|table_max_len|int|488|The size of the long side of the input image of the table recognition model, the final input image size of the network is(table_max_len,table_max_len)|
|merge_no_span_structure|bool|true|Whether to merge <td> and </td> to <td></td|
* Multi-language inference is also supported in PaddleOCR, you can refer to [recognition tutorial](../../doc/doc_en/recognition_en.md) for more supported languages and models in PaddleOCR. Specifically, if you want to infer using multi-language models, you just need to modify values of `rec_char_dict_path` and `rec_model_dir`.
@@ -99,6 +99,8 @@ The following table also provides a series of models that can be deployed on mob
|Version|Introduction|Model size|Detection model|Text Direction model|Recognition model|Paddle-Lite branch|
|---|---|---|---|---|---|---|
|PP-OCRv3|extra-lightweight chinese OCR optimized model|16.2M|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.nb)|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_ppocr_mobile_v2.0_cls_infer_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.nb)|v2.10|
|PP-OCRv3(slim)|extra-lightweight chinese OCR optimized model|5.9M|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_slim_infer.nb)|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_ppocr_mobile_v2.0_cls_slim_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_slim_infer.nb)|v2.10|
|PP-OCRv2|extra-lightweight chinese OCR optimized model|11M|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_PP-OCRv2_det_infer_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_ppocr_mobile_v2.0_cls_infer_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_PP-OCRv2_rec_infer_opt.nb)|v2.10|
|PP-OCRv2(slim)|extra-lightweight chinese OCR optimized model|4.6M|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_PP-OCRv2_det_slim_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_ppocr_mobile_v2.0_cls_slim_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_PP-OCRv2_rec_slim_opt.nb)|v2.10|
...
...
@@ -134,17 +136,16 @@ Introduction to paddle_lite_opt parameters:
The following takes the ultra-lightweight Chinese model of PaddleOCR as an example to introduce the use of the compiled opt file to complete the conversion of the inference model to the Paddle-Lite optimized model
```
# 【[Recommendation] Download the Chinese and English inference model of PP-OCRv2
wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_slim_quant_infer.tar && tar xf ch_PP-OCRv2_det_slim_quant_infer.tar
wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_infer.tar && tar xf ch_PP-OCRv2_rec_slim_quant_infer.tar
# 【[Recommendation] Download the Chinese and English inference model of PP-OCRv3
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_slim_infer.tar && tar xf ch_PP-OCRv3_det_slim_infer.tar
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_slim_infer.tar && tar xf ch_PP-OCRv2_rec_slim_quant_infer.tar
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_cls_slim_infer.tar && tar xf ch_ppocr_mobile_v2.0_cls_slim_infer.tar
After the conversion is successful, there will be more files ending with `.nb` in the inference model directory, which is the successfully converted model file.
...
...
@@ -197,15 +198,15 @@ Some preparatory work is required first.
Prepare the test image, taking PaddleOCR/doc/imgs/11.jpg as an example, copy the image file to the demo/cxx/ocr/debug/ folder. Prepare the model files optimized by the lite opt tool, ch_det_mv3_db_opt.nb, ch_rec_mv3_crnn_opt.nb, and place them under the demo/cxx/ocr/debug/ folder.
Prepare the test image, taking PaddleOCR/doc/imgs/11.jpg as an example, copy the image file to the demo/cxx/ocr/debug/ folder. Prepare the model files optimized by the lite opt tool, ch_PP-OCRv3_det_slim_opt.nb , ch_PP-OCRv3_rec_slim_opt.nb , and place them under the demo/cxx/ocr/debug/ folder.
The structure of the OCR demo is as follows after the above command is executed:
```
demo/cxx/ocr/
|-- debug/
| |--ch_PP-OCRv2_det_slim_opt.nb Detection model
| |--ch_PP-OCRv2_rec_slim_opt.nb Recognition model
| |--ch_PP-OCRv3_det_slim_opt.nb Detection model
| |--ch_PP-OCRv3_rec_slim_opt.nb Recognition model
| |--ch_ppocr_mobile_v2.0_cls_slim_opt.nb Text direction classification model
| |--11.jpg Image for OCR
| |--ppocr_keys_v1.txt Dictionary file
...
...
@@ -240,7 +241,7 @@ det_db_thresh 0.3 # Used to filter the binarized image of DB prediction,
det_db_box_thresh 0.5 # DDB post-processing filter box threshold, if there is a missing box detected, it can be reduced as appropriate
det_db_unclip_ratio 1.6 # Indicates the compactness of the text box, the smaller the value, the closer the text box to the text
use_direction_classify 0 # Whether to use the direction classifier, 0 means not to use, 1 means to use
rec_image_height 32 # The height of the input image of the recognition model, the PP-OCRv3 model needs to be set to 48, and the PP-OCRv2 model needs to be set to 32
rec_image_height 48 # The height of the input image of the recognition model, the PP-OCRv3 model needs to be set to 48, and the PP-OCRv2 model needs to be set to 32
```
5. Run Model on phone
...
...
@@ -260,14 +261,14 @@ After the above steps are completed, you can use adb to push the file to the pho
export LD_LIBRARY_PATH=${PWD}:$LD_LIBRARY_PATH
# The use of ocr_db_crnn is:
# ./ocr_db_crnn Mode Detection model file Orientation classifier model file Recognition model file Hardware Precision Threads Batchsize Test image path Dictionary file path
@@ -25,7 +25,7 @@ After training, if you want to further compress the model size and accelerate th
### 1. Install PaddleSlim
```bash
pip3 install paddleslim==2.2.2
pip3 install paddleslim==2.3.2
```
...
...
@@ -39,18 +39,7 @@ Quantization training includes offline quantization training and online quantiza
Online quantization training is more effective. It is necessary to load the pre-trained model.
After the quantization strategy is defined, the model can be quantified.
The code for quantization training is located in `slim/quantization/quant.py`. For example, to train a detection model, the training instructions are as follows:
Model distillation and model quantization can be used at the same time, taking the PPOCRv3 detection model as an example:
The code for quantization training is located in `slim/quantization/quant.py`. For example, the training instructions of slim PPOCRv3 detection model are as follows:
| save_model_dir | Set model save path | output/{算法名称} | \ |
| save_model_dir | Set model save path | output/{algorithm_name} | \ |
| save_epoch_step | Set model save interval | 3 | \ |
| eval_batch_step | Set the model evaluation interval | 2000 or [1000, 2000] | running evaluation every 2000 iters or evaluation is run every 2000 iterations after the 1000th iteration |
| cal_metric_during_train | Set whether to evaluate the metric during the training process. At this time, the metric of the model under the current batch is evaluated | true | \ |