# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import paddle.nn.functional as F import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..'))) os.environ["FLAGS_allocator_strategy"] = 'auto_growth' import cv2 import paddle from ppocr.data import create_operators, transform from ppocr.modeling.architectures import build_model from ppocr.utils.save_load import load_model import tools.program as program import time def read_class_list(filepath): dict = {} with open(filepath, "r") as f: lines = f.readlines() for line in lines: key, value = line.split(" ") dict[key] = value.rstrip() return dict def draw_kie_result(batch, node, idx_to_cls, count): img = batch[6].copy() boxes = batch[7] h, w = img.shape[:2] pred_img = np.ones((h, w * 2, 3), dtype=np.uint8) * 255 max_value, max_idx = paddle.max(node, -1), paddle.argmax(node, -1) node_pred_label = max_idx.numpy().tolist() node_pred_score = max_value.numpy().tolist() for i, box in enumerate(boxes): if i >= len(node_pred_label): break new_box = [[box[0], box[1]], [box[2], box[1]], [box[2], box[3]], [box[0], box[3]]] Pts = np.array([new_box], np.int32) cv2.polylines( img, [Pts.reshape((-1, 1, 2))], True, color=(255, 255, 0), thickness=1) x_min = int(min([point[0] for point in new_box])) y_min = int(min([point[1] for point in new_box])) pred_label = str(node_pred_label[i]) if pred_label in idx_to_cls: pred_label = idx_to_cls[pred_label] pred_score = '{:.2f}'.format(node_pred_score[i]) text = pred_label + '(' + pred_score + ')' cv2.putText(pred_img, text, (x_min * 2, y_min), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1) vis_img = np.ones((h, w * 3, 3), dtype=np.uint8) * 255 vis_img[:, :w] = img vis_img[:, w:] = pred_img save_kie_path = os.path.dirname(config['Global'][ 'save_res_path']) + "/kie_results/" if not os.path.exists(save_kie_path): os.makedirs(save_kie_path) save_path = os.path.join(save_kie_path, str(count) + ".png") cv2.imwrite(save_path, vis_img) logger.info("The Kie Image saved in {}".format(save_path)) def write_kie_result(fout, node, data): """ Write infer result to output file, sorted by the predict label of each line. The format keeps the same as the input with additional score attribute. """ import json label = data['label'] annotations = json.loads(label) max_value, max_idx = paddle.max(node, -1), paddle.argmax(node, -1) node_pred_label = max_idx.numpy().tolist() node_pred_score = max_value.numpy().tolist() res = [] for i, label in enumerate(node_pred_label): pred_score = '{:.2f}'.format(node_pred_score[i]) pred_res = { 'label': label, 'transcription': annotations[i]['transcription'], 'score': pred_score, 'points': annotations[i]['points'], } res.append(pred_res) res.sort(key=lambda x: x['label']) fout.writelines([json.dumps(res, ensure_ascii=False) + '\n']) def main(): global_config = config['Global'] # build model model = build_model(config['Architecture']) load_model(config, model) # create data ops transforms = [] for op in config['Eval']['dataset']['transforms']: transforms.append(op) data_dir = config['Eval']['dataset']['data_dir'] ops = create_operators(transforms, global_config) save_res_path = config['Global']['save_res_path'] class_path = config['Global']['class_path'] idx_to_cls = read_class_list(class_path) if not os.path.exists(os.path.dirname(save_res_path)): os.makedirs(os.path.dirname(save_res_path)) model.eval() warmup_times = 0 count_t = [] with open(save_res_path, "w") as fout: with open(config['Global']['infer_img'], "rb") as f: lines = f.readlines() for index, data_line in enumerate(lines): if index == 10: warmup_t = time.time() data_line = data_line.decode('utf-8') substr = data_line.strip("\n").split("\t") img_path, label = data_dir + "/" + substr[0], substr[1] data = {'img_path': img_path, 'label': label} with open(data['img_path'], 'rb') as f: img = f.read() data['image'] = img st = time.time() batch = transform(data, ops) batch_pred = [0] * len(batch) for i in range(len(batch)): batch_pred[i] = paddle.to_tensor( np.expand_dims( batch[i], axis=0)) st = time.time() node, edge = model(batch_pred) node = F.softmax(node, -1) count_t.append(time.time() - st) draw_kie_result(batch, node, idx_to_cls, index) write_kie_result(fout, node, data) fout.close() logger.info("success!") logger.info("It took {} s for predict {} images.".format( np.sum(count_t), len(count_t))) ips = len(count_t[warmup_times:]) / np.sum(count_t[warmup_times:]) logger.info("The ips is {} images/s".format(ips)) if __name__ == '__main__': config, device, logger, vdl_writer = program.preprocess() main()