// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include namespace PaddleOCR { void CRNNRecognizer::Run(std::vector>> boxes, cv::Mat &img, Classifier *cls) { cv::Mat srcimg; img.copyTo(srcimg); cv::Mat crop_img; cv::Mat resize_img; std::cout << "The predicted text is :" << std::endl; int index = 0; for (int i = boxes.size() - 1; i >= 0; i--) { crop_img = GetRotateCropImage(srcimg, boxes[i]); if (cls != nullptr) { crop_img = cls->Run(crop_img); } float wh_ratio = float(crop_img.cols) / float(crop_img.rows); this->resize_op_.Run(crop_img, resize_img, wh_ratio, this->use_tensorrt_); this->normalize_op_.Run(&resize_img, this->mean_, this->scale_, this->is_scale_); std::vector input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f); this->permute_op_.Run(&resize_img, input.data()); // Inference. auto input_names = this->predictor_->GetInputNames(); auto input_t = this->predictor_->GetInputHandle(input_names[0]); input_t->Reshape({1, 3, resize_img.rows, resize_img.cols}); input_t->CopyFromCpu(input.data()); this->predictor_->Run(); std::vector predict_batch; auto output_names = this->predictor_->GetOutputNames(); auto output_t = this->predictor_->GetOutputHandle(output_names[0]); auto predict_shape = output_t->shape(); int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1, std::multiplies()); predict_batch.resize(out_num); output_t->CopyToCpu(predict_batch.data()); // ctc decode std::vector str_res; int argmax_idx; int last_index = 0; float score = 0.f; int count = 0; float max_value = 0.0f; for (int n = 0; n < predict_shape[1]; n++) { argmax_idx = int(Utility::argmax(&predict_batch[n * predict_shape[2]], &predict_batch[(n + 1) * predict_shape[2]])); max_value = float(*std::max_element(&predict_batch[n * predict_shape[2]], &predict_batch[(n + 1) * predict_shape[2]])); if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) { score += max_value; count += 1; str_res.push_back(label_list_[argmax_idx]); } last_index = argmax_idx; } score /= count; for (int i = 0; i < str_res.size(); i++) { std::cout << str_res[i]; } std::cout << "\tscore: " << score << std::endl; } } void CRNNRecognizer::LoadModel(const std::string &model_dir) { // AnalysisConfig config; paddle_infer::Config config; config.SetModel(model_dir + "/inference.pdmodel", model_dir + "/inference.pdiparams"); if (this->use_gpu_) { config.EnableUseGpu(this->gpu_mem_, this->gpu_id_); if (this->use_tensorrt_) { config.EnableTensorRtEngine( 1 << 20, 10, 3, this->use_fp16_ ? paddle_infer::Config::Precision::kHalf : paddle_infer::Config::Precision::kFloat32, false, false); std::map> min_input_shape = { {"x", {1, 3, 32, 10}}}; std::map> max_input_shape = { {"x", {1, 3, 32, 2000}}}; std::map> opt_input_shape = { {"x", {1, 3, 32, 320}}}; config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape, opt_input_shape); } } else { config.DisableGpu(); if (this->use_mkldnn_) { config.EnableMKLDNN(); // cache 10 different shapes for mkldnn to avoid memory leak config.SetMkldnnCacheCapacity(10); } config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_); } config.SwitchUseFeedFetchOps(false); // true for multiple input config.SwitchSpecifyInputNames(true); config.SwitchIrOptim(true); config.EnableMemoryOptim(); config.DisableGlogInfo(); this->predictor_ = CreatePredictor(config); } cv::Mat CRNNRecognizer::GetRotateCropImage(const cv::Mat &srcimage, std::vector> box) { cv::Mat image; srcimage.copyTo(image); std::vector> points = box; int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]}; int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]}; int left = int(*std::min_element(x_collect, x_collect + 4)); int right = int(*std::max_element(x_collect, x_collect + 4)); int top = int(*std::min_element(y_collect, y_collect + 4)); int bottom = int(*std::max_element(y_collect, y_collect + 4)); cv::Mat img_crop; image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop); for (int i = 0; i < points.size(); i++) { points[i][0] -= left; points[i][1] -= top; } int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) + pow(points[0][1] - points[1][1], 2))); int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) + pow(points[0][1] - points[3][1], 2))); cv::Point2f pts_std[4]; pts_std[0] = cv::Point2f(0., 0.); pts_std[1] = cv::Point2f(img_crop_width, 0.); pts_std[2] = cv::Point2f(img_crop_width, img_crop_height); pts_std[3] = cv::Point2f(0.f, img_crop_height); cv::Point2f pointsf[4]; pointsf[0] = cv::Point2f(points[0][0], points[0][1]); pointsf[1] = cv::Point2f(points[1][0], points[1][1]); pointsf[2] = cv::Point2f(points[2][0], points[2][1]); pointsf[3] = cv::Point2f(points[3][0], points[3][1]); cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std); cv::Mat dst_img; cv::warpPerspective(img_crop, dst_img, M, cv::Size(img_crop_width, img_crop_height), cv::BORDER_REPLICATE); if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) { cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth()); cv::transpose(dst_img, srcCopy); cv::flip(srcCopy, srcCopy, 0); return srcCopy; } else { return dst_img; } } } // namespace PaddleOCR