From e4a03137a1669837350ddb90553febed113365fc Mon Sep 17 00:00:00 2001 From: xiaoting <31891223+tink2123@users.noreply.github.com> Date: Mon, 10 Oct 2022 19:40:05 +0800 Subject: [PATCH] [cherry-pick] update paddle2onnx (#7866) * updata paddle2onnx en doc * updata paddle2onnx en doc * updata paddle2onnx en doc * Update readme.md Co-authored-by: Evezerest <50011306+Evezerest@users.noreply.github.com> --- deploy/paddle2onnx/readme.md | 210 ++++++++++++++--------------------- 1 file changed, 82 insertions(+), 128 deletions(-) diff --git a/deploy/paddle2onnx/readme.md b/deploy/paddle2onnx/readme.md index 8e821892..bac29784 100644 --- a/deploy/paddle2onnx/readme.md +++ b/deploy/paddle2onnx/readme.md @@ -1,63 +1,64 @@ -# Paddle2ONNX模型转化与预测 +# Paddle2ONNX model transformation and prediction -本章节介绍 PaddleOCR 模型如何转化为 ONNX 模型,并基于 ONNXRuntime 引擎预测。 +This chapter describes how the PaddleOCR model is converted into an ONNX model and predicted based on the ONNXRuntime engine. -## 1. 环境准备 +## 1. Environment preparation -需要准备 PaddleOCR、Paddle2ONNX 模型转化环境,和 ONNXRuntime 预测环境 +Need to prepare PaddleOCR, Paddle2ONNX model conversion environment, and ONNXRuntime prediction environment ### PaddleOCR -克隆PaddleOCR的仓库,使用release/2.4分支,并进行安装,由于PaddleOCR仓库比较大,git clone速度比较慢,所以本教程已下载 +Clone the PaddleOCR repository, use the release/2.6 branch, and install it. ``` -git clone -b release/2.4 https://github.com/PaddlePaddle/PaddleOCR.git +git clone -b release/2.6 https://github.com/PaddlePaddle/PaddleOCR.git cd PaddleOCR && python3.7 setup.py install ``` ### Paddle2ONNX -Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式,算子目前稳定支持导出 ONNX Opset 9~11,部分Paddle算子支持更低的ONNX Opset转换。 -更多细节可参考 [Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX/blob/develop/README_zh.md) +Paddle2ONNX supports converting the PaddlePaddle model format to the ONNX model format. The operator currently supports exporting ONNX Opset 9~11 stably, and some Paddle operators support lower ONNX Opset conversion. +For more details, please refer to [Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX/blob/develop/README_en.md) -- 安装 Paddle2ONNX + +- install Paddle2ONNX ``` python3.7 -m pip install paddle2onnx ``` -- 安装 ONNXRuntime +- install ONNXRuntime ``` -# 建议安装 1.9.0 版本,可根据环境更换版本号 +# It is recommended to install version 1.9.0, and the version number can be changed according to the environment python3.7 -m pip install onnxruntime==1.9.0 ``` -## 2. 模型转换 +## 2. Model conversion -- Paddle 模型下载 +- Paddle model download -有两种方式获取Paddle静态图模型:在 [model_list](../../doc/doc_ch/models_list.md) 中下载PaddleOCR提供的预测模型; -参考[模型导出说明](../../doc/doc_ch/inference.md#训练模型转inference模型)把训练好的权重转为 inference_model。 +There are two ways to obtain the Paddle model: Download the prediction model provided by PaddleOCR in [model_list](../../doc/doc_en/models_list_en.md); +Refer to [Model Export Instructions](../../doc/doc_en/inference_en.md#1-convert-training-model-to-inference-model) to convert the trained weights to inference_model. -以 ppocr 中文检测、识别、分类模型为例: +Take the PP-OCRv3 detection, recognition, and classification model as an example: ``` -wget -nc -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar -cd ./inference && tar xf ch_PP-OCRv2_det_infer.tar && cd .. +wget -nc -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar +cd ./inference && tar xf en_PP-OCRv3_det_infer.tar && cd .. -wget -nc -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar -cd ./inference && tar xf ch_PP-OCRv2_rec_infer.tar && cd .. +wget -nc -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_infer.tar +cd ./inference && tar xf en_PP-OCRv3_rec_infer.tar && cd .. wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar cd ./inference && tar xf ch_ppocr_mobile_v2.0_cls_infer.tar && cd .. ``` -- 模型转换 +- convert model -使用 Paddle2ONNX 将Paddle静态图模型转换为ONNX模型格式: +Convert Paddle inference model to ONNX model format using Paddle2ONNX: ``` -paddle2onnx --model_dir ./inference/ch_PP-OCRv2_det_infer \ +paddle2onnx --model_dir ./inference/en_PP-OCRv3_det_infer \ --model_filename inference.pdmodel \ --params_filename inference.pdiparams \ --save_file ./inference/det_onnx/model.onnx \ @@ -65,7 +66,7 @@ paddle2onnx --model_dir ./inference/ch_PP-OCRv2_det_infer \ --input_shape_dict="{'x':[-1,3,-1,-1]}" \ --enable_onnx_checker True -paddle2onnx --model_dir ./inference/ch_PP-OCRv2_rec_infer \ +paddle2onnx --model_dir ./inference/en_PP-OCRv3_rec_infer \ --model_filename inference.pdmodel \ --params_filename inference.pdiparams \ --save_file ./inference/rec_onnx/model.onnx \ @@ -81,136 +82,89 @@ paddle2onnx --model_dir ./inference/ch_ppocr_mobile_v2.0_cls_infer \ --input_shape_dict="{'x':[-1,3,-1,-1]}" \ --enable_onnx_checker True ``` +After execution, the ONNX model will be saved in `./inference/det_onnx/`, `./inference/rec_onnx/`, `./inference/cls_onnx/` paths respectively -执行完毕后,ONNX 模型会被分别保存在 `./inference/det_onnx/`,`./inference/rec_onnx/`,`./inference/cls_onnx/`路径下 - -* 注意:对于OCR模型,转化过程中必须采用动态shape的形式,即加入选项--input_shape_dict="{'x': [-1, 3, -1, -1]}",否则预测结果可能与直接使用Paddle预测有细微不同。 - 另外,以下几个模型暂不支持转换为 ONNX 模型: - NRTR、SAR、RARE、SRN +* Note: For the OCR model, the conversion process must be in the form of dynamic shape, that is, add the option --input_shape_dict="{'x': [-1, 3, -1, -1]}", otherwise the prediction result may be the same as Predicting directly with Paddle is slightly different. + In addition, the following models do not currently support conversion to ONNX models: + NRTR, SAR, RARE, SRN -## 3. 