Global: algorithm: CRNN use_gpu: true epoch_num: 500 log_smooth_window: 20 print_batch_step: 10 save_model_dir: ./output/en_number save_epoch_step: 3 eval_batch_step: 2000 train_batch_size_per_card: 256 test_batch_size_per_card: 256 image_shape: [3, 32, 320] max_text_length: 30 character_type: ch character_dict_path: ./ppocr/utils/ic15_dict.txt loss_type: ctc distort: false use_space_char: false reader_yml: ./configs/rec/multi_languages/rec_en_reader.yml pretrain_weights: checkpoints: save_inference_dir: infer_img: Architecture: function: ppocr.modeling.architectures.rec_model,RecModel Backbone: function: ppocr.modeling.backbones.rec_mobilenet_v3,MobileNetV3 scale: 0.5 model_name: small small_stride: [1, 2, 2, 2] Head: function: ppocr.modeling.heads.rec_ctc_head,CTCPredict encoder_type: rnn SeqRNN: hidden_size: 48 Loss: function: ppocr.modeling.losses.rec_ctc_loss,CTCLoss Optimizer: function: ppocr.optimizer,AdamDecay l2_decay: 0.00001 base_lr: 0.001 beta1: 0.9 beta2: 0.999 decay: function: cosine_decay_warmup warmup_minibatch: 1000 step_each_epoch: 6530 total_epoch: 500