English | [简体中文](README_ch.md) ## Introduction PaddleOCR aims to create rich, leading, and practical OCR tools that help users train better models and apply them into practice. **Recent updates** - 2020.11.2 [FAQ](./doc/doc_ch/FAQ.md) 5 new high-frequency questions have been added, a total of 99 frequently questions and answers, and it is planned to be updated every Monday in the future. Welcome everyone to continue to pay attention. - 2020.9.22 Update the PP-OCR technical article, https://arxiv.org/abs/2009.09941 - 2020.9.19 Update the ultra lightweight compressed ppocr_mobile_slim series models, the overall model size is 3.5M (see [PP-OCR Pipeline](#PP-OCR-Pipeline)), suitable for mobile deployment. [Model Downloads](#Supported-Chinese-model-list) - 2020.9.17 Update the ultra lightweight ppocr_mobile series and general ppocr_server series Chinese and English ocr models, which are comparable to commercial effects. [Model Downloads](#Supported-Chinese-model-list) - 2020.9.17 update [English recognition model](./doc/doc_en/models_list_en.md#english-recognition-model) and [Multilingual recognition model](doc/doc_en/models_list_en.md#english-recognition-model), `German`, `French`, `Japanese` and `Korean` have been supported. Models for more languages will continue to be updated. - 2020.8.24 Support the use of PaddleOCR through whl package installation,please refer [PaddleOCR Package](./doc/doc_en/whl_en.md) - 2020.8.21 Update the replay and PPT of the live lesson at Bilibili on August 18, lesson 2, easy to learn and use OCR tool spree. [Get Address](https://aistudio.baidu.com/aistudio/education/group/info/1519) - [more](./doc/doc_en/update_en.md) ## Features - PPOCR series of high-quality pre-trained models, comparable to commercial effects - Ultra lightweight ppocr_mobile series models: detection (2.6M) + direction classifier (0.9M) + recognition (4.6M) = 8.1M - General ppocr_server series models: detection (47.2M) + direction classifier (0.9M) + recognition (107M) = 155.1M - Ultra lightweight compression ppocr_mobile_slim series models: detection (1.4M) + direction classifier (0.5M) + recognition (1.6M) = 3.5M - Support Chinese, English, and digit recognition, vertical text recognition, and long text recognition - Support multi-language recognition: Korean, Japanese, German, French - Support user-defined training, provides rich predictive inference deployment solutions - Support PIP installation, easy to use - Support Linux, Windows, MacOS and other systems ## Visualization
The above pictures are the visualizations of the general ppocr_server model. For more effect pictures, please see [More visualizations](./doc/doc_en/visualization_en.md). ## Community - Scan the QR code below with your Wechat, you can access to official technical exchange group. Look forward to your participation.
## Quick Experience You can also quickly experience the ultra-lightweight OCR : [Online Experience](https://www.paddlepaddle.org.cn/hub/scene/ocr) Mobile DEMO experience (based on EasyEdge and Paddle-Lite, supports iOS and Android systems): [Sign in to the website to obtain the QR code for installing the App](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite) Also, you can scan the QR code below to install the App (**Android support only**)
- [**OCR Quick Start**](./doc/doc_en/quickstart_en.md) ## PP-OCR 1.1 series model list(Update on Sep 17) | Model introduction | Model name | Recommended scene | Detection model | Direction classifier | Recognition model | | ------------------------------------------------------------ | ---------------------------- | ----------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | | Chinese and English ultra-lightweight OCR model (8.1M) | ch_ppocr_mobile_v1.1_xx | Mobile & server | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_train.tar) | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_train.tar) | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_pre.tar) | | Chinese and English general OCR model (155.1M) | ch_ppocr_server_v1.1_xx | Server | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/server/det/ch_ppocr_server_v1.1_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/server/det/ch_ppocr_server_v1.1_det_train.tar) | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_train.tar) | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_pre.tar) | | Chinese and English ultra-lightweight compressed OCR model (3.5M) | ch_ppocr_mobile_slim_v1.1_xx | Mobile | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/det/ch_ppocr_mobile_v1.1_det_prune_infer.tar) / [slim model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_det_prune_opt.nb) | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_quant_infer.tar) / [slim model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_cls_quant_opt.nb) | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/rec/ch_ppocr_mobile_v1.1_rec_quant_infer.tar) / [slim model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_rec_quant_opt.nb) | For more model downloads (including multiple languages), please refer to [PP-OCR v1.1 series model downloads](./doc/doc_en/models_list_en.md) ## Tutorials - [Installation](./doc/doc_en/installation_en.md) - [Quick Start](./doc/doc_en/quickstart_en.md) - [Code Structure](./doc/doc_en/tree_en.md) - Algorithm introduction - [Text Detection Algorithm](./doc/doc_en/algorithm_overview_en.md) - [Text Recognition Algorithm](./doc/doc_en/algorithm_overview_en.md) - [PP-OCR Pipeline](#PP-OCR-Pipeline) - Model training/evaluation - [Text Detection](./doc/doc_en/detection_en.md) - [Text Recognition](./doc/doc_en/recognition_en.md) - [Direction Classification](./doc/doc_en/angle_class_en.md) - [Yml Configuration](./doc/doc_en/config_en.md) - Inference and Deployment - [Quick inference based on pip](./doc/doc_en/whl_en.md) - [Python Inference](./doc/doc_en/inference_en.md) - [C++ Inference](./deploy/cpp_infer/readme_en.md) - [Serving](./deploy/hubserving/readme_en.md) - [Mobile](./deploy/lite/readme_en.md) - [Model Quantization](./deploy/slim/quantization/README_en.md) - [Model Compression](./deploy/slim/prune/README_en.md) - [Benchmark](./doc/doc_en/benchmark_en.md) - Datasets - [General OCR Datasets(Chinese/English)](./doc/doc_en/datasets_en.md) - [HandWritten_OCR_Datasets(Chinese)](./doc/doc_en/handwritten_datasets_en.md) - [Various OCR Datasets(multilingual)](./doc/doc_en/vertical_and_multilingual_datasets_en.md) - [Data Annotation Tools](./doc/doc_en/data_annotation_en.md) - [Data Synthesis Tools](./doc/doc_en/data_synthesis_en.md) - [Visualization](#Visualization) - [FAQ](./doc/doc_en/FAQ_en.md) - [Community](#Community) - [References](./doc/doc_en/reference_en.md) - [License](#LICENSE) - [Contribution](#CONTRIBUTION) ## PP-OCR Pipeline
PP-OCR is a practical ultra-lightweight OCR system. It is mainly composed of three parts: DB text detection, detection frame correction and CRNN text recognition. The system adopts 19 effective strategies from 8 aspects including backbone network selection and adjustment, prediction head design, data augmentation, learning rate transformation strategy, regularization parameter selection, pre-training model use, and automatic model tailoring and quantization to optimize and slim down the models of each module. The final results are an ultra-lightweight Chinese and English OCR model with an overall size of 3.5M and a 2.8M English digital OCR model. For more details, please refer to the PP-OCR technical article (https://arxiv.org/abs/2009.09941). Besides, The implementation of the FPGM Pruner and PACT quantization is based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim). ## Visualization [more](./doc/doc_en/visualization_en.md) - Chinese OCR model
- English OCR model
- Multilingual OCR model
## License This project is released under Apache 2.0 license ## Contribution We welcome all the contributions to PaddleOCR and appreciate for your feedback very much. - Many thanks to [Khanh Tran](https://github.com/xxxpsyduck) and [Karl Horky](https://github.com/karlhorky) for contributing and revising the English documentation. - Many thanks to [zhangxin](https://github.com/ZhangXinNan) for contributing the new visualize function、add .gitgnore and discard set PYTHONPATH manually. - Many thanks to [lyl120117](https://github.com/lyl120117) for contributing the code for printing the network structure. - Thanks [xiangyubo](https://github.com/xiangyubo) for contributing the handwritten Chinese OCR datasets. - Thanks [authorfu](https://github.com/authorfu) for contributing Android demo and [xiadeye](https://github.com/xiadeye) contributing iOS demo, respectively. - Thanks [BeyondYourself](https://github.com/BeyondYourself) for contributing many great suggestions and simplifying part of the code style. - Thanks [tangmq](https://gitee.com/tangmq) for contributing Dockerized deployment services to PaddleOCR and supporting the rapid release of callable Restful API services.