// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include namespace PaddleOCR { void DBDetector::LoadModel(const std::string &model_dir) { // AnalysisConfig config; paddle_infer::Config config; config.SetModel(model_dir + "/inference.pdmodel", model_dir + "/inference.pdiparams"); if (this->use_gpu_) { config.EnableUseGpu(this->gpu_mem_, this->gpu_id_); if (this->use_tensorrt_) { config.EnableTensorRtEngine( 1 << 20, 10, 3, this->use_fp16_ ? paddle_infer::Config::Precision::kHalf : paddle_infer::Config::Precision::kFloat32, false, false); std::map> min_input_shape = { {"x", {1, 3, 50, 50}}, {"conv2d_92.tmp_0", {1, 96, 20, 20}}, {"conv2d_91.tmp_0", {1, 96, 10, 10}}, {"nearest_interp_v2_1.tmp_0", {1, 96, 10, 10}}, {"nearest_interp_v2_2.tmp_0", {1, 96, 20, 20}}, {"nearest_interp_v2_3.tmp_0", {1, 24, 20, 20}}, {"nearest_interp_v2_4.tmp_0", {1, 24, 20, 20}}, {"nearest_interp_v2_5.tmp_0", {1, 24, 20, 20}}, {"elementwise_add_7", {1, 56, 2, 2}}, {"nearest_interp_v2_0.tmp_0", {1, 96, 2, 2}}}; std::map> max_input_shape = { {"x", {1, 3, this->max_side_len_, this->max_side_len_}}, {"conv2d_92.tmp_0", {1, 96, 400, 400}}, {"conv2d_91.tmp_0", {1, 96, 200, 200}}, {"nearest_interp_v2_1.tmp_0", {1, 96, 200, 200}}, {"nearest_interp_v2_2.tmp_0", {1, 96, 400, 400}}, {"nearest_interp_v2_3.tmp_0", {1, 24, 400, 400}}, {"nearest_interp_v2_4.tmp_0", {1, 24, 400, 400}}, {"nearest_interp_v2_5.tmp_0", {1, 24, 400, 400}}, {"elementwise_add_7", {1, 56, 400, 400}}, {"nearest_interp_v2_0.tmp_0", {1, 96, 400, 400}}}; std::map> opt_input_shape = { {"x", {1, 3, 640, 640}}, {"conv2d_92.tmp_0", {1, 96, 160, 160}}, {"conv2d_91.tmp_0", {1, 96, 80, 80}}, {"nearest_interp_v2_1.tmp_0", {1, 96, 80, 80}}, {"nearest_interp_v2_2.tmp_0", {1, 96, 160, 160}}, {"nearest_interp_v2_3.tmp_0", {1, 24, 160, 160}}, {"nearest_interp_v2_4.tmp_0", {1, 24, 160, 160}}, {"nearest_interp_v2_5.tmp_0", {1, 24, 160, 160}}, {"elementwise_add_7", {1, 56, 40, 40}}, {"nearest_interp_v2_0.tmp_0", {1, 96, 40, 40}}}; config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape, opt_input_shape); } } else { config.DisableGpu(); if (this->use_mkldnn_) { config.EnableMKLDNN(); // cache 10 different shapes for mkldnn to avoid memory leak config.SetMkldnnCacheCapacity(10); } config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_); } // use zero_copy_run as default config.SwitchUseFeedFetchOps(false); // true for multiple input config.SwitchSpecifyInputNames(true); config.SwitchIrOptim(true); config.EnableMemoryOptim(); // config.DisableGlogInfo(); this->predictor_ = CreatePredictor(config); } void DBDetector::Run(cv::Mat &img, std::vector>> &boxes) { float ratio_h{}; float ratio_w{}; cv::Mat srcimg; cv::Mat resize_img; img.copyTo(srcimg); this->resize_op_.Run(img, resize_img, this->max_side_len_, ratio_h, ratio_w, this->use_tensorrt_); this->normalize_op_.Run(&resize_img, this->mean_, this->scale_, this->is_scale_); std::vector input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f); this->permute_op_.Run(&resize_img, input.data()); // Inference. auto input_names = this->predictor_->GetInputNames(); auto input_t = this->predictor_->GetInputHandle(input_names[0]); input_t->Reshape({1, 3, resize_img.rows, resize_img.cols}); input_t->CopyFromCpu(input.data()); this->predictor_->Run(); std::vector out_data; auto output_names = this->predictor_->GetOutputNames(); auto output_t = this->predictor_->GetOutputHandle(output_names[0]); std::vector output_shape = output_t->shape(); int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1, std::multiplies()); out_data.resize(out_num); output_t->CopyToCpu(out_data.data()); int n2 = output_shape[2]; int n3 = output_shape[3]; int n = n2 * n3; std::vector pred(n, 0.0); std::vector cbuf(n, ' '); for (int i = 0; i < n; i++) { pred[i] = float(out_data[i]); cbuf[i] = (unsigned char)((out_data[i]) * 255); } cv::Mat cbuf_map(n2, n3, CV_8UC1, (unsigned char *)cbuf.data()); cv::Mat pred_map(n2, n3, CV_32F, (float *)pred.data()); const double threshold = this->det_db_thresh_ * 255; const double maxvalue = 255; cv::Mat bit_map; cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY); cv::Mat dilation_map; cv::Mat dila_ele = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2)); cv::dilate(bit_map, dilation_map, dila_ele); boxes = post_processor_.BoxesFromBitmap( pred_map, dilation_map, this->det_db_box_thresh_, this->det_db_unclip_ratio_, this->use_polygon_score_); boxes = post_processor_.FilterTagDetRes(boxes, ratio_h, ratio_w, srcimg); std::cout << "Detected boxes num: " << boxes.size() << endl; //// visualization if (this->visualize_) { Utility::VisualizeBboxes(srcimg, boxes); } } } // namespace PaddleOCR