# 中文OCR模型快速使用 ## 1.环境配置 请先参考[快速安装](./installation.md)配置PaddleOCR运行环境。 *注意:也可以通过 whl 包安装使用PaddleOCR,具体参考[Paddleocr Package使用说明](./whl.md)。* ## 2.inference模型下载 * 移动端和服务器端的检测与识别模型如下,更多模型下载(包括多语言),可以参考[PP-OCR v2.0 系列模型下载](../doc_ch/models_list.md) | 模型简介 | 模型名称 |推荐场景 | 检测模型 | 方向分类器 | 识别模型 | | ------------ | --------------- | ----------------|---- | ---------- | -------- | | 中英文超轻量OCR模型(8.1M) | ch_ppocr_mobile_v2.0_xx |移动端&服务器端|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) | | 中英文通用OCR模型(143M) | ch_ppocr_server_v2.0_xx |服务器端 |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) | * windows 环境下如果没有安装wget,下载模型时可将链接复制到浏览器中下载,并解压放置在相应目录下 复制上表中的检测和识别的`inference模型`下载地址,并解压 ``` mkdir inference && cd inference # 下载检测模型并解压 wget {url/of/detection/inference_model} && tar xf {name/of/detection/inference_model/package} # 下载识别模型并解压 wget {url/of/recognition/inference_model} && tar xf {name/of/recognition/inference_model/package} # 下载方向分类器模型并解压 wget {url/of/classification/inference_model} && tar xf {name/of/classification/inference_model/package} cd .. ``` 以超轻量级模型为例: ``` mkdir inference && cd inference # 下载超轻量级中文OCR模型的检测模型并解压 wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_det_infer.tar # 下载超轻量级中文OCR模型的识别模型并解压 wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar # 下载超轻量级中文OCR模型的文本方向分类器模型并解压 wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar && tar xf ch_ppocr_mobile_v2.0_cls_infer.tar cd .. ``` 解压完毕后应有如下文件结构: ``` ├── ch_ppocr_mobile_v2.0_cls_infer │ ├── inference.pdiparams │ ├── inference.pdiparams.info │ └── inference.pdmodel ├── ch_ppocr_mobile_v2.0_det_infer │ ├── inference.pdiparams │ ├── inference.pdiparams.info │ └── inference.pdmodel ├── ch_ppocr_mobile_v2.0_rec_infer ├── inference.pdiparams ├── inference.pdiparams.info └── inference.pdmodel ``` ## 3.单张图像或者图像集合预测 以下代码实现了文本检测、方向分类器和识别串联推理,在执行预测时,需要通过参数image_dir指定单张图像或者图像集合的路径、参数`det_model_dir`指定检测inference模型的路径、参数`rec_model_dir`指定识别inference模型的路径、参数`use_angle_cls`指定是否使用方向分类器、参数`cls_model_dir`指定方向分类器inference模型的路径、参数`use_space_char`指定是否预测空格字符。可视化识别结果默认保存到`./inference_results`文件夹里面。 ```bash # 预测image_dir指定的单张图像 python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_ppocr_mobile_v2.0_det_infer/" --rec_model_dir="./inference/ch_ppocr_mobile_v2.0_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v2.0_cls_infer/" --use_angle_cls=True --use_space_char=True # 预测image_dir指定的图像集合 python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_ppocr_mobile_v2.0_det_infer/" --rec_model_dir="./inference/ch_ppocr_mobile_v2.0_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v2.0_cls_infer/" --use_angle_cls=True --use_space_char=True # 如果想使用CPU进行预测,需设置use_gpu参数为False python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_ppocr_mobile_v2.0_det_infer/" --rec_model_dir="./inference/ch_ppocr_mobile_v2.0_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v2.0_cls_infer/" --use_angle_cls=True --use_space_char=True --use_gpu=False ``` - 通用中文OCR模型 请按照上述步骤下载相应的模型,并且更新相关的参数,示例如下: ```bash # 预测image_dir指定的单张图像 python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_ppocr_server_v2.0_det_infer/" --rec_model_dir="./inference/ch_ppocr_server_v2.0_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v2.0_cls_infer/" --use_angle_cls=True --use_space_char=True ``` * 注意: - 如果希望使用不支持空格的识别模型,在预测的时候需要注意:请将代码更新到最新版本,并添加参数 `--use_space_char=False`。 - 如果不希望使用方向分类器,在预测的时候需要注意:请将代码更新到最新版本,并添加参数 `--use_angle_cls=False`。 更多的文本检测、识别串联推理使用方式请参考文档教程中[基于Python预测引擎推理](./inference.md)。 此外,文档教程中也提供了中文OCR模型的其他预测部署方式: - [基于C++预测引擎推理](../../deploy/cpp_infer/readme.md) - [服务部署](../../deploy/hubserving/readme.md) - [端侧部署(目前只支持静态图)](https://github.com/PaddlePaddle/PaddleOCR/tree/develop/deploy/lite)