# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import cv2 import random import numpy as np from PIL import Image from shapely.geometry import Polygon from ppocr.data.imaug.iaa_augment import IaaAugment from ppocr.data.imaug.random_crop_data import is_poly_outside_rect def get_rotate_crop_image(img, points): ''' img_height, img_width = img.shape[0:2] left = int(np.min(points[:, 0])) right = int(np.max(points[:, 0])) top = int(np.min(points[:, 1])) bottom = int(np.max(points[:, 1])) img_crop = img[top:bottom, left:right, :].copy() points[:, 0] = points[:, 0] - left points[:, 1] = points[:, 1] - top ''' img_crop_width = int( max( np.linalg.norm(points[0] - points[1]), np.linalg.norm(points[2] - points[3]))) img_crop_height = int( max( np.linalg.norm(points[0] - points[3]), np.linalg.norm(points[1] - points[2]))) pts_std = np.float32([[0, 0], [img_crop_width, 0], [img_crop_width, img_crop_height], [0, img_crop_height]]) M = cv2.getPerspectiveTransform(points, pts_std) dst_img = cv2.warpPerspective( img, M, (img_crop_width, img_crop_height), borderMode=cv2.BORDER_REPLICATE, flags=cv2.INTER_CUBIC) dst_img_height, dst_img_width = dst_img.shape[0:2] if dst_img_height * 1.0 / dst_img_width >= 1.5: dst_img = np.rot90(dst_img) return dst_img class CopyPaste(object): def __init__(self, objects_paste_ratio=0.2, limit_paste=True, **kwargs): self.ext_data_num = 1 self.objects_paste_ratio = objects_paste_ratio self.limit_paste = limit_paste augmenter_args = [{'type': 'Resize', 'args': {'size': [0.5, 3]}}] self.aug = IaaAugment(augmenter_args) def __call__(self, data): src_img = data['image'] src_polys = data['polys'].tolist() src_ignores = data['ignore_tags'].tolist() ext_data = data['ext_data'][0] ext_image = ext_data['image'] ext_polys = ext_data['polys'] ext_ignores = ext_data['ignore_tags'] indexs = [i for i in range(len(ext_ignores)) if not ext_ignores[i]] select_num = max( 1, min(int(self.objects_paste_ratio * len(ext_polys)), 30)) random.shuffle(indexs) select_idxs = indexs[:select_num] select_polys = ext_polys[select_idxs] select_ignores = ext_ignores[select_idxs] src_img = cv2.cvtColor(src_img, cv2.COLOR_BGR2RGB) ext_image = cv2.cvtColor(ext_image, cv2.COLOR_BGR2RGB) src_img = Image.fromarray(src_img).convert('RGBA') for poly, tag in zip(select_polys, select_ignores): box_img = get_rotate_crop_image(ext_image, poly) src_img, box = self.paste_img(src_img, box_img, src_polys) if box is not None: src_polys.append(box) src_ignores.append(tag) src_img = cv2.cvtColor(np.array(src_img), cv2.COLOR_RGB2BGR) h, w = src_img.shape[:2] src_polys = np.array(src_polys) src_polys[:, :, 0] = np.clip(src_polys[:, :, 0], 0, w) src_polys[:, :, 1] = np.clip(src_polys[:, :, 1], 0, h) data['image'] = src_img data['polys'] = src_polys data['ignore_tags'] = np.array(src_ignores) return data def paste_img(self, src_img, box_img, src_polys): box_img_pil = Image.fromarray(box_img).convert('RGBA') src_w, src_h = src_img.size box_w, box_h = box_img_pil.size if box_w > src_w or box_h > src_h: return src_img, None angle = np.random.randint(0, 360) box = np.array([[[0, 0], [box_w, 0], [box_w, box_h], [0, box_h]]]) box = rotate_bbox(box_img, box, angle)[0] paste_x, paste_y = self.select_coord(src_polys, box, src_w - box_w, src_h - box_h) if paste_x is None: return src_img, None box[:, 0] += paste_x box[:, 1] += paste_y box_img_pil = box_img_pil.rotate(angle, expand=1) r, g, b, A = box_img_pil.split() src_img.paste(box_img_pil, (paste_x, paste_y), mask=A) return src_img, box def select_coord(self, src_polys, box, endx, endy): if self.limit_paste: xmin, ymin, xmax, ymax = box[:, 0].min(), box[:, 1].min( ), box[:, 0].max(), box[:, 1].max() for _ in range(50): paste_x = random.randint(0, endx) paste_y = random.randint(0, endy) xmin1 = xmin + paste_x xmax1 = xmax + paste_x ymin1 = ymin + paste_y ymax1 = ymax + paste_y num_poly_in_rect = 0 for poly in src_polys: if not is_poly_outside_rect(poly, xmax1, ymin1, xmax1 - xmin1, ymax1 - ymin1): num_poly_in_rect += 1 break if num_poly_in_rect == 0: return paste_x, paste_y return None, None else: paste_x = random.randint(0, endx) paste_y = random.randint(0, endy) return paste_x, paste_y def get_union(pD, pG): return Polygon(pD).union(Polygon(pG)).area def get_intersection_over_union(pD, pG): return get_intersection(pD, pG) / get_union(pD, pG) def get_intersection(pD, pG): return Polygon(pD).intersection(Polygon(pG)).area def rotate_bbox(img, text_polys, angle, scale=1): """ 从给定的角度中选择一个角度,对图片和文本框进行旋转 :param img: 图片 :param text_polys: 文本框 :param degrees: 角度,可以是一个数值或者list :param same_size: 是否保持和原图一样大 :return: 旋转后的图片和角度 """ # ---------------------- 旋转图像 ---------------------- w = img.shape[1] h = img.shape[0] # 角度变弧度 rangle = np.deg2rad(angle) # 计算旋转之后图像的w, h nw = (abs(np.sin(rangle) * h) + abs(np.cos(rangle) * w)) nh = (abs(np.cos(rangle) * h) + abs(np.sin(rangle) * w)) # 构造仿射矩阵 rot_mat = cv2.getRotationMatrix2D((nw * 0.5, nh * 0.5), angle, scale) # 计算原图中心点到新图中心点的偏移量 rot_move = np.dot(rot_mat, np.array([(nw - w) * 0.5, (nh - h) * 0.5, 0])) # 更新仿射矩阵 rot_mat[0, 2] += rot_move[0] rot_mat[1, 2] += rot_move[1] # ---------------------- 矫正bbox坐标 ---------------------- # rot_mat是最终的旋转矩阵 # 获取原始bbox的四个中点,然后将这四个点转换到旋转后的坐标系下 rot_text_polys = list() for bbox in text_polys: point1 = np.dot(rot_mat, np.array([bbox[0, 0], bbox[0, 1], 1])) point2 = np.dot(rot_mat, np.array([bbox[1, 0], bbox[1, 1], 1])) point3 = np.dot(rot_mat, np.array([bbox[2, 0], bbox[2, 1], 1])) point4 = np.dot(rot_mat, np.array([bbox[3, 0], bbox[3, 1], 1])) rot_text_polys.append([point1, point2, point3, point4]) return np.array(rot_text_polys, dtype=np.float32)