# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This code is refer from: https://github.com/open-mmlab/mmocr/blob/v0.3.0/mmocr/models/textdet/postprocess/wrapper.py """ import cv2 import paddle import numpy as np from numpy.fft import ifft from ppocr.utils.poly_nms import poly_nms, valid_boundary def fill_hole(input_mask): h, w = input_mask.shape canvas = np.zeros((h + 2, w + 2), np.uint8) canvas[1:h + 1, 1:w + 1] = input_mask.copy() mask = np.zeros((h + 4, w + 4), np.uint8) cv2.floodFill(canvas, mask, (0, 0), 1) canvas = canvas[1:h + 1, 1:w + 1].astype(np.bool) return ~canvas | input_mask def fourier2poly(fourier_coeff, num_reconstr_points=50): """ Inverse Fourier transform Args: fourier_coeff (ndarray): Fourier coefficients shaped (n, 2k+1), with n and k being candidates number and Fourier degree respectively. num_reconstr_points (int): Number of reconstructed polygon points. Returns: Polygons (ndarray): The reconstructed polygons shaped (n, n') """ a = np.zeros((len(fourier_coeff), num_reconstr_points), dtype='complex') k = (len(fourier_coeff[0]) - 1) // 2 a[:, 0:k + 1] = fourier_coeff[:, k:] a[:, -k:] = fourier_coeff[:, :k] poly_complex = ifft(a) * num_reconstr_points polygon = np.zeros((len(fourier_coeff), num_reconstr_points, 2)) polygon[:, :, 0] = poly_complex.real polygon[:, :, 1] = poly_complex.imag return polygon.astype('int32').reshape((len(fourier_coeff), -1)) class FCEPostProcess(object): """ The post process for FCENet. """ def __init__(self, scales, fourier_degree=5, num_reconstr_points=50, decoding_type='fcenet', score_thr=0.3, nms_thr=0.1, alpha=1.0, beta=1.0, text_repr_type='poly', **kwargs): self.scales = scales self.fourier_degree = fourier_degree self.num_reconstr_points = num_reconstr_points self.decoding_type = decoding_type self.score_thr = score_thr self.nms_thr = nms_thr self.alpha = alpha self.beta = beta self.text_repr_type = text_repr_type def __call__(self, preds, shape_list): score_maps = [] for key, value in preds.items(): if isinstance(value, paddle.Tensor): value = value.numpy() cls_res = value[:, :4, :, :] reg_res = value[:, 4:, :, :] score_maps.append([cls_res, reg_res]) return self.get_boundary(score_maps, shape_list) def resize_boundary(self, boundaries, scale_factor): """Rescale boundaries via scale_factor. Args: boundaries (list[list[float]]): The boundary list. Each boundary with size 2k+1 with k>=4. scale_factor(ndarray): The scale factor of size (4,). Returns: boundaries (list[list[float]]): The scaled boundaries. """ boxes = [] scores = [] for b in boundaries: sz = len(b) valid_boundary(b, True) scores.append(b[-1]) b = (np.array(b[:sz - 1]) * (np.tile(scale_factor[:2], int( (sz - 1) / 2)).reshape(1, sz - 1))).flatten().tolist() boxes.append(np.array(b).reshape([-1, 2])) return np.array(boxes, dtype=np.float32), scores def get_boundary(self, score_maps, shape_list): assert len(score_maps) == len(self.scales) boundaries = [] for idx, score_map in enumerate(score_maps): scale = self.scales[idx] boundaries = boundaries + self._get_boundary_single(score_map, scale) # nms boundaries = poly_nms(boundaries, self.nms_thr) boundaries, scores = self.resize_boundary( boundaries, (1 / shape_list[0, 2:]).tolist()[::-1]) boxes_batch = [dict(points=boundaries, scores=scores)] return boxes_batch def _get_boundary_single(self, score_map, scale): assert len(score_map) == 2 assert score_map[1].shape[1] == 4 * self.fourier_degree + 2 return self.fcenet_decode( preds=score_map, fourier_degree=self.fourier_degree, num_reconstr_points=self.num_reconstr_points, scale=scale, alpha=self.alpha, beta=self.beta, text_repr_type=self.text_repr_type, score_thr=self.score_thr, nms_thr=self.nms_thr) def fcenet_decode(self, preds, fourier_degree, num_reconstr_points, scale, alpha=1.0, beta=2.0, text_repr_type='poly', score_thr=0.3, nms_thr=0.1): """Decoding predictions of FCENet to instances. Args: preds (list(Tensor)): The head output tensors. fourier_degree (int): The maximum Fourier transform degree k. num_reconstr_points (int): The points number of the polygon reconstructed from predicted Fourier coefficients. scale (int): The down-sample scale of the prediction. alpha (float) : The parameter to calculate final scores. Score_{final} = (Score_{text region} ^ alpha) * (Score_{text center region}^ beta) beta (float) : The parameter to calculate final score. text_repr_type (str): Boundary encoding type 'poly' or 'quad'. score_thr (float) : The threshold used to filter out the final candidates. nms_thr (float) : The threshold of nms. Returns: boundaries (list[list[float]]): The instance boundary and confidence list. """ assert isinstance(preds, list) assert len(preds) == 2 assert text_repr_type in ['poly', 'quad'] cls_pred = preds[0][0] tr_pred = cls_pred[0:2] tcl_pred = cls_pred[2:] reg_pred = preds[1][0].transpose([1, 2, 0]) x_pred = reg_pred[:, :, :2 * fourier_degree + 1] y_pred = reg_pred[:, :, 2 * fourier_degree + 1:] score_pred = (tr_pred[1]**alpha) * (tcl_pred[1]**beta) tr_pred_mask = (score_pred) > score_thr tr_mask = fill_hole(tr_pred_mask) tr_contours, _ = cv2.findContours( tr_mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # opencv4 mask = np.zeros_like(tr_mask) boundaries = [] for cont in tr_contours: deal_map = mask.copy().astype(np.int8) cv2.drawContours(deal_map, [cont], -1, 1, -1) score_map = score_pred * deal_map score_mask = score_map > 0 xy_text = np.argwhere(score_mask) dxy = xy_text[:, 1] + xy_text[:, 0] * 1j x, y = x_pred[score_mask], y_pred[score_mask] c = x + y * 1j c[:, fourier_degree] = c[:, fourier_degree] + dxy c *= scale polygons = fourier2poly(c, num_reconstr_points) score = score_map[score_mask].reshape(-1, 1) polygons = poly_nms(np.hstack((polygons, score)).tolist(), nms_thr) boundaries = boundaries + polygons boundaries = poly_nms(boundaries, nms_thr) if text_repr_type == 'quad': new_boundaries = [] for boundary in boundaries: poly = np.array(boundary[:-1]).reshape(-1, 2).astype(np.float32) score = boundary[-1] points = cv2.boxPoints(cv2.minAreaRect(poly)) points = np.int0(points) new_boundaries.append(points.reshape(-1).tolist() + [score]) return boundaries