// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include namespace PaddleOCR { void CRNNRecognizer::Run(std::vector>> boxes, cv::Mat &img, Classifier *cls) { cv::Mat srcimg; img.copyTo(srcimg); cv::Mat crop_img; cv::Mat resize_img; std::cout << "The predicted text is :" << std::endl; int index = 0; for (int i = boxes.size() - 1; i >= 0; i--) { crop_img = GetRotateCropImage(srcimg, boxes[i]); if (cls != nullptr) { crop_img = cls->Run(crop_img); } float wh_ratio = float(crop_img.cols) / float(crop_img.rows); this->resize_op_.Run(crop_img, resize_img, wh_ratio); this->normalize_op_.Run(&resize_img, this->mean_, this->scale_, this->is_scale_); std::vector input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f); this->permute_op_.Run(&resize_img, input.data()); // Inference. if (this->use_zero_copy_run_) { auto input_names = this->predictor_->GetInputNames(); auto input_t = this->predictor_->GetInputTensor(input_names[0]); input_t->Reshape({1, 3, resize_img.rows, resize_img.cols}); input_t->copy_from_cpu(input.data()); this->predictor_->ZeroCopyRun(); } else { paddle::PaddleTensor input_t; input_t.shape = {1, 3, resize_img.rows, resize_img.cols}; input_t.data = paddle::PaddleBuf(input.data(), input.size() * sizeof(float)); input_t.dtype = PaddleDType::FLOAT32; std::vector outputs; this->predictor_->Run({input_t}, &outputs, 1); } std::vector rec_idx; auto output_names = this->predictor_->GetOutputNames(); auto output_t = this->predictor_->GetOutputTensor(output_names[0]); auto rec_idx_lod = output_t->lod(); auto shape_out = output_t->shape(); int out_num = std::accumulate(shape_out.begin(), shape_out.end(), 1, std::multiplies()); rec_idx.resize(out_num); output_t->copy_to_cpu(rec_idx.data()); std::vector pred_idx; for (int n = int(rec_idx_lod[0][0]); n < int(rec_idx_lod[0][1]); n++) { pred_idx.push_back(int(rec_idx[n])); } if (pred_idx.size() < 1e-3) continue; index += 1; std::cout << index << "\t"; for (int n = 0; n < pred_idx.size(); n++) { std::cout << label_list_[pred_idx[n]]; } std::vector predict_batch; auto output_t_1 = this->predictor_->GetOutputTensor(output_names[1]); auto predict_lod = output_t_1->lod(); auto predict_shape = output_t_1->shape(); int out_num_1 = std::accumulate(predict_shape.begin(), predict_shape.end(), 1, std::multiplies()); predict_batch.resize(out_num_1); output_t_1->copy_to_cpu(predict_batch.data()); int argmax_idx; int blank = predict_shape[1]; float score = 0.f; int count = 0; float max_value = 0.0f; for (int n = predict_lod[0][0]; n < predict_lod[0][1] - 1; n++) { argmax_idx = int(Utility::argmax(&predict_batch[n * predict_shape[1]], &predict_batch[(n + 1) * predict_shape[1]])); max_value = float(*std::max_element(&predict_batch[n * predict_shape[1]], &predict_batch[(n + 1) * predict_shape[1]])); if (blank - 1 - argmax_idx > 1e-5) { score += max_value; count += 1; } } score /= count; std::cout << "\tscore: " << score << std::endl; } } void CRNNRecognizer::LoadModel(const std::string &model_dir) { AnalysisConfig config; config.SetModel(model_dir + "/model", model_dir + "/params"); if (this->use_gpu_) { config.EnableUseGpu(this->gpu_mem_, this->gpu_id_); } else { config.DisableGpu(); if (this->use_mkldnn_) { config.EnableMKLDNN(); } config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_); } // false for zero copy tensor // true for commom tensor config.SwitchUseFeedFetchOps(!this->use_zero_copy_run_); // true for multiple input config.SwitchSpecifyInputNames(true); config.SwitchIrOptim(true); config.EnableMemoryOptim(); config.DisableGlogInfo(); this->predictor_ = CreatePaddlePredictor(config); } cv::Mat CRNNRecognizer::GetRotateCropImage(const cv::Mat &srcimage, std::vector> box) { cv::Mat image; srcimage.copyTo(image); std::vector> points = box; int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]}; int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]}; int left = int(*std::min_element(x_collect, x_collect + 4)); int right = int(*std::max_element(x_collect, x_collect + 4)); int top = int(*std::min_element(y_collect, y_collect + 4)); int bottom = int(*std::max_element(y_collect, y_collect + 4)); cv::Mat img_crop; image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop); for (int i = 0; i < points.size(); i++) { points[i][0] -= left; points[i][1] -= top; } int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) + pow(points[0][1] - points[1][1], 2))); int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) + pow(points[0][1] - points[3][1], 2))); cv::Point2f pts_std[4]; pts_std[0] = cv::Point2f(0., 0.); pts_std[1] = cv::Point2f(img_crop_width, 0.); pts_std[2] = cv::Point2f(img_crop_width, img_crop_height); pts_std[3] = cv::Point2f(0.f, img_crop_height); cv::Point2f pointsf[4]; pointsf[0] = cv::Point2f(points[0][0], points[0][1]); pointsf[1] = cv::Point2f(points[1][0], points[1][1]); pointsf[2] = cv::Point2f(points[2][0], points[2][1]); pointsf[3] = cv::Point2f(points[3][0], points[3][1]); cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std); cv::Mat dst_img; cv::warpPerspective(img_crop, dst_img, M, cv::Size(img_crop_width, img_crop_height), cv::BORDER_REPLICATE); if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) { cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth()); cv::transpose(dst_img, srcCopy); cv::flip(srcCopy, srcCopy, 0); return srcCopy; } else { return dst_img; } } } // namespace PaddleOCR