# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from paddle import nn from ppocr.modeling.transforms import build_transform from ppocr.modeling.backbones import build_backbone from ppocr.modeling.necks import build_neck from ppocr.modeling.heads import build_head __all__ = ['BaseModel'] class BaseModel(nn.Layer): def __init__(self, config): """ the module for OCR. args: config (dict): the super parameters for module. """ super(BaseModel, self).__init__() in_channels = config.get('in_channels', 3) model_type = config['model_type'] # build transfrom, # for rec, transfrom can be TPS,None # for det and cls, transfrom shoule to be None, # if you make model differently, you can use transfrom in det and cls if 'Transform' not in config or config['Transform'] is None: self.use_transform = False else: self.use_transform = True config['Transform']['in_channels'] = in_channels self.transform = build_transform(config['Transform']) in_channels = self.transform.out_channels # build backbone, backbone is need for del, rec and cls config["Backbone"]['in_channels'] = in_channels self.backbone = build_backbone(config["Backbone"], model_type) in_channels = self.backbone.out_channels # build neck # for rec, neck can be cnn,rnn or reshape(None) # for det, neck can be FPN, BIFPN and so on. # for cls, neck should be none if 'Neck' not in config or config['Neck'] is None: self.use_neck = False else: self.use_neck = True config['Neck']['in_channels'] = in_channels self.neck = build_neck(config['Neck']) in_channels = self.neck.out_channels # # build head, head is need for det, rec and cls config["Head"]['in_channels'] = in_channels self.head = build_head(config["Head"]) self.return_all_feats = config.get("return_all_feats", False) def forward(self, x, data=None, mode='Train'): y = dict() if self.use_transform: x = self.transform(x) x = self.backbone(x) y["backbone_out"] = x if self.use_neck: x = self.neck(x) y["neck_out"] = x if data is None: x = self.head(x) else: if mode == 'Eval' or mode == 'Test': x = self.head(x, targets=data, mode=mode) else: x = self.head(x, targets=data) y["head_out"] = x if self.return_all_feats: return y else: return x