# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle_serving_client import Client import cv2 import sys import numpy as np import os import time import re import base64 from clas_local_server import TextClassifierHelper from det_local_server import TextDetectorHelper from rec_local_server import TextRecognizerHelper from tools.infer.predict_system import TextSystem, sorted_boxes from paddle_serving_app.local_predict import Debugger import copy from params import read_params global_args = read_params() if global_args.use_gpu: from paddle_serving_server_gpu.web_service import WebService else: from paddle_serving_server.web_service import WebService class TextSystemHelper(TextSystem): def __init__(self, args): self.text_detector = TextDetectorHelper(args) self.text_recognizer = TextRecognizerHelper(args) self.use_angle_cls = args.use_angle_cls if self.use_angle_cls: self.clas_client = Debugger() self.clas_client.load_model_config( global_args.cls_model_dir, gpu=True, profile=False) self.text_classifier = TextClassifierHelper(args) self.det_client = Debugger() self.det_client.load_model_config( global_args.det_model_dir, gpu=True, profile=False) self.fetch = ["save_infer_model/scale_0.tmp_0", "save_infer_model/scale_1.tmp_0"] def preprocess(self, img): feed, fetch, self.tmp_args = self.text_detector.preprocess(img) fetch_map = self.det_client.predict(feed, fetch) outputs = [fetch_map[x] for x in fetch] dt_boxes = self.text_detector.postprocess(outputs, self.tmp_args) if dt_boxes is None: return None, None img_crop_list = [] dt_boxes = sorted_boxes(dt_boxes) for bno in range(len(dt_boxes)): tmp_box = copy.deepcopy(dt_boxes[bno]) img_crop = self.get_rotate_crop_image(img, tmp_box) img_crop_list.append(img_crop) if self.use_angle_cls: feed, fetch, self.tmp_args = self.text_classifier.preprocess( img_crop_list) fetch_map = self.clas_client.predict(feed, fetch) outputs = [fetch_map[x] for x in self.text_classifier.fetch] for x in fetch_map.keys(): if ".lod" in x: self.tmp_args[x] = fetch_map[x] img_crop_list, _ = self.text_classifier.postprocess(outputs, self.tmp_args) feed, fetch, self.tmp_args = self.text_recognizer.preprocess( img_crop_list) return feed, self.fetch, self.tmp_args def postprocess(self, outputs, args): return self.text_recognizer.postprocess(outputs, args) class OCRService(WebService): def init_rec(self): self.text_system = TextSystemHelper(global_args) def preprocess(self, feed=[], fetch=[]): # TODO: to handle batch rec images data = base64.b64decode(feed[0]["image"].encode('utf8')) data = np.fromstring(data, np.uint8) im = cv2.imdecode(data, cv2.IMREAD_COLOR) feed, fetch, self.tmp_args = self.text_system.preprocess(im) return feed, fetch def postprocess(self, feed={}, fetch=[], fetch_map=None): outputs = [fetch_map[x] for x in self.text_system.fetch] for x in fetch_map.keys(): if ".lod" in x: self.tmp_args[x] = fetch_map[x] rec_res = self.text_system.postprocess(outputs, self.tmp_args) res = { "pred_text": [x[0] for x in rec_res], "score": [str(x[1]) for x in rec_res] } return res if __name__ == "__main__": ocr_service = OCRService(name="ocr") ocr_service.load_model_config(global_args.rec_model_dir) ocr_service.init_rec() if global_args.use_gpu: ocr_service.prepare_server( workdir="workdir", port=9292, device="gpu", gpuid=0) else: ocr_service.prepare_server(workdir="workdir", port=9292, device="cpu") ocr_service.run_debugger_service() ocr_service.run_web_service()