diff --git a/tests/test.sh b/tests/test.sh deleted file mode 100644 index 3df0d52cc5cfa6fd8d7259d47178d8c26d2952fb..0000000000000000000000000000000000000000 --- a/tests/test.sh +++ /dev/null @@ -1,634 +0,0 @@ -#!/bin/bash -FILENAME=$1 -# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer', 'cpp_infer', 'serving_infer', 'klquant_infer'] -MODE=$2 -if [ ${MODE} = "cpp_infer" ]; then - dataline=$(awk 'NR==67, NR==81{print}' $FILENAME) -elif [ ${MODE} = "serving_infer" ]; then - dataline=$(awk 'NR==52, NR==66{print}' $FILENAME) -elif [ ${MODE} = "klquant_infer" ]; then - dataline=$(awk 'NR==82, NR==98{print}' $FILENAME) -else - dataline=$(awk 'NR==1, NR==51{print}' $FILENAME) -fi - -# parser params -IFS=$'\n' -lines=(${dataline}) - -function func_parser_key(){ - strs=$1 - IFS=":" - array=(${strs}) - tmp=${array[0]} - echo ${tmp} -} -function func_parser_value(){ - strs=$1 - IFS=":" - array=(${strs}) - tmp=${array[1]} - echo ${tmp} -} -function func_set_params(){ - key=$1 - value=$2 - if [ ${key} = "null" ];then - echo " " - elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then - echo " " - else - echo "${key}=${value}" - fi -} -function func_parser_params(){ - strs=$1 - IFS=":" - array=(${strs}) - key=${array[0]} - tmp=${array[1]} - IFS="|" - res="" - for _params in ${tmp[*]}; do - IFS="=" - array=(${_params}) - mode=${array[0]} - value=${array[1]} - if [[ ${mode} = ${MODE} ]]; then - IFS="|" - #echo $(func_set_params "${mode}" "${value}") - echo $value - break - fi - IFS="|" - done - echo ${res} -} -function status_check(){ - last_status=$1 # the exit code - run_command=$2 - run_log=$3 - if [ $last_status -eq 0 ]; then - echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log} - else - echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log} - fi -} - -IFS=$'\n' -# The training params -model_name=$(func_parser_value "${lines[1]}") -python=$(func_parser_value "${lines[2]}") -gpu_list=$(func_parser_value "${lines[3]}") -train_use_gpu_key=$(func_parser_key "${lines[4]}") -train_use_gpu_value=$(func_parser_value "${lines[4]}") -autocast_list=$(func_parser_value "${lines[5]}") -autocast_key=$(func_parser_key "${lines[5]}") -epoch_key=$(func_parser_key "${lines[6]}") -epoch_num=$(func_parser_params "${lines[6]}") -save_model_key=$(func_parser_key "${lines[7]}") -train_batch_key=$(func_parser_key "${lines[8]}") -train_batch_value=$(func_parser_params "${lines[8]}") -pretrain_model_key=$(func_parser_key "${lines[9]}") -pretrain_model_value=$(func_parser_value "${lines[9]}") -train_model_name=$(func_parser_value "${lines[10]}") -train_infer_img_dir=$(func_parser_value "${lines[11]}") -train_param_key1=$(func_parser_key "${lines[12]}") -train_param_value1=$(func_parser_value "${lines[12]}") - -trainer_list=$(func_parser_value "${lines[14]}") -trainer_norm=$(func_parser_key "${lines[15]}") -norm_trainer=$(func_parser_value "${lines[15]}") -pact_key=$(func_parser_key "${lines[16]}") -pact_trainer=$(func_parser_value "${lines[16]}") -fpgm_key=$(func_parser_key "${lines[17]}") -fpgm_trainer=$(func_parser_value "${lines[17]}") -distill_key=$(func_parser_key "${lines[18]}") -distill_trainer=$(func_parser_value "${lines[18]}") -trainer_key1=$(func_parser_key "${lines[19]}") -trainer_value1=$(func_parser_value "${lines[19]}") -trainer_key2=$(func_parser_key "${lines[20]}") -trainer_value2=$(func_parser_value "${lines[20]}") - -eval_py=$(func_parser_value "${lines[23]}") -eval_key1=$(func_parser_key "${lines[24]}") -eval_value1=$(func_parser_value "${lines[24]}") - -save_infer_key=$(func_parser_key "${lines[27]}") -export_weight=$(func_parser_key "${lines[28]}") -norm_export=$(func_parser_value "${lines[29]}") -pact_export=$(func_parser_value "${lines[30]}") -fpgm_export=$(func_parser_value "${lines[31]}") -distill_export=$(func_parser_value "${lines[32]}") -export_key1=$(func_parser_key "${lines[33]}") -export_value1=$(func_parser_value "${lines[33]}") -export_key2=$(func_parser_key "${lines[34]}") -export_value2=$(func_parser_value "${lines[34]}") - -# parser inference model -infer_model_dir_list=$(func_parser_value "${lines[36]}") -infer_export_list=$(func_parser_value "${lines[37]}") -infer_is_quant=$(func_parser_value "${lines[38]}") -# parser inference -inference_py=$(func_parser_value "${lines[39]}") -use_gpu_key=$(func_parser_key "${lines[40]}") -use_gpu_list=$(func_parser_value "${lines[40]}") -use_mkldnn_key=$(func_parser_key "${lines[41]}") -use_mkldnn_list=$(func_parser_value "${lines[41]}") -cpu_threads_key=$(func_parser_key "${lines[42]}") -cpu_threads_list=$(func_parser_value "${lines[42]}") -batch_size_key=$(func_parser_key "${lines[43]}") -batch_size_list=$(func_parser_value "${lines[43]}") -use_trt_key=$(func_parser_key "${lines[44]}") -use_trt_list=$(func_parser_value "${lines[44]}") -precision_key=$(func_parser_key "${lines[45]}") -precision_list=$(func_parser_value "${lines[45]}") -infer_model_key=$(func_parser_key "${lines[46]}") -image_dir_key=$(func_parser_key "${lines[47]}") -infer_img_dir=$(func_parser_value "${lines[47]}") -save_log_key=$(func_parser_key "${lines[48]}") -benchmark_key=$(func_parser_key "${lines[49]}") -benchmark_value=$(func_parser_value "${lines[49]}") -infer_key1=$(func_parser_key "${lines[50]}") -infer_value1=$(func_parser_value "${lines[50]}") - -# parser serving -if [ ${MODE} = "klquant_infer" ]; then - # parser inference model - infer_model_dir_list=$(func_parser_value "${lines[1]}") - infer_export_list=$(func_parser_value "${lines[2]}") - infer_is_quant=$(func_parser_value "${lines[3]}") - # parser inference - inference_py=$(func_parser_value "${lines[4]}") - use_gpu_key=$(func_parser_key "${lines[5]}") - use_gpu_list=$(func_parser_value "${lines[5]}") - use_mkldnn_key=$(func_parser_key "${lines[6]}") - use_mkldnn_list=$(func_parser_value "${lines[6]}") - cpu_threads_key=$(func_parser_key "${lines[7]}") - cpu_threads_list=$(func_parser_value "${lines[7]}") - batch_size_key=$(func_parser_key "${lines[8]}") - batch_size_list=$(func_parser_value "${lines[8]}") - use_trt_key=$(func_parser_key "${lines[9]}") - use_trt_list=$(func_parser_value "${lines[9]}") - precision_key=$(func_parser_key "${lines[10]}") - precision_list=$(func_parser_value "${lines[10]}") - infer_model_key=$(func_parser_key "${lines[11]}") - image_dir_key=$(func_parser_key "${lines[12]}") - infer_img_dir=$(func_parser_value "${lines[12]}") - save_log_key=$(func_parser_key "${lines[13]}") - benchmark_key=$(func_parser_key "${lines[14]}") - benchmark_value=$(func_parser_value "${lines[14]}") - infer_key1=$(func_parser_key "${lines[15]}") - infer_value1=$(func_parser_value "${lines[15]}") -fi -# parser serving -if [ ${MODE} = "server_infer" ]; then - trans_model_py=$(func_parser_value "${lines[1]}") - infer_model_dir_key=$(func_parser_key "${lines[2]}") - infer_model_dir_value=$(func_parser_value "${lines[2]}") - model_filename_key=$(func_parser_key "${lines[3]}") - model_filename_value=$(func_parser_value "${lines[3]}") - params_filename_key=$(func_parser_key "${lines[4]}") - params_filename_value=$(func_parser_value "${lines[4]}") - serving_server_key=$(func_parser_key "${lines[5]}") - serving_server_value=$(func_parser_value "${lines[5]}") - serving_client_key=$(func_parser_key "${lines[6]}") - serving_client_value=$(func_parser_value "${lines[6]}") - serving_dir_value=$(func_parser_value "${lines[7]}") - web_service_py=$(func_parser_value "${lines[8]}") - web_use_gpu_key=$(func_parser_key "${lines[9]}") - web_use_gpu_list=$(func_parser_value "${lines[9]}") - web_use_mkldnn_key=$(func_parser_key "${lines[10]}") - web_use_mkldnn_list=$(func_parser_value "${lines[10]}") - web_cpu_threads_key=$(func_parser_key "${lines[11]}") - web_cpu_threads_list=$(func_parser_value "${lines[11]}") - web_use_trt_key=$(func_parser_key "${lines[12]}") - web_use_trt_list=$(func_parser_value "${lines[12]}") - web_precision_key=$(func_parser_key "${lines[13]}") - web_precision_list=$(func_parser_value "${lines[13]}") - pipeline_py=$(func_parser_value "${lines[14]}") -fi - -if [ ${MODE} = "cpp_infer" ]; then - # parser cpp inference model - cpp_infer_model_dir_list=$(func_parser_value "${lines[1]}") - cpp_infer_is_quant=$(func_parser_value "${lines[2]}") - # parser cpp inference - inference_cmd=$(func_parser_value "${lines[3]}") - cpp_use_gpu_key=$(func_parser_key "${lines[4]}") - cpp_use_gpu_list=$(func_parser_value "${lines[4]}") - cpp_use_mkldnn_key=$(func_parser_key "${lines[5]}") - cpp_use_mkldnn_list=$(func_parser_value "${lines[5]}") - cpp_cpu_threads_key=$(func_parser_key "${lines[6]}") - cpp_cpu_threads_list=$(func_parser_value "${lines[6]}") - cpp_batch_size_key=$(func_parser_key "${lines[7]}") - cpp_batch_size_list=$(func_parser_value "${lines[7]}") - cpp_use_trt_key=$(func_parser_key "${lines[8]}") - cpp_use_trt_list=$(func_parser_value "${lines[8]}") - cpp_precision_key=$(func_parser_key "${lines[9]}") - cpp_precision_list=$(func_parser_value "${lines[9]}") - cpp_infer_model_key=$(func_parser_key "${lines[10]}") - cpp_image_dir_key=$(func_parser_key "${lines[11]}") - cpp_infer_img_dir=$(func_parser_value "${lines[12]}") - cpp_infer_key1=$(func_parser_key "${lines[13]}") - cpp_infer_value1=$(func_parser_value "${lines[13]}") - cpp_benchmark_key=$(func_parser_key "${lines[14]}") - cpp_benchmark_value=$(func_parser_value "${lines[14]}") -fi - - - -LOG_PATH="./tests/output" -mkdir -p ${LOG_PATH} -status_log="${LOG_PATH}/results.log" - - -function func_inference(){ - IFS='|' - _python=$1 - _script=$2 - _model_dir=$3 - _log_path=$4 - _img_dir=$5 - _flag_quant=$6 - # inference - for use_gpu in ${use_gpu_list[*]}; do - if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then - for use_mkldnn in ${use_mkldnn_list[*]}; do - if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then - continue - fi - for threads in ${cpu_threads_list[*]}; do - for batch_size in ${batch_size_list[*]}; do - _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log" - set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}") - set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}") - set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}") - set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}") - set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}") - set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}") - command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 " - eval $command - last_status=${PIPESTATUS[0]} - eval "cat ${_save_log_path}" - status_check $last_status "${command}" "${status_log}" - done - done - done - elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then - for use_trt in ${use_trt_list[*]}; do - for precision in ${precision_list[*]}; do - if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then - continue - fi - if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then - continue - fi - if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then - continue - fi - for batch_size in ${batch_size_list[*]}; do - _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log" - set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}") - set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}") - set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}") - set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}") - set_precision=$(func_set_params "${precision_key}" "${precision}") - set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}") - set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}") - command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 " - eval $command - last_status=${PIPESTATUS[0]} - eval "cat ${_save_log_path}" - status_check $last_status "${command}" "${status_log}" - - done - done - done - else - echo "Does not support hardware other than CPU and GPU Currently!" - fi - done -} -function func_serving(){ - IFS='|' - _python=$1 - _script=$2 - _model_dir=$3 - # pdserving - set_dirname=$(func_set_params "${infer_model_dir_key}" "${infer_model_dir_value}") - set_model_filename=$(func_set_params "${model_filename_key}" "${model_filename_value}") - set_params_filename=$(func_set_params "${params_filename_key}" "${params_filename_value}") - set_serving_server=$(func_set_params "${serving_server_key}" "${serving_server_value}") - set_serving_client=$(func_set_params "${serving_client_key}" "${serving_client_value}") - trans_model_cmd="${python} ${trans_model_py} ${set_dirname} ${set_model_filename} ${set_params_filename} ${set_serving_server} ${set_serving_client}" - eval $trans_model_cmd - cd ${serving_dir_value} - echo $PWD - unset https_proxy - unset http_proxy - for use_gpu in ${web_use_gpu_list[*]}; do - echo ${ues_gpu} - if [ ${use_gpu} = "null" ]; then - for use_mkldnn in ${web_use_mkldnn_list[*]}; do - if [ ${use_mkldnn} = "False" ]; then - continue - fi - for threads in ${web_cpu_threads_list[*]}; do - _save_log_path="${_log_path}/server_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_1.log" - set_cpu_threads=$(func_set_params "${web_cpu_threads_key}" "${threads}") - web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${web_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} &>${_save_log_path} &" - eval $web_service_cmd - sleep 2s - pipeline_cmd="${python} ${pipeline_py}" - eval $pipeline_cmd - last_status=${PIPESTATUS[0]} - eval "cat ${_save_log_path}" - status_check $last_status "${pipeline_cmd}" "${status_log}" - PID=$! - kill $PID - sleep 2s - ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9 - done - done - elif [ ${use_gpu} = "0" ]; then - for use_trt in ${web_use_trt_list[*]}; do - for precision in ${web_precision_list[*]}; do - if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then - continue - fi - if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then - continue - fi - if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [[ ${_flag_quant} = "True" ]]; then - continue - fi - _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_1.log" - set_tensorrt=$(func_set_params "${web_use_trt_key}" "${use_trt}") - set_precision=$(func_set_params "${web_precision_key}" "${precision}") - web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} &>${_save_log_path} & " - eval $web_service_cmd - sleep 2s - pipeline_cmd="${python} ${pipeline_py}" - eval $pipeline_cmd - last_status=${PIPESTATUS[0]} - eval "cat ${_save_log_path}" - status_check $last_status "${pipeline_cmd}" "${status_log}" - PID=$! - kill $PID - sleep 2s - ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9 - done - done - else - echo "Does not support hardware other than CPU and GPU Currently!" - fi - done -} - -function func_cpp_inference(){ - IFS='|' - _script=$1 - _model_dir=$2 - _log_path=$3 - _img_dir=$4 - _flag_quant=$5 - # inference - for use_gpu in ${cpp_use_gpu_list[*]}; do - if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then - for use_mkldnn in ${cpp_use_mkldnn_list[*]}; do - if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then - continue - fi - for threads in ${cpp_cpu_threads_list[*]}; do - for batch_size in ${cpp_batch_size_list[*]}; do - _save_log_path="${_log_path}/cpp_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log" - set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}") - set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}") - set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}") - set_cpu_threads=$(func_set_params "${cpp_cpu_threads_key}" "${threads}") - set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}") - set_infer_params1=$(func_set_params "${cpp_infer_key1}" "${cpp_infer_value1}") - command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${cpp_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 " - eval $command - last_status=${PIPESTATUS[0]} - eval "cat ${_save_log_path}" - status_check $last_status "${command}" "${status_log}" - done - done - done - elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then - for use_trt in ${cpp_use_trt_list[*]}; do - for precision in ${cpp_precision_list[*]}; do - if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then - continue - fi - if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then - continue - fi - if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then - continue - fi - for batch_size in ${cpp_batch_size_list[*]}; do - _save_log_path="${_log_path}/cpp_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log" - set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}") - set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}") - set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}") - set_tensorrt=$(func_set_params "${cpp_use_trt_key}" "${use_trt}") - set_precision=$(func_set_params "${cpp_precision_key}" "${precision}") - set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}") - set_infer_params1=$(func_set_params "${cpp_infer_key1}" "${cpp_infer_value1}") - command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 " - eval $command - last_status=${PIPESTATUS[0]} - eval "cat ${_save_log_path}" - status_check $last_status "${command}" "${status_log}" - - done - done - done - else - echo "Does not support hardware other than CPU and GPU Currently!" - fi - done -} - -if [ ${MODE} = "infer" ] || [ ${MODE} = "klquant_infer" ]; then - GPUID=$3 - if [ ${#GPUID} -le 0 ];then - env=" " - else - env="export CUDA_VISIBLE_DEVICES=${GPUID}" - fi - # set CUDA_VISIBLE_DEVICES - eval $env - export Count=0 - IFS="|" - infer_run_exports=(${infer_export_list}) - infer_quant_flag=(${infer_is_quant}) - for infer_model in ${infer_model_dir_list[*]}; do - # run export - if [ ${infer_run_exports[Count]} != "null" ];then - save_infer_dir=$(dirname $infer_model) - set_export_weight=$(func_set_params "${export_weight}" "${infer_model}") - set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}") - export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}" - echo ${infer_run_exports[Count]} - echo $export_cmd - eval $export_cmd - status_export=$? - status_check $status_export "${export_cmd}" "${status_log}" - else - save_infer_dir=${infer_model} - fi - #run inference - is_quant=${infer_quant_flag[Count]} - func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant} - Count=$(($Count + 1)) - done -elif [ ${MODE} = "cpp_infer" ]; then - GPUID=$3 - if [ ${#GPUID} -le 0 ];then - env=" " - else - env="export CUDA_VISIBLE_DEVICES=${GPUID}" - fi - # set CUDA_VISIBLE_DEVICES - eval $env - export Count=0 - IFS="|" - infer_quant_flag=(${cpp_infer_is_quant}) - for infer_model in ${cpp_infer_model_dir_list[*]}; do - #run inference - is_quant=${infer_quant_flag[Count]} - func_cpp_inference "${inference_cmd}" "${infer_model}" "${LOG_PATH}" "${cpp_infer_img_dir}" ${is_quant} - Count=$(($Count + 1)) - done - -elif [ ${MODE} = "serving_infer" ]; then - GPUID=$3 - if [ ${#GPUID} -le 0 ];then - env=" " - else - env="export CUDA_VISIBLE_DEVICES=${GPUID}" - fi - # set CUDA_VISIBLE_DEVICES - eval $env - export Count=0 - IFS="|" - #run serving - func_serving "${web_service_cmd}" - - - -else - IFS="|" - export Count=0 - USE_GPU_KEY=(${train_use_gpu_value}) - for gpu in ${gpu_list[*]}; do - use_gpu=${USE_GPU_KEY[Count]} - Count=$(($Count + 1)) - if [ ${gpu} = "-1" ];then - env="" - elif [ ${#gpu} -le 1 ];then - env="export CUDA_VISIBLE_DEVICES=${gpu}" - eval ${env} - elif [ ${#gpu} -le 15 ];then - IFS="," - array=(${gpu}) - env="export CUDA_VISIBLE_DEVICES=${array[0]}" - IFS="|" - else - IFS=";" - array=(${gpu}) - ips=${array[0]} - gpu=${array[1]} - IFS="|" - env=" " - fi - for autocast in ${autocast_list[*]}; do - for trainer in ${trainer_list[*]}; do - flag_quant=False - if [ ${trainer} = ${pact_key} ]; then - run_train=${pact_trainer} - run_export=${pact_export} - flag_quant=True - elif [ ${trainer} = "${fpgm_key}" ]; then - run_train=${fpgm_trainer} - run_export=${fpgm_export} - elif [ ${trainer} = "${distill_key}" ]; then - run_train=${distill_trainer} - run_export=${distill_export} - elif [ ${trainer} = ${trainer_key1} ]; then - run_train=${trainer_value1} - run_export=${export_value1} - elif [[ ${trainer} = ${trainer_key2} ]]; then - run_train=${trainer_value2} - run_export=${export_value2} - else - run_train=${norm_trainer} - run_export=${norm_export} - fi - - if [ ${run_train} = "null" ]; then - continue - fi - - set_autocast=$(func_set_params "${autocast_key}" "${autocast}") - set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}") - set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}") - set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}") - set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}") - set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}") - save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}" - - # load pretrain from norm training if current trainer is pact or fpgm trainer - if [ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]; then - set_pretrain="${load_norm_train_model}" - fi - - set_save_model=$(func_set_params "${save_model_key}" "${save_log}") - if [ ${#gpu} -le 2 ];then # train with cpu or single gpu - cmd="${python} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} " - elif [ ${#gpu} -le 15 ];then # train with multi-gpu - cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}" - else # train with multi-machine - cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}" - fi - # run train - eval "unset CUDA_VISIBLE_DEVICES" - eval $cmd - status_check $? "${cmd}" "${status_log}" - - set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}") - # save norm trained models to set pretrain for pact training and fpgm training - if [ ${trainer} = ${trainer_norm} ]; then - load_norm_train_model=${set_eval_pretrain} - fi - # run eval - if [ ${eval_py} != "null" ]; then - set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}") - eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}" - eval $eval_cmd - status_check $? "${eval_cmd}" "${status_log}" - fi - # run export model - if [ ${run_export} != "null" ]; then - # run export model - save_infer_path="${save_log}" - set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${train_model_name}") - set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}") - export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key}" - eval $export_cmd - status_check $? "${export_cmd}" "${status_log}" - - #run inference - eval $env - save_infer_path="${save_log}" - func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}" - eval "unset CUDA_VISIBLE_DEVICES" - fi - done # done with: for trainer in ${trainer_list[*]}; do - done # done