推理预测 +## 3. prediction -以中文OCR模型为例,使用 ONNXRuntime 预测可执行如下命令: +Take the English OCR model as an example, use **ONNXRuntime** to predict and execute the following commands: ``` python3.7 tools/infer/predict_system.py --use_gpu=False --use_onnx=True \ --det_model_dir=./inference/det_onnx/model.onnx \ --rec_model_dir=./inference/rec_onnx/model.onnx \ --cls_model_dir=./inference/cls_onnx/model.onnx \ ---image_dir=./deploy/lite/imgs/lite_demo.png +--image_dir=doc/imgs_en/img_12.jpg \ +--rec_char_dict_path=ppocr/utils/en_dict.txt ``` -以中文OCR模型为例,使用 Paddle Inference 预测可执行如下命令: +Taking the English OCR model as an example, use **Paddle Inference** to predict and execute the following commands: ``` python3.7 tools/infer/predict_system.py --use_gpu=False \ --cls_model_dir=./inference/ch_ppocr_mobile_v2.0_cls_infer \ ---rec_model_dir=./inference/ch_PP-OCRv2_rec_infer \ ---det_model_dir=./inference/ch_PP-OCRv2_det_infer \ ---image_dir=./deploy/lite/imgs/lite_demo.png +--rec_model_dir=./inference/en_PP-OCRv3_rec_infer \ +--det_model_dir=./inference/en_PP-OCRv3_det_infer \ +--image_dir=doc/imgs_en/img_12.jpg \ +--rec_char_dict_path=ppocr/utils/en_dict.txt ``` -执行命令后在终端会打印出预测的识别信息,并在 `./inference_results/` 下保存可视化结果。 +After executing the command, the predicted identification information will be printed out in the terminal, and the visualization results will be saved under `./inference_results/`. -ONNXRuntime 执行效果: +ONNXRuntime result:
- +
-Paddle Inference 执行效果: +Paddle Inference result:
- +
-使用 ONNXRuntime 预测,终端输出: -``` -[2022/02/22 17:48:27] root DEBUG: dt_boxes num : 38, elapse : 0.043187856674194336 -[2022/02/22 17:48:27] root DEBUG: rec_res num : 38, elapse : 0.592170000076294 -[2022/02/22 17:48:27] root DEBUG: 0 Predict time of ./deploy/lite/imgs/lite_demo.png: 0.642s -[2022/02/22 17:48:27] root DEBUG: The, 0.984 -[2022/02/22 17:48:27] root DEBUG: visualized, 0.882 -[2022/02/22 17:48:27] root DEBUG: etect18片, 0.720 -[2022/02/22 17:48:27] root DEBUG: image saved in./vis.jpg, 0.947 -[2022/02/22 17:48:27] root DEBUG: 纯臻营养护发素0.993604, 0.996 -[2022/02/22 17:48:27] root DEBUG: 产品信息/参数, 0.922 -[2022/02/22 17:48:27] root DEBUG: 0.992728, 0.914 -[2022/02/22 17:48:27] root DEBUG: (45元/每公斤,100公斤起订), 0.926 -[2022/02/22 17:48:27] root DEBUG: 0.97417, 0.977 -[2022/02/22 17:48:27] root DEBUG: 每瓶22元,1000瓶起订)0.993976, 0.962 -[2022/02/22 17:48:27] root DEBUG: 【品牌】:代加工方式/0EMODM, 0.945 -[2022/02/22 17:48:27] root DEBUG: 0.985133, 0.980 -[2022/02/22 17:48:27] root DEBUG: 【品名】:纯臻营养护发素, 0.921 -[2022/02/22 17:48:27] root DEBUG: 0.995007, 0.883 -[2022/02/22 17:48:27] root DEBUG: 【产品编号】:YM-X-30110.96899, 0.955 -[2022/02/22 17:48:27] root DEBUG: 【净含量】:220ml, 0.943 -[2022/02/22 17:48:27] root DEBUG: Q.996577, 0.932 -[2022/02/22 17:48:27] root DEBUG: 【适用人群】:适合所有肤质, 0.913 -[2022/02/22 17:48:27] root DEBUG: 0.995842, 0.969 -[2022/02/22 17:48:27] root DEBUG: 【主要成分】:鲸蜡硬脂醇、燕麦B-葡聚, 0.883 -[2022/02/22 17:48:27] root DEBUG: 0.961928, 0.964 -[2022/02/22 17:48:27] root DEBUG: 10, 0.812 -[2022/02/22 17:48:27] root DEBUG: 糖、椰油酰胺丙基甜菜碱、泛醒, 0.866 -[2022/02/22 17:48:27] root DEBUG: 0.925898, 0.943 -[2022/02/22 17:48:27] root DEBUG: (成品包材), 0.974 -[2022/02/22 17:48:27] root DEBUG: 0.972573, 0.961 -[2022/02/22 17:48:27] root DEBUG: 【主要功能】:可紧致头发磷层,从而达到, 