_gpu: true epoch_num: 500 log_smooth_window: 20 print_batch_step: 10 save_model_dir: ./output/rec_cyrillic_lite save_epoch_step: 3 # evaluation is run every 2000 iterations after the 0th iteration eval_batch_step: [0, 2000] cal_metric_during_train: true pretrained_model: null checkpoints: null save_inference_dir: null use_visualdl: false infer_img: null character_dict_path: ppocr/utils/dict/cyrillic_dict.txt character_type: cyrillic max_text_length: 25 infer_mode: false use_space_char: true Optimizer: name: Adam beta1: 0.9 beta2: 0.999 lr: name: Cosine learning_rate: 0.001 regularizer: name: L2 factor: 1.0e-05 Architecture: model_type: rec algorithm: CRNN Transform: null Backbone: name: MobileNetV3 scale: 0.5 model_name: small small_stride: - 1 - 2 - 2 - 2 Neck: name: SequenceEncoder encoder_type: rnn hidden_size: 48 Head: name: CTCHead fc_decay: 1.0e-05 Loss: name: CTCLoss PostProcess: name: CTCLabelDecode Metric: name: RecMetric main_indicator: acc Train: dataset: name: SimpleDataSet data_dir: train_data/ label_file_list: - train_data/cyrillic_train.txt transforms: - DecodeImage: img_mode: BGR channel_first: false - RecAug: null - CTCLabelEncode: null - RecResizeImg: image_shape: - 3 - 32 - 320 - KeepKeys: keep_keys: - image - label - length loader: shuffle: true batch_size_per_card: 256 drop_last: true num_workers: 8 Eval: dataset: name: SimpleDataSet data_dir: train_data/ label_file_list: - train_data/cyrillic_val.txt transforms: - DecodeImage: img_mode: BGR channel_first: false - CTCLabelEncode: null - RecResizeImg: image_shape: - 3 - 32 - 320 - KeepKeys: keep_keys: - image - label - length loader: shuffle: false drop_last: false batch_size_per_card: 256 num_workers: 8