with: for autocast in ${autocast_list[*]}; do - done # done with: for gpu in ${gpu_list[*]}; do -fi # end if [ ${MODE} = "infer" ]; then diff --git a/tests/test_python.sh b/tests/test_python.sh index 2f5fdf4e8dc63a0ebb33c7880bc08c24be759740..715932ef45aeef68329892cca4077132934ceef8 100644 --- a/tests/test_python.sh +++ b/tests/test_python.sh @@ -2,12 +2,20 @@ source tests/common_func.sh FILENAME=$1 -dataline=$(awk 'NR==1, NR==51{print}' $FILENAME) +# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer', 'klquant_infer'] +MODE=$2 + +if [ ${MODE} = "klquant_infer" ]; then + dataline=$(awk 'NR==82, NR==98{print}' $FILENAME) +else + dataline=$(awk 'NR==1, NR==51{print}' $FILENAME) +fi # parser params IFS=$'\n' lines=(${dataline}) +IFS=$'\n' # The training params model_name=$(func_parser_value "${lines[1]}") python=$(func_parser_value "${lines[2]}") @@ -84,10 +92,39 @@ benchmark_value=$(func_parser_value "${lines[49]}") infer_key1=$(func_parser_key "${lines[50]}") infer_value1=$(func_parser_value "${lines[50]}") +# parser serving +if [ ${MODE} = "klquant_infer" ]; then + # parser inference model + infer_model_dir_list=$(func_parser_value "${lines[1]}") + infer_export_list=$(func_parser_value "${lines[2]}") + infer_is_quant=$(func_parser_value "${lines[3]}") + # parser inference + inference_py=$(func_parser_value "${lines[4]}") + use_gpu_key=$(func_parser_key "${lines[5]}") + use_gpu_list=$(func_parser_value "${lines[5]}") + use_mkldnn_key=$(func_parser_key "${lines[6]}") + use_mkldnn_list=$(func_parser_value "${lines[6]}") + cpu_threads_key=$(func_parser_key "${lines[7]}") + cpu_threads_list=$(func_parser_value "${lines[7]}") + batch_size_key=$(func_parser_key "${lines[8]}") + batch_size_list=$(func_parser_value "${lines[8]}") + use_trt_key=$(func_parser_key "${lines[9]}") + use_trt_list=$(func_parser_value "${lines[9]}") + precision_key=$(func_parser_key "${lines[10]}") + precision_list=$(func_parser_value "${lines[10]}") + infer_model_key=$(func_parser_key "${lines[11]}") + image_dir_key=$(func_parser_key "${lines[12]}") + infer_img_dir=$(func_parser_value "${lines[12]}") + save_log_key=$(func_parser_key "${lines[13]}") + benchmark_key=$(func_parser_key "${lines[14]}") + benchmark_value=$(func_parser_value "${lines[14]}") + infer_key1=$(func_parser_key "${lines[15]}") + infer_value1=$(func_parser_value "${lines[15]}") +fi LOG_PATH="./tests/output" mkdir -p ${LOG_PATH} -status_log="${LOG_PATH}/results_python.log" +status_log="${LOG_PATH}/results.log" function func_inference(){ @@ -158,16 +195,148 @@ function func_inference(){ done } - -# set cuda device -GPUID=$2 -if [ ${#GPUID} -le 0 ];then - env=" " +if [ ${MODE} = "infer" ] || [ ${MODE} = "klquant_infer" ]; then + GPUID=$3 + if [ ${#GPUID} -le 0 ];then + env=" " + else + env="export CUDA_VISIBLE_DEVICES=${GPUID}" + fi + # set CUDA_VISIBLE_DEVICES + eval $env + export Count=0 + IFS="|" + infer_run_exports=(${infer_export_list}) + infer_quant_flag=(${infer_is_quant}) + for infer_model in ${infer_model_dir_list[*]}; do + # run export + if [ ${infer_run_exports[Count]} != "null" ];then + save_infer_dir=$(dirname $infer_model) + set_export_weight=$(func_set_params "${export_weight}" "${infer_model}") + set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}") + export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}" + echo ${infer_run_exports[Count]} + echo $export_cmd + eval $export_cmd + status_export=$? + status_check $status_export "${export_cmd}" "${status_log}" + else + save_infer_dir=${infer_model} + fi + #run inference + is_quant=${infer_quant_flag[Count]} + func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant} + Count=$(($Count + 1)) + done else - env="export CUDA_VISIBLE_DEVICES=${GPUID}" -fi -set