# -*- coding:utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys sys.path.insert(0, ".") import argparse import ast import copy import math import time from paddle.fluid.core import AnalysisConfig, create_paddle_predictor, PaddleTensor from paddlehub.common.logger import logger from paddlehub.module.module import moduleinfo, runnable, serving from PIL import Image import cv2 import numpy as np import paddle.fluid as fluid import paddlehub as hub from tools.infer.utility import base64_to_cv2 from tools.infer.predict_rec import TextRecognizer @moduleinfo( name="ocr_rec", version="1.0.0", summary="ocr recognition service", author="paddle-dev", author_email="paddle-dev@baidu.com", type="cv/text_recognition") class OCRRec(hub.Module): def _initialize(self, use_gpu=False, enable_mkldnn=False): """ initialize with the necessary elements """ from ocr_rec.params import read_params cfg = read_params() cfg.use_gpu = use_gpu if use_gpu: try: _places = os.environ["CUDA_VISIBLE_DEVICES"] int(_places[0]) print("use gpu: ", use_gpu) print("CUDA_VISIBLE_DEVICES: ", _places) cfg.gpu_mem = 8000 except: raise RuntimeError( "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id." ) cfg.ir_optim = True cfg.enable_mkldnn = enable_mkldnn self.text_recognizer = TextRecognizer(cfg) def read_images(self, paths=[]): images = [] for img_path in paths: assert os.path.isfile( img_path), "The {} isn't a valid file.".format(img_path) img = cv2.imread(img_path) if img is None: logger.info("error in loading image:{}".format(img_path)) continue images.append(img) return images def predict(self, images=[], paths=[]): """ Get the text box in the predicted images. Args: images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths paths (list[str]): The paths of images. If paths not images Returns: res (list): The result of text detection box and save path of images. """ if images != [] and isinstance(images, list) and paths == []: predicted_data = images elif images == [] and isinstance(paths, list) and paths != []: predicted_data = self.read_images(paths) else: raise TypeError("The input data is inconsistent with expectations.") assert predicted_data != [], "There is not any image to be predicted. Please check the input data." img_list = [] for img in predicted_data: if img is None: continue img_list.append(img) rec_res_final = [] try: rec_res, predict_time = self.text_recognizer(img_list) for dno in range(len(rec_res)): text, score = rec_res[dno] rec_res_final.append({ 'text': text, 'confidence': float(score), }) except Exception as e: print(e) return [[]] return [rec_res_final] @serving def serving_method(self, images, **kwargs): """ Run as a service. """ images_decode = [base64_to_cv2(image) for image in images] results = self.predict(images_decode, **kwargs) return results if __name__ == '__main__': ocr = OCRRec() image_path = [ './doc/imgs_words/ch/word_1.jpg', './doc/imgs_words/ch/word_2.jpg', './doc/imgs_words/ch/word_3.jpg', ] res = ocr.predict(paths=image_path) print(res)