# Jetson Deployment for PaddleOCR This section introduces the deployment of PaddleOCR on Jetson NX, TX2, nano, AGX and other series of hardware. ## 1. Prepare Environment You need to prepare a Jetson development hardware. If you need TensorRT, you need to prepare the TensorRT environment. It is recommended to use TensorRT version 7.1.3; 1. Install PaddlePaddle in Jetson The PaddlePaddle download [link](https://www.paddlepaddle.org.cn/inference/user_guides/download_lib.html#python) Please select the appropriate installation package for your Jetpack version, cuda version, and trt version. Here, we download paddlepaddle_gpu-2.3.0rc0-cp36-cp36m-linux_aarch64.whl. Install PaddlePaddle: ```shell pip3 install -U paddlepaddle_gpu-2.3.0rc0-cp36-cp36m-linux_aarch64.whl ``` 2. Download PaddleOCR code and install dependencies Clone the PaddleOCR code: ``` git clone https://github.com/PaddlePaddle/PaddleOCR ``` and install dependencies: ``` cd PaddleOCR pip3 install -r requirements.txt ``` *Note: Jetson hardware CPU is poor, dependency installation is slow, please wait patiently* ## 2. Perform prediction Obtain the PPOCR model from the [document](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_en/ppocr_introduction_en.md#6-model-zoo) model library. The following takes the PP-OCRv3 model as an example to introduce the use of the PPOCR model on Jetson: Download and unzip the PP-OCRv3 models. ``` wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar tar xf ch_PP-OCRv3_det_infer.tar tar xf ch_PP-OCRv3_rec_infer.tar ``` The text detection inference: ``` cd PaddleOCR python3 tools/infer/predict_det.py --det_model_dir=./inference/ch_PP-OCRv2_det_infer/ --image_dir=./doc/imgs/french_0.jpg --use_gpu=True ``` After executing the command, the predicted information will be printed out in the terminal, and the visualization results will be saved in the `./inference_results/` directory. ![](./images/det_res_french_0.jpg) The text recognition inference: ``` python3 tools/infer/predict_det.py --rec_model_dir=./inference/ch_PP-OCRv2_rec_infer/ --image_dir=./doc/imgs_words/en/word_2.png --use_gpu=True --rec_image_shape="3,48,320" ``` After executing the command, the predicted information will be printed on the terminal, and the output is as follows: ``` [2022/04/28 15:41:45] root INFO: Predicts of ./doc/imgs_words/en/word_2.png:('yourself', 0.98084533) ``` The text detection and text recognition inference: ``` python3 tools/infer/predict_system.py --det_model_dir=./inference/ch_PP-OCRv2_det_infer/ --rec_model_dir=./inference/ch_PP-OCRv2_rec_infer/ --image_dir=./doc/imgs/00057937.jpg --use_gpu=True --rec_image_shape="3,48,320" ``` After executing the command, the predicted information will be printed out in the terminal, and the visualization results will be saved in the `./inference_results/` directory. ![](./images/00057937.jpg) To enable TRT prediction, you only need to set `--use_tensorrt=True` on the basis of the above command: ``` python3 tools/infer/predict_system.py --det_model_dir=./inference/ch_PP-OCRv2_det_infer/ --rec_model_dir=./inference/ch_PP-OCRv2_rec_infer/ --image_dir=./doc/imgs/ --rec_image_shape="3,48,320" --use_gpu=True --use_tensorrt=True ``` For more ppocr model predictions, please refer to[document](../../doc/doc_en/models_list_en.md)