CUDA_VISIBLE_DEVICES -eval $env + IFS="|" + export Count=0 + USE_GPU_KEY=(${train_use_gpu_value}) + for gpu in ${gpu_list[*]}; do + use_gpu=${USE_GPU_KEY[Count]} + Count=$(($Count + 1)) + if [ ${gpu} = "-1" ];then + env="" + elif [ ${#gpu} -le 1 ];then + env="export CUDA_VISIBLE_DEVICES=${gpu}" + eval ${env} + elif [ ${#gpu} -le 15 ];then + IFS="," + array=(${gpu}) + env="export CUDA_VISIBLE_DEVICES=${array[0]}" + IFS="|" + else + IFS=";" + array=(${gpu}) + ips=${array[0]} + gpu=${array[1]} + IFS="|" + env=" " + fi + for autocast in ${autocast_list[*]}; do + for trainer in ${trainer_list[*]}; do + flag_quant=False + if [ ${trainer} = ${pact_key} ]; then + run_train=${pact_trainer} + run_export=${pact_export} + flag_quant=True + elif [ ${trainer} = "${fpgm_key}" ]; then + run_train=${fpgm_trainer} + run_export=${fpgm_export} + elif [ ${trainer} = "${distill_key}" ]; then + run_train=${distill_trainer} + run_export=${distill_export} + elif [ ${trainer} = ${trainer_key1} ]; then + run_train=${trainer_value1} + run_export=${export_value1} + elif [[ ${trainer} = ${trainer_key2} ]]; then + run_train=${trainer_value2} + run_export=${export_value2} + else + run_train=${norm_trainer} + run_export=${norm_export} + fi + + if [ ${run_train} = "null" ]; then + continue + fi + + set_autocast=$(func_set_params "${autocast_key}" "${autocast}") + set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}") + set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}") + set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}") + set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}") + set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}") + save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}" + + # load pretrain from norm training if current trainer is pact or fpgm trainer + if [ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]; then + set_pretrain="${load_norm_train_model}" + fi + set_save_model=$(func_set_params "${save_model_key}" "${save_log}") + if [ ${#gpu} -le 2 ];then # train with cpu or single gpu + cmd="${python} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} " + elif [ ${#gpu} -le 15 ];then # train with multi-gpu + cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}" + else # train with multi-machine + cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}" + fi + # run train + eval "unset CUDA_VISIBLE_DEVICES" + eval $cmd + status_check $? "${cmd}" "${status_log}" + + set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}") + # save norm trained models to set pretrain for pact training and fpgm training + if [ ${trainer} = ${trainer_norm} ]; then + load_norm_train_model=${set_eval_pretrain} + fi + # run eval + if [ ${eval_py} != "null" ]; then + set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}") + eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}" + eval $eval_cmd + status_check $? "${eval_cmd}" "${status_log}" + fi + # run export model + if [ ${run_export} != "null" ]; then + # run export model + save_infer_path="${save_log}" + set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${train_model_name}") + set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}") + export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key}" + eval $export_cmd + status_check $? "${export_cmd}" "${status_log}" + + #run inference + eval $env + save_infer_path="${save_log}" + func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}" + eval "unset CUDA_VISIBLE_DEVICES" + fi + done # done with: for trainer in ${trainer_list[*]}; do + done # done with: for autocast in ${autocast_list[*]}; do + done # done with: for gpu in ${gpu_list[*]}; do +fi # end if [ ${MODE} = "infer" ]; then -echo "################### run test ###################"