# KIE Algorithm - SDMGR - [1. Introduction](#1-introduction) - [2. Environment](#2-environment) - [3. Model Training / Evaluation / Prediction](#3-model-training--evaluation--prediction) - [4. Inference and Deployment](#4-inference-and-deployment) - [4.1 Python Inference](#41-python-inference) - [4.2 C++ Inference](#42-c-inference) - [4.3 Serving](#43-serving) - [4.4 More](#44-more) - [5. FAQ](#5-faq) - [Citation](#Citation) ## 1. Introduction Paper: > [Spatial Dual-Modality Graph Reasoning for Key Information Extraction](https://arxiv.org/abs/2103.14470) > > Hongbin Sun and Zhanghui Kuang and Xiaoyu Yue and Chenhao Lin and Wayne Zhang > > 2021 On wildreceipt dataset, the algorithm reproduction Hmean is as follows. |Model|Backbone |Cnnfig|Hmean|Download link| | --- | --- | --- | --- | --- | |SDMGR|VGG6|[configs/kie/sdmgr/kie_unet_sdmgr.yml](../../configs/kie/sdmgr/kie_unet_sdmgr.yml)|86.7%|[trained model]( https://paddleocr.bj.bcebos.com/dygraph_v2.1/kie/kie_vgg16.tar)/[inference model(coming soon)]()| ## 2. 环境配置 Please refer to ["Environment Preparation"](./environment_en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone_en.md) to clone the project code. ## 3. Model Training / Evaluation / Prediction SDMGR is a key information extraction algorithm that classifies each detected textline into predefined categories, such as order ID, invoice number, amount, etc. The training and test data are collected in the wildreceipt dataset, use following command to downloaded the dataset. ```bash wget https://paddleocr.bj.bcebos.com/ppstructure/dataset/wildreceipt.tar && tar xf wildreceipt.tar ``` Create dataset soft link to `PaddleOCR/train_data` directory. ```bash cd PaddleOCR/ && mkdir train_data && cd train_data ln -s ../../wildreceipt ./ ``` ### 3.1 Model training The config file is `configs/kie/sdmgr/kie_unet_sdmgr.yml`, the default dataset path is `train_data/wildreceipt`. Use the following command to train the model. ```bash python3 tools/train.py -c configs/kie/sdmgr/kie_unet_sdmgr.yml -o Global.save_model_dir=./output/kie/ ``` ### 3.2 Model evaluation Use the following command to evaluate the model. ```bash python3 tools/eval.py -c configs/kie/sdmgr/kie_unet_sdmgr.yml -o Global.checkpoints=./output/kie/best_accuracy ``` An example of output information is shown below. ```py [2022/08/10 05:22:23] ppocr INFO: metric eval *************** [2022/08/10 05:22:23] ppocr INFO: hmean:0.8670120239257812 [2022/08/10 05:22:23] ppocr INFO: fps:10.18816520530961 ``` ### 3.3 Model prediction Use the following command to load the model and predict. During the prediction, the text file storing the image path and OCR information needs to be loaded in advance. Use `Global.infer_img` to assign. ```bash python3 tools/infer_kie.py -c configs/kie/kie_unet_sdmgr.yml -o Global.checkpoints=kie_vgg16/best_accuracy Global.infer_img=./train_data/wildreceipt/1.txt ``` The visualization results and texts are saved in the `./output/sdmgr_kie/` directory by default. The results are as follows.
## 4. Inference and Deployment ### 4.1 Python Inference Not supported ### 4.2 C++ Inference Not supported ### 4.3 Serving Not supported ### 4.4 More Not supported ## 5. FAQ ## Citation ```bibtex @misc{sun2021spatial, title={Spatial Dual-Modality Graph Reasoning for Key Information Extraction}, author={Hongbin Sun and Zhanghui Kuang and Xiaoyu Yue and Chenhao Lin and Wayne Zhang}, year={2021}, eprint={2103.14470}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```