# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import paddle from paddle import nn, ParamAttr from paddle.nn import functional as F import numpy as np def conv3x3_block(in_channels, out_channels, stride=1): n = 3 * 3 * out_channels w = math.sqrt(2. / n) conv_layer = nn.Conv2D( in_channels, out_channels, kernel_size=3, stride=stride, padding=1, weight_attr=nn.initializer.Normal( mean=0.0, std=w), bias_attr=nn.initializer.Constant(0)) block = nn.Sequential(conv_layer, nn.BatchNorm2D(out_channels), nn.ReLU()) return block class STN(nn.Layer): def __init__(self, in_channels, num_ctrlpoints, activation='none'): super(STN, self).__init__() self.in_channels = in_channels self.num_ctrlpoints = num_ctrlpoints self.activation = activation self.stn_convnet = nn.Sequential( conv3x3_block(in_channels, 32), #32x64 nn.MaxPool2D( kernel_size=2, stride=2), conv3x3_block(32, 64), #16x32 nn.MaxPool2D( kernel_size=2, stride=2), conv3x3_block(64, 128), # 8*16 nn.MaxPool2D( kernel_size=2, stride=2), conv3x3_block(128, 256), # 4*8 nn.MaxPool2D( kernel_size=2, stride=2), conv3x3_block(256, 256), # 2*4, nn.MaxPool2D( kernel_size=2, stride=2), conv3x3_block(256, 256)) # 1*2 self.stn_fc1 = nn.Sequential( nn.Linear( 2 * 256, 512, weight_attr=nn.initializer.Normal(0, 0.001), bias_attr=nn.initializer.Constant(0)), nn.BatchNorm1D(512), nn.ReLU()) fc2_bias = self.init_stn() self.stn_fc2 = nn.Linear( 512, num_ctrlpoints * 2, weight_attr=nn.initializer.Constant(0.0), bias_attr=nn.initializer.Assign(fc2_bias)) def init_stn(self): margin = 0.01 sampling_num_per_side = int(self.num_ctrlpoints / 2) ctrl_pts_x = np.linspace(margin, 1. - margin, sampling_num_per_side) ctrl_pts_y_top = np.ones(sampling_num_per_side) * margin ctrl_pts_y_bottom = np.ones(sampling_num_per_side) * (1 - margin) ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1) ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1) ctrl_points = np.concatenate( [ctrl_pts_top, ctrl_pts_bottom], axis=0).astype(np.float32) if self.activation == 'none': pass elif self.activation == 'sigmoid': ctrl_points = -np.log(1. / ctrl_points - 1.) ctrl_points = paddle.to_tensor(ctrl_points) fc2_bias = paddle.reshape( ctrl_points, shape=[ctrl_points.shape[0] * ctrl_points.shape[1]]) return fc2_bias def forward(self, x): x = self.stn_convnet(x) batch_size, _, h, w = x.shape x = paddle.reshape(x, shape=(batch_size, -1)) img_feat = self.stn_fc1(x) x = self.stn_fc2(0.1 * img_feat) if self.activation == 'sigmoid': x = F.sigmoid(x) x = paddle.reshape(x, shape=[-1, self.num_ctrlpoints, 2]) return img_feat, x if __name__ == "__main__": in_planes = 3 num_ctrlpoints = 20 np.random.seed(100) activation = 'none' # 'sigmoid' stn_head = STN(in_planes, num_ctrlpoints, activation) data = np.random.randn(10, 3, 32, 64).astype("float32") print("data:", np.sum(data)) input = paddle.to_tensor(data) #input = paddle.randn([10, 3, 32, 64]) control_points = stn_head(input)