diff --git a/tests/docs/test_python.md b/tests/docs/test_python.md index 60f1958b765d094384736d441b860ae3cf076977..5a2e4b810b431c82d2c254ec48b236d719e619ab 100644 --- a/tests/docs/test_python.md +++ b/tests/docs/test_python.md @@ -10,10 +10,10 @@ Python功能测试的主程序为`test_python.sh`,可以测试基于Python的 | :---- | :---- | :---- | :---- | :---- | :---- | | DB | ch_ppocr_mobile_v2.0_det| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | 正常训练:FPGM裁剪、PACT量化
离线量化(无需训练) | | DB | ch_ppocr_server_v2.0_det| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | 正常训练:FPGM裁剪、PACT量化
离线量化(无需训练) | -| CRNN | ch_ppocr_mobile_v2.0_rec| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | 正常训练:FPGM裁剪、PACT量化
离线量化(无需训练) | -| CRNN | ch_ppocr_server_v2.0_rec| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | 正常训练:FPGM裁剪、PACT量化
离线量化(无需训练) | -|PP-OCR| ch_ppocr_mobile_v2.0| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | 正常训练:FPGM裁剪、PACT量化
离线量化(无需训练) | -|PP-OCR| ch_ppocr_server_v2.0| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | 正常训练:FPGM裁剪、PACT量化
离线量化(无需训练) | +| CRNN | ch_ppocr_mobile_v2.0_rec| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | 正常训练:PACT量化
离线量化(无需训练) | +| CRNN | ch_ppocr_server_v2.0_rec| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | 正常训练:PACT量化
离线量化(无需训练) | +|PP-OCR| ch_ppocr_mobile_v2.0| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | - | +|PP-OCR| ch_ppocr_server_v2.0| 正常训练
混合精度 | 正常训练
混合精度 | 正常训练
混合精度 | - | - 预测相关:基于训练是否使用量化,可以将训练产出的模型可以分为`正常模型`和`量化模型`,这两类模型对应的预测功能汇总如下, @@ -25,6 +25,7 @@ Python功能测试的主程序为`test_python.sh`,可以测试基于Python的 | 量化模型 | GPU | 1/6 | int8 | - | - | | 量化模型 | CPU | 1/6 | - | int8 | 支持 | + ## 2. 测试流程 ### 2.1 安装依赖 - 安装PaddlePaddle >= 2.0 @@ -44,7 +45,8 @@ Python功能测试的主程序为`test_python.sh`,可以测试基于Python的 ### 2.2 功能测试 -先运行`prepare.sh`准备数据和模型,然后运行`test_python.sh`进行测试,最终在```tests/output```目录下生成`infer_*.log`格式的日志文件。 +先运行`prepare.sh`准备数据和模型,然后运行`test_python.sh`进行测试,最终在```tests/output```目录下生成`python_infer_*.log`格式的日志文件。 + test_python.sh包含四种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是: