# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.append(os.path.abspath(os.path.join(__dir__, '..'))) from ppocr.utils.logging import get_logger logger = get_logger() import cv2 import numpy as np import time from PIL import Image from ppocr.utils.utility import get_image_file_list from tools.infer.utility import draw_ocr, draw_boxes, str2bool from ppstructure.utility import draw_structure_result from ppstructure.predict_system import to_excel import requests import json import base64 def cv2_to_base64(image): return base64.b64encode(image).decode('utf8') def draw_server_result(image_file, res): img = cv2.imread(image_file) image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) if len(res) == 0: return np.array(image) keys = res[0].keys() if 'text_region' not in keys: # for ocr_rec, draw function is invalid logger.info("draw function is invalid for ocr_rec!") return None elif 'text' not in keys: # for ocr_det logger.info("draw text boxes only!") boxes = [] for dno in range(len(res)): boxes.append(res[dno]['text_region']) boxes = np.array(boxes) draw_img = draw_boxes(image, boxes) return draw_img else: # for ocr_system logger.info("draw boxes and texts!") boxes = [] texts = [] scores = [] for dno in range(len(res)): boxes.append(res[dno]['text_region']) texts.append(res[dno]['text']) scores.append(res[dno]['confidence']) boxes = np.array(boxes) scores = np.array(scores) draw_img = draw_ocr( image, boxes, texts, scores, draw_txt=True, drop_score=0.5) return draw_img def save_structure_res(res, save_folder, image_file): img = cv2.imread(image_file) excel_save_folder = os.path.join(save_folder, os.path.basename(image_file)) os.makedirs(excel_save_folder, exist_ok=True) # save res with open( os.path.join(excel_save_folder, 'res.txt'), 'w', encoding='utf8') as f: for region in res: if region['type'] == 'Table': excel_path = os.path.join(excel_save_folder, '{}.xlsx'.format(region['bbox'])) to_excel(region['res'], excel_path) elif region['type'] == 'Figure': x1, y1, x2, y2 = region['bbox'] print(region['bbox']) roi_img = img[y1:y2, x1:x2, :] img_path = os.path.join(excel_save_folder, '{}.jpg'.format(region['bbox'])) cv2.imwrite(img_path, roi_img) else: for text_result in region['res']: f.write('{}\n'.format(json.dumps(text_result))) def main(args): image_file_list = get_image_file_list(args.image_dir) is_visualize = False headers = {"Content-type": "application/json"} cnt = 0 total_time = 0 for image_file in image_file_list: img = open(image_file, 'rb').read() if img is None: logger.info("error in loading image:{}".format(image_file)) continue img_name = os.path.basename(image_file) # 发送HTTP请求 starttime = time.time() data = {'images': [cv2_to_base64(img)]} r = requests.post( url=args.server_url, headers=headers, data=json.dumps(data)) elapse = time.time() - starttime total_time += elapse logger.info("Predict time of %s: %.3fs" % (image_file, elapse)) res = r.json()["results"][0] logger.info(res) if args.visualize: draw_img = None if 'structure_table' in args.server_url: to_excel(res['html'], './{}.xlsx'.format(img_name)) elif 'structure_system' in args.server_url: save_structure_res(res['regions'], args.output, image_file) else: draw_img = draw_server_result(image_file, res) if draw_img is not None: if not os.path.exists(args.output): os.makedirs(args.output) cv2.imwrite( os.path.join(args.output, os.path.basename(image_file)), draw_img[:, :, ::-1]) logger.info("The visualized image saved in {}".format( os.path.join(args.output, os.path.basename(image_file)))) cnt += 1 if cnt % 100 == 0: logger.info("{} processed".format(cnt)) logger.info("avg time cost: {}".format(float(total_time) / cnt)) def parse_args(): import argparse parser = argparse.ArgumentParser(description="args for hub serving") parser.add_argument("--server_url", type=str, required=True) parser.add_argument("--image_dir", type=str, required=True) parser.add_argument("--visualize", type=str2bool, default=False) parser.add_argument("--output", type=str, default='./hubserving_result') args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() main(args)