Global: use_gpu: true epoch_num: 1500 log_smooth_window: 20 print_batch_step: 20 save_model_dir: ./output/fce_r50_ctw/ save_epoch_step: 100 # evaluation is run every 835 iterations eval_batch_step: [0, 835] cal_metric_during_train: False pretrained_model: ../pretrain_models/ResNet50_vd_ssld_pretrained checkpoints: #output/fce_r50_ctw/latest save_inference_dir: use_visualdl: False infer_img: doc/imgs_en/img_10.jpg save_res_path: ./output/fce_r50_ctw/predicts_ctw.txt Architecture: model_type: det algorithm: FCE Transform: Backbone: name: ResNet layers: 50 dcn_stage: [False, True, True, True] out_indices: [1,2,3] Neck: name: FCEFPN in_channels: [512, 1024, 2048] out_channels: 256 has_extra_convs: False extra_stage: 0 Head: name: FCEHead in_channels: 256 scales: [8, 16, 32] fourier_degree: 5 Loss: name: FCELoss fourier_degree: 5 num_sample: 50 Optimizer: name: Adam beta1: 0.9 beta2: 0.999 lr: learning_rate: 0.0001 regularizer: name: 'L2' factor: 0 PostProcess: name: FCEPostProcess scales: [8, 16, 32] alpha: 1.0 beta: 1.0 fourier_degree: 5 Metric: name: DetFCEMetric main_indicator: hmean Train: dataset: name: SimpleDataSet data_dir: /data/Dataset/OCR_det/ctw1500/imgs/ label_file_list: - /data/Dataset/OCR_det/ctw1500/imgs/training.txt transforms: - DecodeImage: # load image img_mode: BGR channel_first: False ignore_orientation: True - DetLabelEncode: # Class handling label - ColorJitter: brightness: 0.142 saturation: 0.5 contrast: 0.5 - RandomScaling: - RandomCropFlip: crop_ratio: 0.5 - RandomCropPolyInstances: crop_ratio: 0.8 min_side_ratio: 0.3 - RandomRotatePolyInstances: rotate_ratio: 0.5 max_angle: 30 pad_with_fixed_color: False - SquareResizePad: target_size: 800 pad_ratio: 0.6 - IaaAugment: augmenter_args: - { 'type': Fliplr, 'args': { 'p': 0.5 } } - FCENetTargets: fourier_degree: 5 - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: 'hwc' - ToCHWImage: - KeepKeys: keep_keys: ['image', 'p3_maps', 'p4_maps', 'p5_maps'] # dataloader will return list in this order loader: shuffle: True drop_last: False batch_size_per_card: 6 num_workers: 8 Eval: dataset: name: SimpleDataSet data_dir: /data/Dataset/OCR_det/ctw1500/imgs/ label_file_list: - /data/Dataset/OCR_det/ctw1500/imgs/test.txt transforms: - DecodeImage: # load image img_mode: BGR channel_first: False ignore_orientation: True - DetLabelEncode: # Class handling label - DetResizeForTest: # resize_long: 1280 rescale_img: [1080, 736] - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: 'hwc' - Pad: - ToCHWImage: - KeepKeys: keep_keys: ['image', 'shape', 'polys', 'ignore_tags'] loader: shuffle: False drop_last: False batch_size_per_card: 1 # must be 1 num_workers: 2