0.936 -[2022/02/22 17:48:27] root DEBUG: 0.994448, 0.952 -[2022/02/22 17:48:27] root DEBUG: 13, 0.998 -[2022/02/22 17:48:27] root DEBUG: 即时持久改善头发光泽的效果,给干燥的头, 0.994 -[2022/02/22 17:48:27] root DEBUG: 0.990198, 0.975 -[2022/02/22 17:48:27] root DEBUG: 14, 0.977 -[2022/02/22 17:48:27] root DEBUG: 发足够的滋养, 0.991 -[2022/02/22 17:48:27] root DEBUG: 0.997668, 0.918 -[2022/02/22 17:48:27] root DEBUG: 花费了0.457335秒, 0.901 -[2022/02/22 17:48:27] root DEBUG: The visualized image saved in ./inference_results/lite_demo.png -[2022/02/22 17:48:27] root INFO: The predict total time is 0.7003889083862305 -``` - -使用 Paddle Inference 预测,终端输出: - -``` -[2022/02/22 17:47:25] root DEBUG: dt_boxes num : 38, elapse : 0.11791276931762695 -[2022/02/22 17:47:27] root DEBUG: rec_res num : 38, elapse : 2.6206860542297363 -[2022/02/22 17:47:27] root DEBUG: 0 Predict time of ./deploy/lite/imgs/lite_demo.png: 2.746s -[2022/02/22 17:47:27] root DEBUG: The, 0.984 -[2022/02/22 17:47:27] root DEBUG: visualized, 0.882 -[2022/02/22 17:47:27] root DEBUG: etect18片, 0.720 -[2022/02/22 17:47:27] root DEBUG: image saved in./vis.jpg, 0.947 -[2022/02/22 17:47:27] root DEBUG: 纯臻营养护发素0.993604, 0.996 -[2022/02/22 17:47:27] root DEBUG: 产品信息/参数, 0.922 -[2022/02/22 17:47:27] root DEBUG: 0.992728, 0.914 -[2022/02/22 17:47:27] root DEBUG: (45元/每公斤,100公斤起订), 0.926 -[2022/02/22 17:47:27] root DEBUG: 0.97417, 0.977 -[2022/02/22 17:47:27] root DEBUG: 每瓶22元,1000瓶起订)0.993976, 0.962 -[2022/02/22 17:47:27] root DEBUG: 【品牌】:代加工方式/0EMODM, 0.945 -[2022/02/22 17:47:27] root DEBUG: 0.985133, 0.980 -[2022/02/22 17:47:27] root DEBUG: 【品名】:纯臻营养护发素, 0.921 -[2022/02/22 17:47:27] root DEBUG: 0.995007, 0.883 -[2022/02/22 17:47:27] root DEBUG: 【产品编号】:YM-X-30110.96899, 0.955 -[2022/02/22 17:47:27] root DEBUG: 【净含量】:220ml, 0.943 -[2022/02/22 17:47:27] root DEBUG: Q.996577, 0.932 -[2022/02/22 17:47:27] root DEBUG: 【适用人群】:适合所有肤质, 0.913 -[2022/02/22 17:47:27] root DEBUG: 0.995842, 0.969 -[2022/02/22 17:47:27] root DEBUG: 【主要成分】:鲸蜡硬脂醇、燕麦B-葡聚, 0.883 -[2022/02/22 17:47:27] root DEBUG: 0.961928, 0.964 -[2022/02/22 17:47:27] root DEBUG: 10, 0.812 -[2022/02/22 17:47:27] root DEBUG: 糖、椰油酰胺丙基甜菜碱、泛醒, 0.866 -[2022/02/22 17:47:27] root DEBUG: 0.925898, 0.943 -[2022/02/22 17:47:27] root DEBUG: (成品包材), 0.974 -[2022/02/22 17:47:27] root DEBUG: 0.972573, 0.961 -[2022/02/22 17:47:27] root DEBUG: 【主要功能】:可紧致头发磷层,从而达到, 0.936 -[2022/02/22 17:47:27] root DEBUG: 0.994448, 0.952 -[2022/02/22 17:47:27] root DEBUG: 13, 0.998 -[2022/02/22 17:47:27] root DEBUG: 即时持久改善头发光泽的效果,给干燥的头, 0.994 -[2022/02/22 17:47:27] root DEBUG: 0.990198, 0.975 -[2022/02/22 17:47:27] root DEBUG: 14, 0.977 -[2022/02/22 17:47:27] root DEBUG: 发足够的滋养, 0.991 -[2022/02/22 17:47:27] root DEBUG: 0.997668, 0.918 -[2022/02/22 17:47:27] root DEBUG: 花费了0.457335秒, 0.901 -[2022/02/22 17:47:27] root DEBUG: The visualized image saved in ./inference_results/lite_demo.png -[2022/02/22 17:47:27] root