# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from paddle import ParamAttr import paddle.nn as nn import paddle.nn.functional as F __all__ = ["ResNet"] class ConvBNLayer(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, stride=1, groups=1, is_vd_mode=False, act=None): super(ConvBNLayer, self).__init__() self.is_vd_mode = is_vd_mode self._pool2d_avg = nn.AvgPool2D( kernel_size=2, stride=2, padding=0, ceil_mode=True) self._conv = nn.Conv2D( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=(kernel_size - 1) // 2, groups=groups, bias_attr=False) self._batch_norm = nn.BatchNorm(out_channels, act=act) def forward(self, inputs): if self.is_vd_mode: inputs = self._pool2d_avg(inputs) y = self._conv(inputs) y = self._batch_norm(y) return y class BottleneckBlock(nn.Layer): def __init__(self, in_channels, out_channels, stride, shortcut=True, if_first=False): super(BottleneckBlock, self).__init__() self.conv0 = ConvBNLayer( in_channels=in_channels, out_channels=out_channels, kernel_size=1, act='relu') self.conv1 = ConvBNLayer( in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=stride, act='relu') self.conv2 = ConvBNLayer( in_channels=out_channels, out_channels=out_channels * 4, kernel_size=1, act=None) if not shortcut: self.short = ConvBNLayer( in_channels=in_channels, out_channels=out_channels * 4, kernel_size=1, stride=1, is_vd_mode=False if if_first else True) self.shortcut = shortcut def forward(self, inputs): y = self.conv0(inputs) conv1 = self.conv1(y) conv2 = self.conv2(conv1) if self.shortcut: short = inputs else: short = self.short(inputs) y = paddle.add(x=short, y=conv2) y = F.relu(y) return y class BasicBlock(nn.Layer): def __init__( self, in_channels, out_channels, stride, shortcut=True, if_first=False, ): super(BasicBlock, self).__init__() self.stride = stride self.conv0 = ConvBNLayer( in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride, act='relu') self.conv1 = ConvBNLayer( in_channels=out_channels, out_channels=out_channels, kernel_size=3, act=None) if not shortcut: self.short = ConvBNLayer( in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, is_vd_mode=False if if_first else True) self.shortcut = shortcut def forward(self, inputs): y = self.conv0(inputs) conv1 = self.conv1(y) if self.shortcut: short = inputs else: short = self.short(inputs) y = paddle.add(x=short, y=conv1) y = F.relu(y) return y class ResNet(nn.Layer): def __init__(self, in_channels=3, layers=50, **kwargs): super(ResNet, self).__init__() self.layers = layers supported_layers = [18, 34, 50, 101, 152, 200] assert layers in supported_layers, \ "supported layers are {} but input layer is {}".format( supported_layers, layers) if layers == 18: depth = [2, 2, 2, 2] elif layers == 34 or layers == 50: depth = [3, 4, 6, 3] elif layers == 101: depth = [3, 4, 23, 3] elif layers == 152: depth = [3, 8, 36, 3] elif layers == 200: depth = [3, 12, 48, 3] num_channels = [64, 256, 512, 1024] if layers >= 50 else [64, 64, 128, 256] num_filters = [64, 128, 256, 512] self.conv1_1 = ConvBNLayer( in_channels=in_channels, out_channels=32, kernel_size=3, stride=2, act='relu') self.conv1_2 = ConvBNLayer( in_channels=32, out_channels=32, kernel_size=3, stride=1, act='relu') self.conv1_3 = ConvBNLayer( in_channels=32, out_channels=64, kernel_size=3, stride=1, act='relu') self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1) self.stages = [] self.out_channels = [] if layers >= 50: for block in range(len(depth)): block_list = [] shortcut = False for i in range(depth[block]): bottleneck_block = self.add_sublayer( 'bb_%d_%d' % (block, i), BottleneckBlock( in_channels=num_channels[block] if i == 0 else num_filters[block] * 4, out_channels=num_filters[block], stride=2 if i == 0 and block != 0 else 1, shortcut=shortcut, if_first=block == i == 0)) shortcut = True block_list.append(bottleneck_block) self.out_channels.append(num_filters[block] * 4) self.stages.append(nn.Sequential(*block_list)) else: for block in range(len(depth)): block_list = [] shortcut = False for i in range(depth[block]): basic_block = self.add_sublayer( 'bb_%d_%d' % (block, i), BasicBlock( in_channels=num_channels[block] if i == 0 else num_filters[block], out_channels=num_filters[block], stride=2 if i == 0 and block != 0 else 1, shortcut=shortcut, if_first=block == i == 0)) shortcut = True block_list.append(basic_block) self.out_channels.append(num_filters[block]) self.stages.append(nn.Sequential(*block_list)) def forward(self, inputs): y = self.conv1_1(inputs) y = self.conv1_2(y) y = self.conv1_3(y) y = self.pool2d_max(y) out = [] for block in self.stages: y = block(y) out.append(y) return out