# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from paddle import fluid from ppocr.utils.utility import create_module from ppocr.utils.utility import initial_logger logger = initial_logger() from copy import deepcopy class ClsModel(object): def __init__(self, params): super(ClsModel, self).__init__() global_params = params['Global'] self.infer_img = global_params['infer_img'] backbone_params = deepcopy(params["Backbone"]) backbone_params.update(global_params) self.backbone = create_module(backbone_params['function']) \ (params=backbone_params) head_params = deepcopy(params["Head"]) head_params.update(global_params) self.head = create_module(head_params['function']) \ (params=head_params) loss_params = deepcopy(params["Loss"]) loss_params.update(global_params) self.loss = create_module(loss_params['function']) \ (params=loss_params) self.image_shape = global_params['image_shape'] def create_feed(self, mode): image_shape = deepcopy(self.image_shape) image_shape.insert(0, -1) if mode == "train": image = fluid.data(name='image', shape=image_shape, dtype='float32') label = fluid.data(name='label', shape=[None, 1], dtype='int64') feed_list = [image, label] labels = {'label': label} loader = fluid.io.DataLoader.from_generator( feed_list=feed_list, capacity=64, use_double_buffer=True, iterable=False) else: labels = None loader = None image = fluid.data(name='image', shape=image_shape, dtype='float32') image.stop_gradient = False return image, labels, loader def __call__(self, mode): image, labels, loader = self.create_feed(mode) inputs = image conv_feas = self.backbone(inputs) predicts = self.head(conv_feas, labels, mode) if mode == "train": loss = self.loss(predicts, labels) label = labels['label'] acc = fluid.layers.accuracy(predicts['predict'], label, k=1) outputs = {'total_loss': loss, 'decoded_out': \ predicts['decoded_out'], 'label': label, 'acc': acc} return loader, outputs elif mode == "export": return [image, predicts] else: return loader, predicts