Global: use_gpu: True epoch_num: 72 log_smooth_window: 20 print_batch_step: 10 save_model_dir: ./output/rec/rec_mv3_tps_bilstm_att/ save_epoch_step: 3 # evaluation is run every 5000 iterations after the 4000th iteration eval_batch_step: [0, 2000] cal_metric_during_train: True pretrained_model: checkpoints: save_inference_dir: use_visualdl: False infer_img: doc/imgs_words/ch/word_1.jpg # for data or label process character_dict_path: character_type: en max_text_length: 25 infer_mode: False use_space_char: False Optimizer: name: Adam beta1: 0.9 beta2: 0.999 lr: learning_rate: 0.0005 regularizer: name: 'L2' factor: 0.00001 Architecture: model_type: rec algorithm: RARE Transform: name: TPS num_fiducial: 20 loc_lr: 0.1 model_name: small Backbone: name: MobileNetV3 scale: 0.5 model_name: large Neck: name: SequenceEncoder encoder_type: rnn hidden_size: 96 Head: name: AttentionHead hidden_size: 96 Loss: name: AttentionLoss PostProcess: name: AttnLabelDecode Metric: name: RecMetric main_indicator: acc Train: dataset: name: LMDBDataSet data_dir: ./train_data/data_lmdb_release/training/ transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - AttnLabelEncode: # Class handling label - RecResizeImg: image_shape: [3, 32, 100] - KeepKeys: keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order loader: shuffle: True batch_size_per_card: 256 drop_last: True num_workers: 8 Eval: dataset: name: LMDBDataSet data_dir: ./train_data/data_lmdb_release/validation/ transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - AttnLabelEncode: # Class handling label - RecResizeImg: image_shape: [3, 32, 100] - KeepKeys: keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order loader: shuffle: False drop_last: False batch_size_per_card: 256 num_workers: 1