diff --git a/deploy/lite/readme.md b/deploy/lite/readme.md index e678b2f6164dbfb82c690b55b43f9f66055a24ef..c4f777e66769bdbc6c95ef52885ab459e54e62a1 100644 --- a/deploy/lite/readme.md +++ b/deploy/lite/readme.md @@ -24,15 +24,7 @@ Paddle Lite是飞桨轻量化推理引擎,为手机、IOT端提供高效推理 ### 1.2 准备预测库 预测库有两种获取方式: -- 1. 直接下载,预测库下载链接如下: - |平台|预测库下载链接| - |-|-| - |Android|[arm7](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.6.3/inference_lite_lib.android.armv7.gcc.c++_shared.with_extra.with_cv.tar.gz) / [arm8](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.6.3/inference_lite_lib.android.armv8.gcc.c++_shared.with_extra.with_cv.tar.gz)| - |IOS|[arm7](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.6.3/inference_lite_lib.ios.armv7.with_cv.with_extra.with_log.tiny_publish.tar.gz) / [arm8](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.6.3/inference_lite_lib.ios.armv8.with_cv.with_extra.with_log.tiny_publish.tar.gz)| - - 注:1. 上述预测库为PaddleLite 2.6.3分支编译得到,有关PaddleLite 2.6.3 详细信息可参考[链接](https://github.com/PaddlePaddle/Paddle-Lite/releases/tag/v2.6.3)。 - -- 2. [推荐]编译Paddle-Lite得到预测库,Paddle-Lite的编译方式如下: +- 1. [推荐]编译Paddle-Lite得到预测库,Paddle-Lite的编译方式如下: ``` git clone https://github.com/PaddlePaddle/Paddle-Lite.git cd Paddle-Lite @@ -45,6 +37,9 @@ git checkout release/v2.7 更多编译命令 介绍请参考[链接](https://paddle-lite.readthedocs.io/zh/latest/user_guides/Compile/Android.html#id2)。 +- 2. 直接下载预测库,下载[链接](https://github.com/PaddlePaddle/Paddle-Lite/releases/tag/v2.7.1) + + 直接下载预测库并解压后,可以得到`inference_lite_lib.android.armv8/`文件夹,通过编译Paddle-Lite得到的预测库位于 `Paddle-Lite/build.lite.android.armv8.gcc/inference_lite_lib.android.armv8/`文件夹下。 预测库的文件目录如下: @@ -88,11 +83,11 @@ Paddle-Lite 提供了多种策略来自动优化原始的模型,其中包括 |-|-|-|-|-|-|-| |V1.1|超轻量中文OCR 移动端模型|8.1M|[下载地址](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_det_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_cls_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_rec_opt.nb)|v2.7| |【slim】V1.1|超轻量中文OCR 移动端模型|3.5M|[下载地址](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_det_prune_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_cls_quant_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_rec_quant_opt.nb)|v2.7| -|V1.0|轻量级中文OCR 移动端模型|8.6M|[下载地址](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.0_det_opt.nb)|---|[下载地址](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.0_rec_opt.nb)|v2.7| + 注意:V1.1 3.0M 轻量模型是使用PaddleSlim优化后的,需要配合Paddle-Lite最新预测库使用。 -如果直接使用上述表格中的模型进行部署,可略过下述步骤,直接阅读 [2.2节](#2.2与手机联调)。 +如果直接使用上述表格中的模型进行部署没有问题,可略过下述步骤,直接阅读 [2.2节](#2.2与手机联调)。 如果要部署的模型不在上述表格中,则需要按照如下步骤获得优化后的模型。 @@ -184,7 +179,7 @@ wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar ``` git clone https://github.com/PaddlePaddle/PaddleOCR.git cd PaddleOCR/deploy/lite/ - # 运行prepare.sh,准备预测库文件、测试图像和使用的字典文件,并放置在预测库中的demo/cxx/ocr文件夹下 + # 运行prepare.sh,准备预测库文件、测试图像和使用的字典文件到预测库中的demo/cxx/ocr文件夹下 sh prepare.sh /{lite prediction library path}/inference_lite_lib.android.armv8 # 进入OCR demo的工作目录 diff --git a/deploy/lite/readme_en.md b/deploy/lite/readme_en.md index 0780525420c41f3609a17f50de4668a9b1f2568e..9df0ee375b35bf6a44645e0c7e16d3254c80aa8c 100644 --- a/deploy/lite/readme_en.md +++ b/deploy/lite/readme_en.md @@ -22,15 +22,7 @@ deployment solutions for end-side deployment issues. ## 3. Prepare prebuild library for android and ios -### 3.1 Download prebuild library -|Platform|Prebuild library Download Link| -|-|-| -|Android|[arm7](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.6.3/inference_lite_lib.android.armv7.gcc.c++_shared.with_extra.with_cv.tar.gz) / [arm8](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.6.3/inference_lite_lib.android.armv8.gcc.c++_shared.with_extra.with_cv.tar.gz)| -|IOS|[arm7](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.6.3/inference_lite_lib.ios.armv7.with_cv.with_extra.with_log.tiny_publish.tar.gz) / [arm8](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.6.3/inference_lite_lib.ios.armv8.with_cv.with_extra.with_log.tiny_publish.tar.gz)| - -note: The above pre-build inference library is compiled from the PaddleLite `release/v2.7` branch. For more information about PaddleLite 2.6.3, please refer to [link](https://github.com/PaddlePaddle/Paddle-Lite/releases/tag/v2.6.3). - -### 3.2 Compile prebuild library (Recommended) +### 3.1 Compile prebuild library (Recommended) ``` git clone https://github.com/PaddlePaddle/Paddle-Lite.git cd Paddle-Lite @@ -66,6 +58,11 @@ inference_lite_lib.android.armv8/ | `-- java ``` +### 3.2 Download prebuild library + +PaddleLite also provides a compiled [prediction library](https://github.com/PaddlePaddle/Paddle-Lite/releases/tag/v2.7.1), developers can try on their own. + + ## 4. Inference Model Optimization @@ -80,7 +77,6 @@ You can directly download the optimized model. | - | - | - | - | - | - | - | | V1.1 | extra-lightweight chinese OCR optimized model | 8.1M | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_det_opt.nb) | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_cls_opt.nb) | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_rec_opt.nb) | develop | | [slim] V1.1 | extra-lightweight chinese OCR optimized model | 3.5M | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_det_prune_opt.nb) | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_cls_quant_opt.nb) | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_rec_quant_opt.nb) | develop | -| V1.0 | lightweight Chinese OCR optimized model | 8.6M | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.0_det_opt.nb) | - | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.0_rec_opt.nb) | develop | If the model to be deployed is not in the above table, you need to follow the steps below to obtain the optimized model.