# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import sys import numpy as np import paddle import signal import random __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.abspath(os.path.join(__dir__, '../..'))) import copy from paddle.io import Dataset, DataLoader, BatchSampler, DistributedBatchSampler import paddle.distributed as dist from ppocr.data.imaug import transform, create_operators from ppocr.data.simple_dataset import SimpleDataSet from ppocr.data.lmdb_dataset import LMDBDataSet __all__ = ['build_dataloader', 'transform', 'create_operators'] def term_mp(sig_num, frame): """ kill all child processes """ pid = os.getpid() pgid = os.getpgid(os.getpid()) print("main proc {} exit, kill process group " "{}".format(pid, pgid)) os.killpg(pgid, signal.SIGKILL) signal.signal(signal.SIGINT, term_mp) signal.signal(signal.SIGTERM, term_mp) def build_dataloader(config, mode, device, logger): config = copy.deepcopy(config) support_dict = ['SimpleDataSet', 'LMDBDataSet'] module_name = config[mode]['dataset']['name'] assert module_name in support_dict, Exception( 'DataSet only support {}'.format(support_dict)) assert mode in ['Train', 'Eval', 'Test' ], "Mode should be Train, Eval or Test." dataset = eval(module_name)(config, mode, logger) loader_config = config[mode]['loader'] batch_size = loader_config['batch_size_per_card'] drop_last = loader_config['drop_last'] num_workers = loader_config['num_workers'] use_shared_memory = False if mode == "Train": #Distribute data to multiple cards batch_sampler = DistributedBatchSampler( dataset=dataset, batch_size=batch_size, shuffle=False, drop_last=drop_last) use_shared_memory = True else: #Distribute data to single card batch_sampler = BatchSampler( dataset=dataset, batch_size=batch_size, shuffle=False, drop_last=drop_last) data_loader = DataLoader( dataset=dataset, batch_sampler=batch_sampler, places=device, num_workers=num_workers, return_list=True, use_shared_memory=use_shared_memory) return data_loader