# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import paddle from paddle import nn import paddle.nn.functional as F class BalanceLoss(nn.Layer): def __init__(self, balance_loss=True, main_loss_type='DiceLoss', negative_ratio=3, return_origin=False, eps=1e-6, **kwargs): """ The BalanceLoss for Differentiable Binarization text detection args: balance_loss (bool): whether balance loss or not, default is True main_loss_type (str): can only be one of ['CrossEntropy','DiceLoss', 'Euclidean','BCELoss', 'MaskL1Loss'], default is 'DiceLoss'. negative_ratio (int|float): float, default is 3. return_origin (bool): whether return unbalanced loss or not, default is False. eps (float): default is 1e-6. """ super(BalanceLoss, self).__init__() self.balance_loss = balance_loss self.main_loss_type = main_loss_type self.negative_ratio = negative_ratio self.return_origin = return_origin self.eps = eps if self.main_loss_type == "CrossEntropy": self.loss = nn.CrossEntropyLoss() elif self.main_loss_type == "Euclidean": self.loss = nn.MSELoss() elif self.main_loss_type == "DiceLoss": self.loss = DiceLoss(self.eps) elif self.main_loss_type == "BCELoss": self.loss = BCELoss(reduction='none') elif self.main_loss_type == "MaskL1Loss": self.loss = MaskL1Loss(self.eps) else: loss_type = [ 'CrossEntropy', 'DiceLoss', 'Euclidean', 'BCELoss', 'MaskL1Loss' ] raise Exception( "main_loss_type in BalanceLoss() can only be one of {}".format( loss_type)) def forward(self, pred, gt, mask=None): """ The BalanceLoss for Differentiable Binarization text detection args: pred (variable): predicted feature maps. gt (variable): ground truth feature maps. mask (variable): masked maps. return: (variable) balanced loss """ positive = gt * mask negative = (1 - gt) * mask positive_count = int(positive.sum()) negative_count = int( min(negative.sum(), positive_count * self.negative_ratio)) loss = self.loss(pred, gt, mask=mask) if not self.balance_loss: return loss positive_loss = positive * loss negative_loss = negative * loss negative_loss = paddle.reshape(negative_loss, shape=[-1]) if negative_count > 0: sort_loss = negative_loss.sort(descending=True) negative_loss = sort_loss[:negative_count] # negative_loss, _ = paddle.topk(negative_loss, k=negative_count_int) balance_loss = (positive_loss.sum() + negative_loss.sum()) / ( positive_count + negative_count + self.eps) else: balance_loss = positive_loss.sum() / (positive_count + self.eps) if self.return_origin: return balance_loss, loss return balance_loss class DiceLoss(nn.Layer): def __init__(self, eps=1e-6): super(DiceLoss, self).__init__() self.eps = eps def forward(self, pred, gt, mask, weights=None): """ DiceLoss function. """ assert pred.shape == gt.shape assert pred.shape == mask.shape if weights is not None: assert weights.shape == mask.shape mask = weights * mask intersection = paddle.sum(pred * gt * mask) union = paddle.sum(pred * mask) + paddle.sum(gt * mask) + self.eps loss = 1 - 2.0 * intersection / union assert loss <= 1 return loss class MaskL1Loss(nn.Layer): def __init__(self, eps=1e-6): super(MaskL1Loss, self).__init__() self.eps = eps def forward(self, pred, gt, mask): """ Mask L1 Loss """ loss = (paddle.abs(pred - gt) * mask).sum() / (mask.sum() + self.eps) loss = paddle.mean(loss) return loss class BCELoss(nn.Layer): def __init__(self, reduction='mean'): super(BCELoss, self).__init__() self.reduction = reduction def forward(self, input, label, mask=None, weight=None, name=None): loss = F.binary_cross_entropy(input, label, reduction=self.reduction) return loss