INFO: The predict total time is 2.8338775634765625 +Using ONNXRuntime to predict, terminal output: +``` +[2022/10/10 12:06:28] ppocr DEBUG: dt_boxes num : 11, elapse : 0.3568880558013916 +[2022/10/10 12:06:31] ppocr DEBUG: rec_res num : 11, elapse : 2.6445000171661377 +[2022/10/10 12:06:31] ppocr DEBUG: 0 Predict time of doc/imgs_en/img_12.jpg: 3.021s +[2022/10/10 12:06:31] ppocr DEBUG: ACKNOWLEDGEMENTS, 0.997 +[2022/10/10 12:06:31] ppocr DEBUG: We would like to thank all the designers and, 0.976 +[2022/10/10 12:06:31] ppocr DEBUG: contributors who have been involved in the, 0.979 +[2022/10/10 12:06:31] ppocr DEBUG: production of this book; their contributions, 0.989 +[2022/10/10 12:06:31] ppocr DEBUG: have been indispensable to its creation. We, 0.956 +[2022/10/10 12:06:31] ppocr DEBUG: would also like to express our gratitude to all, 0.991 +[2022/10/10 12:06:31] ppocr DEBUG: the producers for their invaluable opinions, 0.978 +[2022/10/10 12:06:31] ppocr DEBUG: and assistance throughout this project. And to, 0.988 +[2022/10/10 12:06:31] ppocr DEBUG: the many others whose names are not credited, 0.958 +[2022/10/10 12:06:31] ppocr DEBUG: but have made specific input in this book, we, 0.970 +[2022/10/10 12:06:31] ppocr DEBUG: thank you for your continuous support., 0.998 +[2022/10/10 12:06:31] ppocr DEBUG: The visualized image saved in ./inference_results/img_12.jpg +[2022/10/10 12:06:31] ppocr INFO: The predict total time is 3.2482550144195557 +``` + +Using Paddle Inference to predict, terminal output: + +``` +[2022/10/10 12:06:28] ppocr DEBUG: dt_boxes num : 11, elapse : 0.3568880558013916 +[2022/10/10 12:06:31] ppocr DEBUG: rec_res num : 11, elapse : 2.6445000171661377 +[2022/10/10 12:06:31] ppocr DEBUG: 0 Predict time of doc/imgs_en/img_12.jpg: 3.021s +[2022/10/10 12:06:31] ppocr DEBUG: ACKNOWLEDGEMENTS, 0.997 +[2022/10/10 12:06:31] ppocr DEBUG: We would like to thank all the designers and, 0.976 +[2022/10/10 12:06:31] ppocr DEBUG: contributors who have been involved in the, 0.979 +[2022/10/10 12:06:31] ppocr DEBUG: production of this book; their contributions, 0.989 +[2022/10/10 12:06:31] ppocr DEBUG: have been indispensable to its creation. We, 0.956 +[2022/10/10 12:06:31] ppocr DEBUG: would also like to express our gratitude to all, 0.991 +[2022/10/10 12:06:31] ppocr DEBUG: the producers for their invaluable opinions, 0.978 +[2022/10/10 12:06:31] ppocr DEBUG: and assistance throughout this project. And to, 0.988 +[2022/10/10 12:06:31] ppocr DEBUG: the many others whose names are not credited, 0.958 +[2022/10/10 12:06:31] ppocr DEBUG: but have made specific input in this book, we, 0.970 +[2022/10/10 12:06:31] ppocr DEBUG: thank you for your continuous support., 0.998 +[2022/10/10 12:06:31] ppocr DEBUG: The visualized image saved in ./inference_results/img_12.jpg +[2022/10/10 12:06:31] ppocr INFO: The predict total time is 3.2482550144195557 ``` -- GitLab