Global: use_gpu: true epoch_num: 17 log_smooth_window: 20 print_batch_step: 5 save_model_dir: ./output/table_master/ save_epoch_step: 17 # evaluation is run every 400 iterations after the 0th iteration eval_batch_step: [0, 400] cal_metric_during_train: True pretrained_model: checkpoints: save_inference_dir: use_visualdl: False infer_img: ppstructure/docs/table/table.jpg save_res_path: output/table_master # for data or label process character_dict_path: ppocr/utils/dict/table_master_structure_dict.txt infer_mode: False max_text_length: 500 process_total_num: 0 process_cut_num: 0 Optimizer: name: Adam beta1: 0.9 beta2: 0.999 lr: name: MultiStepDecay learning_rate: 0.001 milestones: [12, 15] gamma: 0.1 warmup_epoch: 0.02 regularizer: name: 'L2' factor: 0.00000 Architecture: model_type: table algorithm: TableMaster Backbone: name: TableResNetExtra gcb_config: ratio: 0.0625 headers: 1 att_scale: False fusion_type: channel_add layers: [False, True, True, True] layers: [1,2,5,3] Head: name: TableMasterHead hidden_size: 512 headers: 8 dropout: 0 d_ff: 2024 max_text_length: 500 Loss: name: TableMasterLoss ignore_index: 42 # set to len of dict + 3 PostProcess: name: TableMasterLabelDecode box_shape: pad Metric: name: TableMetric main_indicator: acc compute_bbox_metric: true # cost many time, set False for training Train: dataset: name: PubTabDataSet data_dir: /home/zhoujun20/table/PubTabNe/pubtabnet/train/ label_file_list: [/home/zhoujun20/table/PubTabNe/pubtabnet/PubTabNet_2.0.0_train.jsonl] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - TableMasterLabelEncode: learn_empty_box: False merge_no_span_structure: True replace_empty_cell_token: True - ResizeTableImage: max_len: 480 resize_bboxes: True - PaddingTableImage: size: [480, 480] - TableBoxEncode: use_xywh: true - NormalizeImage: scale: 1./255. mean: [0.5, 0.5, 0.5] std: [0.5, 0.5, 0.5] order: 'hwc' - ToCHWImage: - KeepKeys: keep_keys: ['image', 'structure', 'bboxes', 'bbox_masks','shape'] loader: shuffle: True batch_size_per_card: 8 drop_last: True num_workers: 1 Eval: dataset: name: PubTabDataSet data_dir: /home/zhoujun20/table/PubTabNe/pubtabnet/val/ label_file_list: [/home/zhoujun20/table/PubTabNe/pubtabnet/val_500.jsonl] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - TableMasterLabelEncode: learn_empty_box: False merge_no_span_structure: True replace_empty_cell_token: True - ResizeTableImage: max_len: 480 resize_bboxes: True - PaddingTableImage: size: [ 480, 480 ] - TableBoxEncode: use_xywh: true - NormalizeImage: scale: 1./255. mean: [ 0.5, 0.5, 0.5 ] std: [ 0.5, 0.5, 0.5 ] order: 'hwc' - ToCHWImage: - KeepKeys: keep_keys: [ 'image', 'structure', 'bboxes', 'bbox_masks','shape' ] loader: shuffle: False drop_last: False batch_size_per_card: 2 num_workers: 8