# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from paddle import nn from ppocr.modeling.transforms import build_transform from ppocr.modeling.backbones import build_backbone from ppocr.modeling.necks import build_neck from ppocr.modeling.heads import build_head from .base_model import BaseModel from ppocr.utils.save_load import load_pretrained_params __all__ = ['DistillationModel'] class DistillationModel(nn.Layer): def __init__(self, config): """ the module for OCR distillation. args: config (dict): the super parameters for module. """ super().__init__() self.model_list = [] self.model_name_list = [] for key in config["Models"]: model_config = config["Models"][key] freeze_params = False pretrained = None if "freeze_params" in model_config: freeze_params = model_config.pop("freeze_params") if "pretrained" in model_config: pretrained = model_config.pop("pretrained") model = BaseModel(model_config) if pretrained is not None: load_pretrained_params(model, pretrained) if freeze_params: for param in model.parameters(): param.trainable = False self.model_list.append(self.add_sublayer(key, model)) self.model_name_list.append(key) def forward(self, x): result_dict = dict() for idx, model_name in enumerate(self.model_name_list): result_dict[model_name] = self.model_list[idx](x) return result_dict